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Abstract: The autoregressive model is a tool used in time series analysis to describe and model time
series data. Its main structure is a linear equation using the previous values to compute the next time
step; i.e., the short time relationship is the core component of the autoregressive model. Therefore,
short-term effects can be modeled in an easy way, but the global structure of the model is not obvious.
However, this global structure is a crucial aid in the model selection process in data analysis. If
the global properties are not reflected in the data, a corresponding model is not compatible. This
helpful knowledge avoids unsuccessful modeling attempts. This article analyzes the global structure
of the autoregressive model through the derivation of a closed form. In detail, the closed form of
an autoregressive model consists of the basis functions of a fundamental system of an ordinary
differential equation with constant coefficients; i.e., it consists of a combination of polynomial factors
with sinusoidal, cosinusoidal, and exponential functions. This new insight supports the model
selection process.

Keywords: data analysis; time series; autoregressive model

1. Introduction

The increasing digitalization of all areas of society and the economy is leading to
ever greater volumes of data. Many of these data are time series; i.e., they have a time
component by which they can be ordered. When analyzing time series—with the aim of
predicting future values or gaining knowledge about the underlying, generating process—
mathematical model building plays a crucial role.

In general, two types of models can be distinguished: domain-specific models on the
one hand and general-purpose models on the other. As a rule of thumb, domain-specific
models are preferable for corresponding (domain) problems. This rule corresponds to the
principle of using existing knowledge, especially if this information is already reflected
in the mathematical model. For example, when modeling radioactive decay [1] or the
endemic development of a pandemic [2], a domain-specific model is a good starting point
for data analysis. If this background knowledge about the domain and the use-case is not
available or if this knowledge should not be used, general purpose models can be used
for prediction. Many of these general purpose models exist and are explained in standard
textbooks [3].

In mathematical modeling and model building, it is important that essential properties
of a model are reflected in the data. If the data contradict the character of a model, the
quality of the model-based prediction suffers; e.g., if the model has a linear relationship,
although the data rather correspond to a parabola, a contradiction is given and the model is
at most to be used with caution or is to be rejected. However, this decision assumes that all
essential characteristics of a model are known and are not a black box. It is in this context
that this article should be seen: the following sections describe the autoregressive model for
time series. The characteristics of the model are usually interpreted using stochastic model
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building; this article shows a novel, different, analytical approach through the derivation
of a closed form and thus reveals additional important model properties. In detail, the
closed form of an autoregressive model consists of a combination of polynomial factors
with sinusoidal, cosinusoidal, and exponential functions. This new insight supports the
model selection process.

2. Related Work: The Autoregressive Model

Definition 1. A time series is a sequence of pairs (xi, yi) that consist of a time component xi and
an arbitrary component yi. To allow for the possibly unpredictable nature of future observations, it
is natural to suppose that each observation is a realized value of a certain random variable [4]. The
time component can be continuous xi ∈ R or discrete xi ∈ Z. If the context describes the timing
implicitly—e.g., by a regular sampling in fixed intervals—the time component may be omitted.

The distinction between discreteness and continuity can be approached in various
ways. JOHN L. BELL explains “To be continuous is to constitute an unbroken or unin-
terrupted whole, like the ocean or the sky. A continuous entity—a continuum—has no
‘gaps’. Opposed to continuity is discreteness: to be discrete is to be separated, like the
scattered pebbles on a beach or the leaves on a tree. Continuity connotes unity; discreteness,
plurality” [5]. In addition to mathematical definitions and philosophical considerations [6],
applied mathematics adds a pragmatic perspective: in many cases, organizational, prac-
tical, or technical conditions determine whether a variable can be considered discrete or
continuous. This article does not make a strict distinction between continuous and discrete,
but uses both interpretations in parallel.

In order to capture and analyze a time series mathematically, a mathematical model
is required. A time series model for the observed data is a specification of the joint
distributions of a sequence of random variables [4]. This article refers exclusively to the
autoregressive (AR) model. According to JUDY L. KLEIN, the AR-model originated in the
1920s and was first applied by UDNY YULE in his 1927 analysis of the time-series behavior
of sunspots [7].

