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Abstract: A novel forecasting method based on copula functions is proposed. It consists of an
iterative algorithm in which a dependent variable is decomposed as a sum of error terms, where each
one of them is estimated identifying the input variable which best “copulate” with it. The method
has been tested over popular reference datasets, achieving competitive results in comparison with
other well-known machine learning techniques.

Keywords: copula; machine learning; conditional probabilistic forecast

1. Introduction

One way to make predictions of a variable, Y, from the values of another, X, is to
compute the conditional expectation of Y|X. In the continuous case for example, if the
g(y|x) function defines its conditional density, this expected value is calculated according
to Equation (1), with DY being the support of the Y variable.

E[Y |X = x] =
∫

DY

yg(y| x)dy (1)

In this equation, the conditional density function g(y|x) can be computed from the joint
density function of (X, Y), hXY(x, y), and the marginal one of X, fX(x), using Equation (2).

g(y|x) = hXY(x, y)
fX(x)

(2)

Estimating marginal functions can be reasonably easy using estimators such as his-
tograms, frequency polygons, Na-daraya-Watson kernels, or empirical distribution functions.

However, it is more complicated to propose a regular expression for joint distributions.
One of the reasons that justifies this difficulty is the need to represent the true implicit
dependence relationship between the variables.

In fact, if FX and GY are the marginal cumulative distribution functions associated with
X and Y, respectively, then it can be demonstrated that there are infinity joint cumulative
distribution functions HX,Y with these marginals [1]. Furthermore, pairs of variables can be
found, (X1, Y1) and (X2, Y2), where both Xj and Yj variables have the same distribution with
the same linear ρXj ,Yj correlation coefficient too, but with different dependence structures—
that is, there may be two different joint distribution functions, H1 and H2, associated
with (X, Y), which would explain the dependency relationship between X and Y in a
different way.

For that reason, it is important to identify the joint cumulative distribution function
HXY that truly reflects the relationship between X and Y. Later, the conditional distribution
could be built from it to make predictions using Equation (1). The methodology proposed
in this paper is based on the estimation of these distributions through copula functions.
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There are few works in which copulas are linked to the concept of machine learning.
Certainly, when searching for “TS = (Copula* NEAR (‘data mining’ OR ‘machine learning’))”
in Web of Science (apps.webofknowledge.com, accessed on 25 May 2021), only 15 references
were found. In the survey “Copulas in machine learning” [2] (2013), the author talks about
the need for synergy between machine learning and copula frameworks and implores
the researchers in the copula community to develop algorithms able to cope with high-
dimensional challenges. To cover this shortcoming, a novel forecasting methodology
that uses bivariate copulas is proposed. This methodology is an extension of a thesis
published in 2007 [3], in which copula functions were used to forecast, from incremental
temperature variables, the percentage error term obtained after adjusting an ARIMA model
to a gas demand series. The methodology consisted of an iterative process in which
copula functions were used to relate the residual processes with the input variables, as an
alternative to the traditional way in which these input variables are included in the ARIMA
equation (ARIMAX model).

The work presented in this paper is a generalization of this methodology, incorporating
some of the popular ideas of machine learning methods. For example, there is a selection
process in which error terms are linearly (in an additive sense) and sequentially predicted
through copula functions, identifying the best pair (input variable, copula) for this end. It
remembers the stepwise selection process, sometimes used in adjusting regression model,
but with the difference that each variable can participate several times in a similar way that
they can do in a random forest or a gradient boosting model. During this iterative process,
training and validation datasets are distinguished, using an early stop criterion frequently
used in well-known methods such as neural networks or the mentioned trees ensemble
methods. The methodology has been tested over several reference datasets unlike the most
competitive machine learning methods, achieving better results in some of them.

The paper is structured as follows: Section 1.1 consists of a revision of the state of the
art about the use of copulas for making predictions; in Section 2, the proposed forecasting
methodology based on this kind of functions is introduced; in Section 3, this methodology
is applied to several reference datasets, comparing the corresponding results with the
achieved ones by the most competitive machine learning techniques; finally, in Section 5,
the conclusions and the future lines of work are presented.

1.1. State of the Art

Nowadays, there are many fields in which copula functions are used to model multi-
variate relationships. They are usually associated mainly with the Economy,but their use
has spread to various sectors, finding multiple applications in financial [4], insurance [5],
energy [6], meteorological [7] and, more recently, forestry and environmental sciences [8].

From a mathematical point of view, copulas are frequently associated with simulation [9].
In this context, copulas are frequently used in risk management [10], where they allow
simulating future scenarios taking into account the financial structure of the market. So,
S. Ortobelli et al. [11] compared the performance of several reward risk strategies based either
on simulated data through copula functions or on historical ones, demonstrating the better
performance of strategies valued on the first ones. Copulas have been used too when available
data are scarce and they are insufficient to quantify possible risks associated with especially
adversarial events, allowing the simulation of samples of pairs of copulated outliers. For
example, in the work of R. De Matteis [12], extreme-value copulas [13] were used to simulate
the simultaneous occurrence of highly expensive building and contents accidents in an
insurance company, and in the work of C. P.Khedun et al. [14], they are used to simulate
precipitation anomalies. In the context of outliers, there are some references associated with
the use of copulas for the detection of this type of data. For example, T. Bellini [15] uses
elliptical copulas to detect multivariate atypical observations, and K. Domino [16] uses the
t-Student copulas to artificially sample outliers.

Moving between the fields of simulation and prediction, copula functions are fre-
quently used in time series analysis, finding an interesting review of copula-based models

http://apps.webofknowledge.com
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for economic and financial time series data in the work of A. Patton [17]. These series are
usually dominated by a random walk component [18], as the aim is frequently focused on
forecasting not its average value but its variance. In this context, there are some interesting
contributions from copula modelling. O. Sokolinskiy et al. [19] forecast volatility one-day
ahead for a financial index, finding that the copula-based realized volatility model (C-RV)
outperforms conventional forecasting in terms of accuracy and efficiency. A. Kresta [20]
analyzes the applicability of the copula-GARCH model in portfolio optimization, simu-
lating the evolution of financial time series and demonstrating that they provide better
forecasts than a benchmark based on bootstrapping techniques. There are also studies
that make interesting comparisons between the accuracy of the copula-GARCH and Dy-
namic Conditional Correlation (DCC) models for forecasting the Value-at-Risk (VaR) and
expected shortfall of bivariate portfolios [21,22]. Regarding the VaR metric, S. Guharay [23]
proposed a more robust estimation of it based on copula functions. Other authors make
comparisons between the well known Capital Asset Pricing Model (CAPM) and copula
functions to analyze the co-movement and dependence structure between indexes. So,
R. Luo and M. Bhatti [24] use Gaussian, symmetrized Joe-Clayton, and Rotated Gumbel
Copulas to conduct this kind of analysis on Islamic investment fund data, while F. Man-
sor et al. [25] proposed CAPM as an alternative to complex copulas and DCC models.
Finally, within this field of capturing co-movements between time series associated with
indexes, C. Nguyen [26] proposed a new class of mixed copulas from Clayton, Joe, Gumbel,
and Joe copulas, achieving interesting results for investors to configure its portfolios. Di
Clemente [27] proposes an interesting methodology for measuring and optimizing the
credit risk of a portfolio following a copula-based approach.

Finally, within the scope of forecasting, but outside the one of time series, it is well
known that the use of vine copulas [28,29], based on the theory introduced by H. Joe [30]
and T. Dedford and R. Cooke [31]. These copulas allow the construction of multivariate
distributions from simple building blocks called pair-copulae, decomposing a multivariate
non-Gaussian distribution into a product of conditional and unconditional distribution
functions, not requiring natural conditional independence assumptions. Certainly, some
authors [29] solve prediction problems using copulas, showing that algorithms based on
them achieve better results than linear regression models. However, to the extent of the
knowledge of the authors of this paper, these algorithms are not usually compared with the
provided ones by other popular machine learning methods such as, for example, neural
networks, random forest, or gradient boosting.

As some of the cited works make a comparison between copula and DCC, CAPM
or regression models, in the same way, in the present work, a comparison between the
aforementioned machine learning techniques and the Additive Decomposition Algorithm Based
On Copulas (ADABOC) is carried out. This comparison demonstrates that our proposal
achieves competitive results.

2. Materials and Methods

This chapter details the methodology proposed for predicting an interval variable
using copula functions. In Section 2.1, a brief introduction to these functions will be
presented to facilitate the understanding of the mentioned methodology, which is detailed
in Section 2.2.

2.1. Copula Functions: Preliminary Concepts and Results

The word copula was originally used in a statistical context in 1959 by the mathe-
matician Abe Sklar in a theorem which bears his name [32]. With this term, the author
referred to functions that join (or copulate) multivariate distribution functions to their
unidimensional marginals [33].

Essentially, a copula is a multivariate cumulative distribution whose marginal func-
tions are distributed according to standard uniforms. The exposition will be focused on the
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bivariate case because, apart from being the most studied and referenced in the literature,
it is the needed one to understand the proposed algorithm.