Definition 2. The autoregressive model AR(p) determines the value of a process at an arbitrary
time step t using a linear combination of the p-last values:

yt = φ1 · yt−1 + φ2 · yt−2 + . . . + φp · yt−p + εt (1)

The number p is called the order of the AR model.The weights φi of the linear combination are the
model parameters. They are considered to be constant. Furthermore, an AR model assumes that this
process is superimposed by white noise; i.e. the εt are assumed to be uncorrelated with each other in
time and identically distributed, with an expected value of zero and finite variance. This model is
abbreviated as AR(p).

Many definitions additionally require that the process described by AR(p) is stationary.
This results in further conditions on the coefficients φi, which are not a focus of the following
considerations of this article.

The application of the AR(p) model to describe a given time series

. . . , yt−3, yt−2, yt−1, yt, yt+1, yt+2, yt+3, . . . (2)

raises several questions. Two of these questions concern the global structure of the model:

1. Is the AR(p) model in principle able to describe characteristic properties of the time
series (2); in other words, is the AR(p) model in principle suitable?

2. If it is suitable, how is the parameter p selected?

Stating these questions in other words, what is the closed form of the model?
The model and its parameters are usually determined using a stochastic/statistical

perspective [8,9]: the commonly used approaches are based on maximizing a likelihood



Forecasting 2021, 3 718

function and obtaining the model parameters via the solution of the so-called modified
Yule–Walker equations [10] or via ordinary least squares regression [11].

This article does not provide a new approach to select an appropriate model or to
determine the model parameters; this article concentrates on the question of the closed
form of the model. The goal is to derive an expression that can be used to evaluate any time
step t without having to evaluate all previous values first. This approach to the AR model
explicitly names the elementary building blocks of the model. These elementary building
blocks should be reflected in the data—an insight that contributes to model selection and
that gives decision support during the model building process. The only existing approach
to the global structure of the autoregressive model has been presented by DIHUI LAI and
BINGFENG LU: in “Understanding Autoregressive Model for Time Series as a Deterministic
Dynamic System” [12], they interpret a first-order difference equation as an autoregressive
model yt = φ0 + φ1yt−1. The assumed change over time in this formula is one unit. In
general, the time step can be of any unit, and by changing the unit of time, it can be replaced
with ∆t, and the equation can be rewritten as

yt − yt−∆t
∆t

= φ0 + (φ1 − 1)yt−∆t. (3)

In the limit case ∆t → 0, the difference equation becomes a first-order time-dependent
ordinary differential equation (ODE):

dy
dt

= φ0 + (φ1 − 1)y. (4)

3. Global Structure

This article extends the state-of-the-art using eigenanalysis and ordinary differential
equations in order to reveal important global properties of the AR(p) model, which should
be reflected in the time series data and which provide decision support when selecting the
model to describe a time series.

3.1. Eigenanalysis

The AR(p) model can be interpreted as a linear operator applied to an initial vector
consisting of the data of the time series. The equation of the definition (1) is formulated in
this interpretation as a matrix equation

yt
yt−1

...
yt−p+1


︸ ︷︷ ︸

=yt

= Ap ·


yt−1
yt−2

...
yt−p

 (5)

with a matrix

Ap =



φ1 φ2 φ3 . . . φp−2 φp−1 φp
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 1 0 0 0
0 . . . 0 0 1 0 0
0 . . . 0 0 0 1 0


(6)

containing the model parameters φ1, . . . , φp. The forecast of the next k values is then simply
the k-fold application of the linear operator Ap:

yt+k = Ap · . . . · · ·Ap︸ ︷︷ ︸
=Ak

p

·yt (7)
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This equation can be transformed into a closed form for model orders p = 1, . . . , 4 via
Jordan normal form [13]. For this purpose, the roots of the characteristic polynomial of the
matrix Ap and the corresponding eigenvectors have to be determined. For the characteristic
polynomial, the following applies:

Theorem 1. The characteristic polynomial of Ap is

χp(λ) = (−1)p · (λp − φ1λp−1 − . . .− φp−1λ− φp). (8)

Proof. The case p = 1 with

det(A1 − λI) = det(φ1 − λ) = φ1 − λ (9)