Definition 1 (Bicopula function). A bicopula is a function C : [0, 1]x[0, 1] → [0, 1] with the
following properties:

1. C(u, 0) = 0; C(0, v) = 0;
2. C(u, 1) = u; C(1, v) = v;
3. C is non-decreasing: for each hyperrectangle B = [u1, u2]x[v1, v2], its volume is non-negative:

VC(B) = C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

Sklar’s theorem is the main result of the copula theory, since it establishes the relation-
ship between the joint distribution and univariate marginals through this type of function.

Theorem 1 (Sklar Theorem). Let X and Y be random variables with marginal distribution
functions FX and GY, respectively, and a joint distribution function HXY. Then, there exists a
copula C such that:

HXY(x, y) = C(FX(x), GY(y)) ∀x, yεR̄ = [−∞, ∞]. (3)

If FX and GY are continuous, then C is unique. If not, C is uniquely determined in
Range(FX)× Range(GY). Reciprocally, if C is a copula and FX and GY are distribution functions,
then the function HXY(x, y) = C(FX(x), GY(y)) is a joint distribution function with marginals
FX and GY.

It is important to remark on the observation referring to the non-continuous case, as
most applied papers in the literature that use copula models that deal with continuous data.
Certainly, [34,35] talks about whether it should be advised to make inferences in copula
models with discrete data. The author of the first one argues that modeling a discrete
distribution with a parametric copula and its marginal functions can be very difficult. This
is the reason that the continuous case will be considered.

On the other hand, note that, if X is a random variable with a distribution function
FX(x) (FX(x) = P[X ≤ x]), then FX(X) can be seen as a random variable too. As a result, if
FX is invertible, then:

P[FX(X) ≤ x] = P[X ≤ F−1
X (x)] = FX(F−1

X (x)) = x ∀xεDX (4)

Observe that this is the definition of a standard uniform distribution. For this rea-
son, F(X) (and G(Y)), can be considered as an uniform variable U (V, respectively).
So, Equation (3) can be rewritten as:

HXY(x, y) = C(u, v) (5)

In other words, Sklar’s theorem allows us to estimate the joint distribution function
HXY, finding the copula function C, which better fits to the values (u, v) of the uniform
variables (FX , GY) = (U, V). The relevance of this result lies in the fact that a lot of copula
functions which reflect a different types of relationships have been studied, making the
identification of a good estimation for HXY easier.

Sklar’s theorem can be used to identify the independence case between variables
too. In fact, when the copula function that best fits the uniform pairs (u, v) is the product
copula (6), X and Y can be considered as independent variables.

Π(u, v) = u ∗ v (6)

This is easy to demonstrate:

HXY(x, y) = C(FX(x), GY(y)) = Π(u, v) = u · v = FX(x) · GY(y). (7)
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It has already been emphasized that we need to know the conditioned distribution
function GY|X to make predictions of the Y variable from the one X. As GY|X distribution
is difficult to be directly estimated, it seems reasonable to use copulas to this end, as it is
important to understand the role these functions play in the characterization of GY|X . For
this, conditioned copulas associated with a copula, C, will be introduced.

Definition 2 (Conditioned copulas associated with a copula). Let C be a copula function.
Fixed U = u, copula conditioned to u is a function of V variable: C1(u, v) = C(v|u) = dC(u,v)

du

Fixed V = v copula conditioned to v is a function of U variable: C2(u, v) = C(u|v) = dC(u,v)
dv

It can be demonstrated (see Theorem 2.2.7 in [33]) that these partial derivatives exist
almost certainly for all u and v, except Lebesgue null measurement sets, and that they
almost certainly do not decrease in the unit interval.

So, as a consequence of the adaptation of Sklar’s theorem to continuous conditioned
distributions, the next result is presented [36].

Proposition 1 (Conditioning with copulas). Let C be a copula function and C1(u, v) be the
derivative of C(u, v) with respect to U. If the joint distribution of X and Y is given by HXY(x, y) =
C(FX(x), GY(y)), then the conditional distribution of Y|X = x is given by:

GY|X(y) = C1(FX(x), GY(y)) (8)

Observe again that in the independent case (C(u, v) = u · v), the conditioned distri-
bution of V given U = u is C1(u, v) = dC(u,v)

du = d(u·v)
du = v, which is independent of the

value of U.

2.2. Prediction Algorithm Based on Bivariate Copula Functions

In this subsection, a method for adjusting supervised models to interval variables
through bivariate copula functions is proposed. It is important to note that the term
“copula” will be used even when the algorithm actually refers to bicopulas, meaning the
bidimensional version of this function.