= −1 · (λ− φ1) = χ1(λ) (10)

is the base case of an induction. The induction step starts with

det(Ap − λI) = det



φ1 − λ φ2 φ3 . . . φp−2 φp−1 φp
1 −λ 0 . . . 0 0 0
0 1 −λ . . . 0 0 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 1 −λ 0 0
0 . . . 0 0 1 −λ 0
0 . . . 0 0 0 1 −λ


and the determinant of this matrix will be computed by using the Laplace expansion along
its last column.

det(Ap − λI) = −(−1)p · φp · det


1 −λ 0 . . .
0 1 −λ . . .
...

. . . . . . . . .
0 . . . 0 1


+ (−λ) · det(Ap−1 − λI)

(11)

The Laplace expansion reduces the p× p matrix (Ap − λI) into two matrices. The determi-
nate of the first matrix is one, since its structure contains a lower triangular matrix of zeros,
and the product of the diagonal is one. The second matrix meets the induction hypothesis.
As a consequence, due to

det(Ap − λI) = (−1)p · (−φp)− λ · det(Ap−1 − λI) (12)

= (−1)p · (−φp)− λ·[
(−1)p−1 · (λp−1 − φ1λp−2 − . . .− φp−2λ− φp−1)

]
(13)

= (−1)p
(
−φp + λ · (λp−1 − φ1λp−2 − . . .− φp−2λ− φp−1)

)
(14)

= (−1)p
(

λp − φ1λp−1 − . . .− φp−2λ2 − φp−1λ− φp

)
(15)

the characteristic polynomial of Ap is χp(λ).

Having calculated the eigenvectors and the eigenspaces, the matrix Ap can be de-
composed into Ap = T−1 D T with an orthogonal basis T. The matrix D is a diagonal
matrix, if and only if the sum of the dimensions of its eigenspaces is equal to p. Otherwise,
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it is almost diagonal; i.e., with only non-zero elements on its diagonal and ones on its
superdiagonal. Consequently, the k-fold application of the linear operator Ap is

Ak
p = (T D T−1)k

= T D T−1 · T︸ ︷︷ ︸
=I

D T−1 · . . . · T D T−1

= T Dk T−1.

(16)

where Dk is usually easy to determine, meaning that Equation (7) can be evaluated to a
closed form representation.
Example: The AR(2)-model (with p = 2)

yt = 1 · yt−1 + 1 · yt−2 with y0 = 0 and y1 = 1 (17)

illustrates the previously presented approach. Written as linear operator, the AR(2)-model
can be represented by the matrix

A2 =

(
1 1
1 0

)
. (18)

Hence, the characteristic polynomial is

χ(λ) = det(A2 − λI) = λ2 − λ− 1. (19)

Its roots are λ1/2 = 1
2 (1±

√
5). Using the corresponding eigenvectors, the matrix A2 can

be decomposed into

A2 = T ·D · T−1 (20)

with

T =

(
1
2 −

√
5

10
1
2 +

√
5

10

−
√

5
5

√
5

5

)
and D =

(
1
2 −

1
2

√
5 0

0 1
2 + 1

2

√
5

)
. (21)

As a result, the closed form of this AR(2)-model is

(
yk+1

yk

)
= Ak

2 ·
(

y1
y0

)
= T ·

(
( 1

2 −
1
2

√
5)k 0

0 ( 1
2 + 1

2

√
5)k

)
· T−1 ·

(
y1
y0

)
, (22)

respectively,

yk+1 =

(
1
2
− 3

10

√
5
)
·
(

1
2
− 1

2

√
5
)k

+

(
1
2
+

3
10

√
5
)
·
(

1
2
+

1
2

√
5
)k

, (23)

which is equivalent to the well-known, closed formula to calculate the Fibonacci sequence.
This approach to derive a closed form equation can be used for model orders p = 1, . . . , 4,

but for higher-order models (p > 4), the roots of the characteristic polynomial of the matrix Ap
and the corresponding eigenvectors cannot be determined in general, although special cases
may have an exact, analytic solution.