The adjustment process consists of an iterative algorithm that refines a starting basic
predictor defined by the average of the values of the dependent variable. This one generates
an initial error term. In the first step, the aim is to identify the variable which better explains
it through a copula function. The selection of the most appropriated copula to this end
is another task to solve in the algorithm. Then, as a result of applying the pair formed
by the input variable and the copula function to explain the first error term, a new one
is generated, which leads to the start point of step two. This process is repeated until a
stopping criterion is satisfied.

In summary, three phases were sequentially applied in each one of the steps of the
iterative algorithm:

1. Adjustment phase: selection of the copula function C∗, which best models the re-
lationship between explanatory variables and the residual term obtained in the
previous step.

2. Prediction phase: use of the conditioned copula C∗1 to estimate the value of the
error term derived from the previous predictor, which is updated by adding up the
mentioned estimated value.

3. Assessment phase: Evaluation of the goodness of the new predictor over a validation
dataset. Mean Absolute Error (MAE) has been the metric used to this end in the
proofs presented in Section 3.

On the other hand, three are three possible criteria that can stop the algorithm:
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1. Independence criterion: the best copula C∗ selected is the product one, indicating the
independence between explanatory variables and the error term to be predicted.

2. Early stopping criterion: the evaluated metric has not significantly improved during
the last steps.

3. Maximum iterations criterion: the maximum number of iterations prefixed is reached.

The methodology of the proposed algorithm, schematically illustrated in Figure 1, is
common to any supervising model to build a predictor Ŷ of the dependent variable Y that
optimizes the value of a metric previously established. The fact that each predictor could
be generated from simulated values is an advantage. Apart from averaging them to obtain
the usual mathematical expectation, it is possible to construct a more robust predictor, such
as the median, to avoid the effect of possible outliers. From here, the mean predictor will
be considered so as not to favor the results provided by the algorithm proposed against
other machine learning techniques tested in Section 3, severely affected by the effect of
outliers (such as the GLM model).

Find the pair (X,C)
k
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Figure 1. Copula selection process.

In any case, the predictor is constructed from the input variables {X1, X2, . . . , Xm},
with {y(i), x1(i), x2(i), . . . , xm(i)} ∀i ∈ {1, 2, . . . , n} being a sample of values corresponding
to them. Uppercase and lowercase letters are used to refer to random variables and
observed data, respectively. The value in brackets i refers to each one of the n observations.

In the adjustment phase, three different datasets or samples of observations were
used: one for training, another one for validation, and the third one for the test, with sizes
of n1, n2 and n3, respectively. The training sample was used to decide, step by step, the
input variable and the copula functions involved in the construction of the predictors.
These were evaluated, respect to the prefixed metric, over the validation dataset. The
aim of the latter step is to favor the generalization capacity of the predictor, which will be
finally tested using the test dataset. As has been previously mentioned, the MAE will be
considered as the metric to be minimized:

MAE =
1
n2

n2

∑
i=1
|Y(i)− Ŷ(i)| (9)
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Note that this metric is averaged over the n2 observations associated with the valida-
tion table.

In addition to the use of a validation table, there are two additional parameters taken
into account to avoid possible overfitting effects. Both of them also allowed us to reduce
the computational time cost of the algorithm:

• On the one hand, an early stopping criterion [37] has been established. According
to this criterion, the adjustment process stops if the assessment of the metric over
the validation sample does not improve their values after several iterations initially
prefixed by the earlyStoppingInterations parameter.

• On the other hand, different subsamples of the training dataset are considered in each
one of the iterations of the process. The size of these subsamples is specified through
the subsamplePercent parameter, which specifies the percentage of the n1 training
dataset observations randomly selected in each iteration. This modeling strategy is,
for example, used on stochastic gradient boosting algorithm [38] as an improvement
of the traditional gradient boosting method [39]. The influence of this parameter is
tested in Section 3.2.

Next, the tasks and calculus involved in each one of the steps of the algorithm will
be detailed.

ADABOC Algorithm

To start with, a beginning predictor, given by the average value of Y, is considered.
This mean value is calculated with the n1 observations conforming to the training dataset:

Ŷ(k=0) = β̂0 = Ȳ =
1
n1

n1

∑
i=1

y(i) (10)

This predictor generates a first variable associated with the corresponding error term:

ε(k=1) = Y− Ŷ(k=0) (11)

and through it, a first MAE is obtained, which can be evaluated in the three datasets
defined above:

MAE(k=1) =
1

nd

nd

∑
i=1
|y(i)− ŷ(k=0)(i)| ∀d ∈ {1, 2, 3}. (12)

The idea is to refine throughout a maximum of iterations, specified by the maxiter
parameter, the predictor initialized in Equation (10). This refinement process consists
of identifying, in each iteration k, the copula function that better links the sequentially
obtained variables εk with some of the explanatory ones Xj. To this end, a set of copula
function families to be tested must be previously established: {C1, C2, . . . , Cp}.