3.2. Differential Equations

A novel approach is based on the idea of DIHUI LAI and BINGFENG LU, summarized
in Section 2: they interpret a first-order difference equation as an autoregressive model
yt = φ0 + φ1yt−1. This idea is now extended towards higher order AR(p) models. The
basic idea of interpreting a difference equation as an AR model is symmetric; not only can
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the difference equation be interpreted as an AR model, but also vice versa. Furthermore,
differential equations of higher degree correspond to AR models of higher order.

Besides the difference quotients in the following forms, namely forward difference

∆y
∆t

=
yt+∆t − yt

∆t
, (24)

backward difference
∆y
∆t

=
yt − yt−∆t

∆t
, (25)

and central difference
∆y
∆t

=
yt+∆t − yt−∆t

2∆t
, (26)

to approximate the first-order derivative, there are also difference quotients for the nu-
merical calculation of higher derivatives. The recursive definition of higher-order central
difference quotients is

∆ny
∆tn =

1
∆tn ·

n

∑
k=0

(−1)k
(

n
k

)
yt+k−n/2 (27)

for even degrees of n, and

∆ny
∆tn =

1
2∆tn ·

n−1

∑
k=0

(−1)k
(

n− 1
k

)
·
(

yt+k+1−(n−1)/2 − yt+k−1−(n−1)/2

)
(28)

for odd degrees of n. In the limit analysis for ∆t→ 0, the general AR(p) model becomes an
ODE of order n = p; i.e., Equation (1) becomes

any(n) + an−1y(n−1) + . . . + a2y′′ + a1y′ + a0y = f (x) (29)

with constants ai, respectively, in normalized representation with an = 1:

y(n) + an−1y(n−1) + . . . + a2y′′ + a1y′ + a0y = f (x). (30)

The solution of this equation can be calculated with the help of the characteristic polynomial
of the ODE [14], which is obtained by substituting the k-th derivative by λk:

χ(λ) = λn + an−1λ(n−1) + . . . + a2λ2 + a1λ + a0. (31)

According to the fundamental theorem of algebra, a polynomial of degree n has exactly
n roots, counting multiplicity. If all coefficients ai are real, the roots are real or occur in
conjugate pairs. Each root corresponds to an independent solution, which together form the
fundamental system that represents all solutions of the homogeneous ODE (with f (x) = 0).
The necessary n linearly independent solutions can then be found using the rules to solve
higher-order differential equations with constant coefficients:

If r is a real root that appears k times, then the solutions are

y = er·t, y = t · er·t, y = t2 · er·t, . . . , y = tk−1 · er·t. (32)

If r = α± βi are complex conjugate roots appearing k times, then the solutions are

eα·t cos(β · t), eα·t sin(β · t), (33)

t · eα·t cos(β · t), t · eα·t sin(β · t), (34)

t2 · eα·t cos(β · t), t2 · eα·t sin(β · t), (35)
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...

tk−1 · eα·t cos(β · t), tk−1 · eα·t sin(β · t). (36)

These building blocks of the fundamental system of the ODE are the components that
compose the AR(p)-Model.

To illustrate these building blocks, the following synthetic example transforms an
autoregressive model into a closed form representation. This is not the classical procedure
in time series analysis. Time series analysis is usually a data-driven, inverse process; i.e., the
time series are based on the assumption that there is a generating, stochastic process that is
to be determined inversely from the data. In the following, synthetic example, we start from
an exactly specified model, determine the time series realization from it, and determine the
closed form. The last transformation step is in particular focus here—it shall clarify the
connection between the representation according to Definition 2 (see Equation (1)) and the
fundamental system in order to provide a more profound, theoretical insight. For practical
applications, this approach is not recommended.
Example: An exemplary AR model shall consist of the initial values

y0 = 1, y−1 = 2, y−2 = 0,

and an order p = 3 linear combination with the coefficients 2, −3/2, and −1/2; i.e.,

yt = 2 · yt−1 −
3
2
· yt−2 −

1
2
· yt−3. (37)

So-called white noise εi is not used in this example. For practical applications, this assump-
tion is very problematic and should not be used; however, in this synthetic theoretical
example, this assumption is used to illustrate the similarity of the two AR model represen-
tations: without white noise, numerical inaccuracies are the only deviations that may occur
between the two representations.