To ensure both Xj and εk are in the definition domain of the copula functions (the
unit rectangle [0,1] × [0,1]), these variables must be transformed through their cumulative
distribution functions, FXj and Gεk , respectively. It can be observed that only G depends
on the subscript k. This is because the variable Xj, and therefore the function FXj , will not
change from one iteration to another. In contrast, εk represents the dependent variable to be
predicted in the kth step, which has been modified according to the predictor constructed in
the previous one (see Equations (10) and (11)). For that reason, the subscript j represents the
independent variables (Xj or the transformation FXj(Xj) = Uj), while the subscript k will
refer to the residuals obtained by predicting the dependent variable (εk or the transformed
one Gεk (εk) = Vk). Note that these are the only terms that will be modified in each iteration.

Let {u1(i), u2(i), . . . , um(i), vk(i)} be the uniform values obtained from the data {x1(i),
x2(i), . . . xm(i), ε̂k(i)} through the marginal functions FX1 , FX2 , . . . , FXm , Gεk associated with
X1, X2, . . . , Xm, εk variables, respectively. Observe that a hat symbol is used to distinguish
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between the error variable εk and its estimator ε̂k. The corresponding estimated values for
the latter, calculated in each one of the iterations, will be referred to as ε̂k(i).

The task of identifying the marginal functions can be completed by trying to find
the closer theoretical distribution from a list of the most common ones. This way, for
each random variable, it would be necessary to propose hypothesis tests associated with
popular distributions and select the one that provides a lower p-value. However, this
could be inadequate in case none of them would adjust well enough. Alternatively, kernel
estimators have been used in the proposed method. Other authors (see [12]) use the
continuous version of the empirical distribution function instead.

Once the uniform sample has been generated, the following task consists of identifying,
for each one of the Uj variables (associated with each one of the Xj input variables), the
copula function that best fits the pairs (uj(i), vk(i)). This task is carried out in two stages:

• Firstly, one copula associated with each one of the p families is selected. The selection
process consists of estimating the value of the parameters that the family depends
on. The estimation is carried out using the training dataset, applying the maximum
likelihood method as proposed in [12]. Proceeding this way, a total of m · p copula
functions, Cr

j,k, is obtained, one per input variable and copula family.

• Secondly, representative values of the fitting goodness of these m · p functions to
the pairs (uj(i), vk(i)) are calculated. To this end, some metrics can be acquired,
such as the value of the likelihood function, the Akaike information (AIC), or the
Bayesian inference criterion (BIC). The first metric has been used due to several
authors [12,40,41] considering it as a good criterion.
Once these m · p values have been calculated (see Table 1), the smallest of them is
considered representative of the best fitting to the training data (uj(i), vk(i)). Let
(X∗j , C∗j,k) be the pair chosen as the optimal one at the end of the kth step. To simplify
the notation in the algorithm, Ck

∗ will be used, occasionally, to denote the copula
function chosen in this iteration:

Ck
∗ = argmin

j,r
{AIC(Cj,k

r)} (13)

Table 1. AIC calculated by pair (variable/copula).

Variable\Copula C1 C2 ... Cp

X1 AIC1
1,k AIC2

1,k ... AICp
1,k

X2 AIC1
2,k AIC2

2,k ... AICp
2,k

... ... ... ... ...
Xm AIC1

m,k AIC2
m,k ... AICp

m,k

At this point, the independence stopping criterion is tested. This way, in the case
in which Ck

∗ = Π, there would be not able to explain the error term through a copula
function. As a result, independence between all the variables Xj and εk is concluded and the
algorithm stops. Otherwise, a predictor of εk conditioned to the values of X∗j is generated:

ε̂(k=1) = E[ε(k=1)|X∗j = xj] (14)

According to this expression, the expected values ε̂(k=1)(i) are estimated for each
value xj(i) of the variable X∗j .