This example model generates the sequence

y−2 = 0.0 y−1 = 2.0 y0 = 1.0
y1 = −1.0 y2 = −4.5 y3 = −8.0
y4 = −8.75 y5 = −3.25 y6 = 10.625
y7 = 30.5 y8 = 46.6875 y9 = 42.3125
y10 = −0.65625 y11 = −88.125 y12 = −196.421875
...

As the AR(3)-model has an order of p = 3, the corresponding ODE has a characteristic
polynomial of degree three. Such a polynomial may take the following forms:

1. Three real roots (counting multiplicity); or
2. One real root and a conjugate pair.

In the first case, the fundamental system would consist of three exponential functions
with polynomial factors up to degree two. This basis would not be able to produce the
generated data sequence of the time series—in particular, several sign changes contradict
this model.

In the second case, the fundamental system consists of an exponential function and a
pair of exponential functions multiplied with sine/cosine factors. These basis functions
are reflected in the data sequence: the trigonometric functions are responsible for the sign
changes. As a consequence, this case applies; i.e., the characteristic polynomial has one
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real and two conjugate complex zeros. The starting point for the fundamental system
is therefore

y = a0 ea1·x

+ b0 eb1·x sin(b2 · x) + b3 eb1·x cos(b2 · x).
(38)

This basis, together with the values of the AR model sequence,

0.0, 2.0, 1.0, −1.0, −4.5, −8.0, −8.75,
−3.25, 10.625, 30.5, 46.6875, 42.3125, . . .

leads to an overdetermined, nonlinear system of equations, which can be solved with a
numerical minimization procedure [15]. This optimization determines the fundamental
system and simultaneously solves the initial value problem of the ODE:

a0 = −2.015059E−12, a1 = −13.601814,

b0 = 2.5104196, b1 = 0.35838324, (39)

b2 = 11.896794, b3 = 1.0790480.

Using these constants in Equation (38) leads to a global description of the discrete model.
In detail, the AR model

yt = 2 · yt−1 −
3
2
· yt−2 −

1
2
· yt−3 (40)

with the initial values y0 = 1, y−1 = 2, y−2 = 0 can be represented by the closed form

y(x) = −2.015059E−12 e−13.601814·x

+ 2.5104196 e0.35838324·x sin(11.896794 · x) (41)

+ 1.0790480 e0.35838324·x cos(11.896794 · x).

The differences between both representations—the AR model and the ODE solution—if
evaluated at discrete time stamps, are listed in Table 1. Small differences are shown, which
were to be expected in the range of numerical inaccuracies of floating point arithmetic.

The approach of interpreting an arbitrary AR(p) model as a differential equation is
new and allows the identification of the global structure: the building blocks of the funda-
mental system of the corresponding ordinary differential equation are the components of
which the AR(p) model consists. The last example has illustrated this approach explicitly.
Furthermore, the first example using the Fibonacci sequence (17) can be interpreted in this
way and leads to an equivalent solution:
Example: The Fibonacci sequence (17) has the closed form

yk+1 =

(
1
2
− 3

10

√
5
)
·
(

1
2
− 1

2

√
5
)k

+

(
1
2
+

3
10

√
5
)
·
(

1
2
+

1
2

√
5
)k

, (42)

To outline its structure, this formula can be rewritten in terms of exponential functions

yk+1 = ( 1
2−

3
10

√
5) · ek·ln( 1

2−
1
2
√

5) + ( 1
2+

3
10

√
5) · ek·ln( 1

2+
1
2
√

5), (43)

This representation shows that the Fibonacci sequence is essentially composed of two ex-
ponential functions that dominate the trend of the corresponding time series. This is
consistent with the global structure resulting from the fundamental system of the ODE
as derived in this article: an AR(2) model leads to a differential equation of degree two;
the corresponding characteristic polynomial of the ODE therefore also has degree two and
thus has either two real roots (counting multiplicity) or two conjugate complex roots. The
second case can be excluded, since this case would lead to trigonometric factors and thus
to sign changes in the data series. The first case with two real zeros, on the other hand,
leads exactly to the two exponential functions, which overlap as in Equation (43).
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Table 1. The example AR model has lead to an ordinary differential equation whose solution is a
fundamental system (38) with an initial value problem. The solution to the initial value problem (39)
describes the AR model globally; i.e., the AR model consists of oscillating exponential terms. The
small differences ∆ between both representations are listed in the last column.