This predictor allows one to obtain a new predictor for the dependent variable Y:

Ŷ(k=1) = Ŷ(k=0) + ε̂(k=1) = Ȳ + ε̂(k=1) (15)

Observe that the conditioned mathematical expectation of Equation (14) must be
calculated using the density gεk |X∗j , which is unknown. However, the already estimated

function C∗k contains information about the dependency relationship between X∗j and εk
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through the transformed variables Uj = FX∗j
(X∗j ) and Vk = Gεk (εk). Hence, it can be used

to estimate gεk |X∗j . Specifically, it consists of simulate values of the variable Vk|Uj = uj,

being uj = FX∗j
(x∗j ), detransform them using g−1

ε(k=1)
to obtain the corresponding values of

the variable ε(k=1) and finally average the latter.
The simulation of the values of the variable Vk|Uj = uj can be carried out using the

inverse transform method [42]. This method requires that the function C∗j,k|1 (or C∗k|1 to
simplify) admits an explicit expression. This function is the conditioned copula derived
from the known copula C∗k , in which the subscript “1” is used to refer to the conditioning
with respect to the first of the variables (Uj) of the pair (Uj, Vk). However, there are copula
functions for which this explicit expression does not exist and, as a result, the corresponding
inverse function can not be expressed in a closed-form [12] to apply the mentioned method.

Alternatively, an approximation is proposed for estimating Equation (14). The ques-
tion is how to weigh the g−1

ε(k=1)
(v) values to average them or, in other words, how many

values must be generated for each v ∈ [0, 1], which is the support of the variable V. To
answer this question, note that the density function c∗j,k (or c∗k to simplify) associated with
the known copula C∗k , contains information about the proportionality relationship that
must exist between the v values to be generated, and so, Z it can be used to assign the
mentioned weights. According to this consideration, the proposed method consists of:

• Let {v1, v2, ..., vt} be equidistant values∈ [0, 1] and ε̂(k=1),s = g−1
ε(k=1)

(vs)∀s ∈ {1, 2, ..., t}.
The number of values is specified by the parameter numBins (see Algorithm 1).

• Let ws = c∗k|1(vs|uj) =
c∗k (uj ,vs)

fUj
(uj)

be the weight associated with each ε̂(k=1),s value

∀s ∈ {1, 2, ..., t}.
Note that the value c∗k (uj, vk) can be calculated because c∗k is known and has an
explicit form. On the other hand, fUj(uj) =

∫
[0,1] c∗k (uj, v)dv is an area that can be

easily estimated using numerical methods. Again, equidistant points are generated
for approximating these areas using the numBins parameter.

• Let ε̂(k=1) = ∑t
s=1 ws · ε̂(k=1),s.

• Construct the predictor Ŷ(k=1) = Ȳ + ε̂(k=1).

The variable corresponding to the error associated with the latter predictor of the
dependent variable Y is:

ε(k=2) = Y− Ŷ(k=1) (16)

Figure 2 summarizes the construction of the first predictor Ŷ(k=1) from original data
values (Xj, Y). (CEMENT, TARGET) values from Concrete dataset (see Section 3) have
been used to this end:

• The graphs in the first row show, respectively, the pairs of points associated with
the original variables (Xj, Y), those transformed through the corresponding marginal
cumulative distribution function ((Uj, V) = FXj(Xj), GY(Y)), and the density c∗ asso-
ciated with the copula C∗ that best fits the latter.

• On the other hand, in the first graph of the second row, the value xj of the variable
CEMENT, to which the value of the variable TARGET is conditioned, is marked with
a red vertical reference. Next, the value uj transformed by the cumulative distribution
function FXj is marked as well. Finally, the last graph shows the conditional density
copula c∗(v|uj) associated with this value. This function is used to weight the values
of variable TARGET to estimate Ŷ(k=1) = E[Y|X∗j = xj].
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Figure 2. Construction of an ADABOC predictor.

The following step (k = 2) starts again with the search of the pair (C∗j,2, X∗j ) that
provides a lower AIC in the adjustment process to the values (uj(i), vk=2(i)). These ones are
obtained from (x∗j (i), ε̂k=2(i)), through their respective cumulative distribution functions.

Then, the expected value of ε(k=2) must be estimated for each value of X∗j :

ε̂(k=2) = E[ε(k=2)|X∗j = x∗j ] (17)

A new predictor for the dependent variable Y will be generated at the end of this step:

Ŷ(k=2) = Ŷ(k=1) + ε̂(k=2) = Ŷ(k=0) + ε̂(k=1) + ε̂(k=2) = Ȳ + ε̂(k=1) + ε̂(k=2) (18)

The algorithm stops when the number of iterations specified by the maxiter parameter
is reached, unless the early stopping criterion is satisfied or the product copula π is selected
as the best one in some of the iterations.

Observe the fact that the same input variable can be selected repeatedly to explain the
resultant error terms from different iterations. Note that some algorithms, such as random
forest [43] or gradient boosting [39], allow this kind of circumstance. In fact, they allow the
same variable not only to participate in different trees, but to be used several times in the
same tree.

Note too that the predictors adjustment process is carried out sequentially, and so
each one of them is conditioned by the order of selection of the explanatory variables—that
is, it will not obtain the same result by predicting Y as a function of X1 and the resulting
residual from X2, by predicting Y as a function of X2, and the resulting residual from X1. In
fact, neither the family of copulas selected for each one of these variables proceeding in one
way or another nor the estimation of the parameter they depend on would be the same.

Alternatively, the predictor could be built by using, simultaneously, all the explanatory
variables at a time, through a (m + 1)− copula that would link the target variable Y with
the m independent ones Xj. This way, the same input variable could not enter more than
once in the model and the multidimensional parameter estimation the copula depends
on would be carried out jointly, as occurs, for example, in a regression model. However,
as it has been pointed in Section 1.1 that attempting to capture dependency structures
using a single multivariate parametric copula could be an arduous task. The fact that
the variety of the studied m-dimensional copula functions, when m is greater than 2, is
significantly smaller than those available in the bidimensional case, which is the most
referenced in the literature, must be taken into account. This would reduce the spectrum of
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them available to identify the dependency relationship and, as a consequence, the accuracy
of the predictions.

Once the training process has concluded, the predictors generated in the different
iterations are compared with respect to the MAE metric. This one is measured over the
validation dataset to choose the best estimator.

Thus, the final predictor will present the expression:

Ŷk∗ = Ȳ +
k∗

∑
k=1

ε̂k (19)

where k∗ is the iteration in which the best value of the MAE metric over the validation
dataset has been achieved.

The described process has been coded in Algorithm 1. The output returned by this
algorithm (see Equation (20)) is an object that contains the predictor Ŷk∗ and the information
needed to score any dataset that contains the same input variables as those used in the
adjustment process. Algorithm 2 details this scoring process.

{(Xj1 , FXj1
, C∗1 , data1), (Xj2 , FXj2

, C∗2 , data2), ..., (Xjk∗ , FXjk∗
, C∗k∗ , datak∗)} (20)

The object defined by Equation (20) consists of a list of 4-tuples, where the components
of the kth one are:

1. Xjk —the kth input variable entered in the kth step to explain εk. Note that subscripts
jk could refer to the same variable for two distinct iterations, meaning that the same
variable can participate in different steps;

2. FXjk
—the cumulative distribution function associated with Xjk . This function is used

to transform an xjk value into a ujk value;
3. C∗k —the copula function adjusted to (ujk , vk) in the kth iteration;
4. datak = (xjk (i), εk(i))—the data associated with all the observations “i” of training

and validation datasets. This information is useful to avoid repeating the calculus
of εk with copula function C∗k (through the corresponding conditional function) for
values of Xjk used in the adjustment process and for values of Xjk contained in training
and validation datasets. So, the second component FXjk

, will be used only in the case
where during the scoring process a value of Xjk different to the values registered
in these samples appears. This allows one to reduce the computational time cost
involved in the scoring process of a new dataset.

So, the predictor is by constructed decomposing the dependent variable in a relation-
ship of error terms that have been estimated from copula functions. This is the reason the
proposed method has been named the Additive Decomposition Algorithm Based On Copulas
(or ADABOC).

Ŷ4 = Ȳ + ε̂1 + ε̂2 + ε̂3 + ε̂4 (21)

By way of illustration, Figure 3 shows the MAE variation carried out by Algorithm 1
along the validation sample associated with the Concrete dataset (see Section 3). The pair
copula (variable, copula) = (Xjk , C∗k ) that has been selected in each step k is specified in
the boxes. So, for example, the variable named CEMENT and a SurvivalBB1 copula have
been selected in the first iteration, the variable named SUPERPLASTICIZER and a Frank
copula have been selected in the second one and so on.
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Algorithm 1: ADABOC.
Inputs : Y Target variable

X1, X2, ..., Xm Input variables
{y(i), x1(i), x2(i), ..., xm(i)} Data observations, i = 1, 2, ..., n
n1 Number of training observations
n2 Number of validation observations
subsamplePercent Percent of the n1 train observations randomly selected for iteration
maxIter Maximum number of iterations
earlyStoppingIterations Maximum number of iterations without an improvement
epsilon Precision error
{Cr} Families of copulas, r = 1, 2, ..., p

n = n1 + n2
subn1 =round(subsamplePercent ∗ n1) Num of train observts. randomly selected for iteration
counterNoImprovement Cumulative number of iterations without improvement counter

ŷ0(i) = 1
n1

∑n1
s=1 ys, ∀i = 1, 2, ..., n

ε̂(1)(i) = y(i)− ŷ0(i), ∀i = 1, 2, ..., n
MAE1 = 1

nd
∑nd

i=1 |ε̂(1)(i)| On validation dataset if it exists (d=2); else on training dataset (d = 1)
k = 0 Iterations counter
while (k ≤ maxIter) and (counterNoImprovement ≤ earlyStoppingIterations) do

k = k + 1
FXj = ker_cd f (xj)∀j = 1, 2, ..., m Estimate FXj distrib. from train data by kernel estimators

Gεk = ker_cd f (εk) Estimate Gεk distribution from training data using kernel estimators
(uj(i), vk(i)) = {(FXj (xj(i)), Gεk (ε̂k(i)))}∀i = 1, 2..., n ∀j = 1, 2..., m Pair in copula dom.