t, Autoregressive Model Fundamental System Difference
Resp. x yt = 2yt−1 − 3

2 yt−2 − 1
2 yt−3 y(x) = a0ea1x + b0eb1x sin(b2x) ∆

+b3eb1x cos(b2x)

0 1.0000000 1.0790479 0.0790479
1 −1.0000000 −1.0189353 0.0189353
2 −4.5000000 −4.4962394 0.0037605
3 −8.0000000 −8.0033071 0.0033071
4 −8.7500000 −8.7525921 0.0025921
5 −3.2500000 −3.2522651 0.0022651
6 10.6250000 10.6252496 0.0002496
7 30.5000000 30.5038138 0.0038138
8 46.6875000 46.6943506 0.0068506
9 42.3125000 42.3197350 0.0072350

10 −0.6562500 −0.6522115 0.0040384
11 −88.1250000 −88.1260007 0.0010007
12 −196.4218750 −196.4254673 0.0035923
13 −260.3281250 −260.3283357 0.0002107
14 −181.9609375 −181.9552121 0.0057253
15 124.7812500 124.7800496 0.0012003

4. Application

In order to illustrate the application of the gained knowledge about the global structure,
an example data set is used: the data set is the level of the river Mur measured by the
Graz station, Austria (DBMS #6001082), as provided by the web-service https://ehyd.gv.at
(accessed on 15 May 2020). The data set consists of one measurement of the water level per
day starting on 1 January 1976 and running until 31 December 2016. A visual overview
is shown in Figure 1. The diagram shows the annual data. Each year is plotted using
a semi-transparent, blue-filled area plot on top of each other. Additionally, the diagram
contains, for each day of a year, the minimum (white), average (light blue), and maximum
(dark blue) water levels of all years (1976–2016) on the corresponding day. These values
are visualized in line plots.

In this example, the goal is to forecast the water levels of the next three days on the
basis of the previous 50 days; i.e., starting with January 1st, 1976, a sliding window of
50 days is used to determine an autoregressive model of order three (AR(3)) in order to
forecast the water level of the next three days. In detail, the test consists of 14,974 time
series of 50 values each with the challenge to predict the next three values. As the historic
data are complete, the quality of the forecast can be evaluated using the ground truth.

This test is performed with two algorithmic approaches. The first approach determines
the parameters of the AR(3) model via ordinary least squares regression as described by
M. HAUSER, [11]. The second approach uses the explicit, closed form representation (see
Equation (38)) and calculates the model parameters via conjugate gradient search [16].

The first approach, representing the established methods, performs well and achieves
a prediction quality within the range of 0.07–0.15 m. The details are listed in Table 2 (left).

The second approach offers additional knowledge about the global structure. Un-
fortunately, this knowledge does not offer advanced possibilities to determine the model
parameters. Although both model descriptions are equal, the non-linear optimization
via conjugate gradient search to determine the model parameters introduces additional
errors into the forecast, which are reflected in a reduced quality of the prediction (in the
range of 0.16–0.27 m; see Table 2). Moreover, the computational cost of the second ap-
proach is higher due to the nonlinear optimization; even if, for the sliding window of size

https://ehyd.gv.at
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50, the optimization result of the previous window is used as the starting value of the
iterative optimization.

Table 2. The approach to describe an autoregressive model via a closed form expression offers
an insight into the global structure. Unfortunately, this knowledge is of limited value in practical
applications. The need to determine the model parameters by non-linear optimization (right) in
contrast to the established ordinary least squares approach (left) introduces additional errors, which
reduces the overall forecast quality.

Forecast Error by Avg. Std.- Forecast Error by Avg. Std.-
Ordinary Least Squares Dev. Conjugate Gradient Dev.

day #1 0.07 m ±0.11 m day #1 0.16 m ±0.18 m
day #2 0.12 m ±0.18 m day #2 0.21 m ±0.27 m
day #3 0.15 m ±0.23 m day #3 0.27 m ±0.38 m

Consequently, in most cases, the established approaches—e.g., using ordinary least
squares—should be preferred, but the closed-form expression, which has to be determined
using nonlinear optimization, has a very important advantage: the parameters of a closed-
form expression can be determined for any set of function parameters and function values,
even if the function parameters are sampled irregularly. In such a case, the necessary
adjustments to determine the AR model parameters via ordinary least squares are rarely
found in existing implementations, while libraries for nonlinear parameter fitting usually
do not impose any requirements on the sampling of the evaluation points with respect to
regularity or irregularity. In other words, the practical relevance of this theoretical approach
currently arises only when the data are irregular and “data gaps have to be bridged”.
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is shown in Figure 1. The diagram shows the annual data. Each year is plotted using
a semi-transparent, blue-filled area plot on top of each other. Additionally, the diagram
contains, for each day of a year, the minimum (white), average (light blue), and maximum
(dark blue) water levels of all years (1976–2016) on the corresponding day. These values
are visualized in line plots.
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Figure 1. The water levels in Graz between 1976–2016 for each day of a year. The line plots indicate
the minimum (white), the average (light blue), and the maximum (dark blue) value. All other values
are plotted semi-transparently on top of each other.

In this example, the goal is to forecast the water levels of the next three days on the
basis of the previous 50 days; i.e., starting with January 1st, 1976, a sliding window of
50 days is used to determine an autoregressive model of order three (AR(3)) in order to
forecast the water level of the next three days. In detail, the test consists of 14,974 time
series of 50 values each with the challenge to predict the next three values. As the historic
data are complete, the quality of the forecast can be evaluated using the ground truth.

This test is performed with two algorithmic approaches. The first approach determines
the parameters of the AR(3) model via ordinary least squares regression as described by
M. HAUSER, [11]. The second approach uses the explicit, closed form representation (see
Equation 38) and calculates the model parameters via conjugate gradient search [16].

The first approach, representing the established methods, performs well and achieves
a prediction quality within the range of 0.07–0.15 m. The details are listed in Table 2 (left).

Figure 1. The water levels in Graz between 1976–2016 for each day of a year. The line plots indicate the minimum (white),
the average (light blue), and the maximum (dark blue) value. All other values are plotted semi-transparently on top of
each other.

5. Conclusions

The selection of a suitable model is a critical task in data analysis. Any decision
support to narrow down the multitude of existing data models can avoid mistakes and
save time in data analysis. The knowledge about the basic structure of a model is such a
kind of decision support; e.g., a data series with a parabolic graph is not compatible with a
data model consisting of a cubic polynomial, as the global properties of cubic polynomials
are known and therefore exclude the incompatible data model at an early stage.

For the autoregressive model, this article has derived the global structure: an AR(p)
model is composed of the fundamental system of a higher-order ordinary differential
equation (ODE) with constant coefficients. The order of both models, AR(p) and ODE, are
the same. As a consequence, if a data series does not correspond to a linear combination of
sinusoidal, cosinusoidal, and exponential functions, the AR(p) model is unsuitable for the
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global description of the time series (but a temporally local modeling of the data may be
possible). In detail, any AR(p) model is composed of the basis functions

y = er·t, y = t · er·t, y = t2 · er·t, . . . , y = tk−1 · er·t, (44)

if its characteristic polynomial has real roots only, and it consists of

eα·t cos(β · t), eα·t sin(β · t),

t · eα·t cos(β · t), t · eα·t sin(β · t),

t2 · eα·t cos(β · t), t2 · eα·t sin(β · t),

... (45)

tk−1 · eα·t cos(β · t), tk−1 · eα·t sin(β · t),

if it has complex roots.
Furthermore, the derived closed form of an AR(p) model allows users to switch be-

tween different interpretations—namely, between a discrete and a continuous domain.
Having a closed solution of a higher-order ordinary differential equation offers the pos-
sibility to evaluate the time series model at non-integer time steps, which is not possible
using the discrete definition only.

This knowledge of the global properties of the AR(p) model represents the essential
contribution of this article.
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