(Ck
∗, Xjk ) = argminj,r{AIC(Cj,k

r)} The minimum and the variable in which it is reached

AIC(Cj,k
r) = fitVarCop(Cr, subn1, (ujk , vk)) AIC by fit copula to subn1 rand pairs of train

if Ck
∗ = Π Independence criterion

then
k = maxIter + 1

else
Ek =
for i=1 to n do

Eε = E[εk|X∗jk = xjk (i)] Use g−1
ε(k=1)

& c∗k|1, density functs. with Gεk & copula C∗k
Ek[Xjk , xjk (i)] = Eε For each input we store needed data for scoring other sets
ŷk(i)=ŷk−1(i) + Eε Calculate the new Y estimator
ε̂k+1(i) = y(i)− ŷk(i) Calculate the new error variable

MAEk+1 = 1
n2

∑n2
l=1 |ε̂k+1(l)| On validation set if it exists (else over training set)

if round(MAEk+1, epsilon) < round(MAEk, epsilon) Early stopping criterion
then

counterNoImprovement = 0
k∗ = k Index associated with the iteration with minimum MAE

else
counterNoImprovement = counterNoImprovement + 1

copulaModel =
{Ŷ0 = Ȳn1 , (Xj1 , FXj1

, C∗1 , data1), (Xj2 , FXj2
, C∗2 , data2), ..., (Xjk∗ , FXjk∗

, C∗k∗ , datak∗ )}
return copulaModel

The algorithm stopped in the 28th iteration as the best copula selected in this step has
been the product copula π. It means that the residual process resulting after 28 iterations is
independent with respect to all the explanatory variables. So, as the minimum MAE value
calculated over the validation table has been achieved in iteration 21 (red point in Figure 3),
the final predictor is composed as follows:

Ŷk∗ = Ŷ21 = Ȳ +
21

∑
k=1

ε̂k (22)



Forecasting 2021, 3 367

(CEMENT, Survival BB1)

(SUPERPLASTICIZER, Frank)

(BLAST, Gaussian)

(WATER, Rotated Joe 90 degrees)

(CEMENT, Frank)
(SUPERPLASTICIZER, Rotated Clayton 90 degrees)

(BLAST, t)

(BLAST, Rotated BB8 270 degrees)

(CEMENT, Rotated BB6 270 degrees)

(SUPERPLASTICIZER, Rotated Clayton 90 degrees)

(WATER, Rotated Joe 90 degrees)

(WATER, BB7)

(WATER, Rotated BB8 90 degrees)

(SUPERPLASTICIZER, Rotated Clayton 90 degrees)

(BLAST, t)

(SUPERPLASTICIZER, Survival BB8)

(CEMENT, Frank)

(SUPERPLASTICIZER, Rotated Clayton 90 degrees)

(BLAST, t)

(BLAST, t)

(FLY, Clayton)

(WATER, t)

(WATER, Joe)

(CEMENT, Survival Clayton)
(BLAST, Rotated Joe 270 degrees)

(CEMENT, Rotated Joe 270 degrees)

(WATER, t)

(BLAST, t)

10.5

11.0

11.5

12.0

12.5

0 10 20

Iteration

E
rr

or

(Ø,π)

Figure 3. Evolution of MAE metric using ADABOC over a validation dataset.

2.3. Implementation Details

ADABOC have been implemented in R software through two main functions (see
github.com/jfvelezserrano/ADABOC, accessed on 25 May 2021):

1. Function ADABOC.R implements Algorithm 1. It depends on the next input parameters:

• trainDataset (required): name of the dataframe associated with the training dataset.
• validationDataset (optional): name of the dataframe associated with the valida-

tion dataset. If this value is omitted, then the predictor returned by the algorithm
is generated in the iteration specified by the maxiter parameter;

• testDataset (optional): name of the dataframe associated with the test dataset.
In case a dataset is provided, the value of the metric specified by the evalMetric
parameter is calculated over it;

• evalMetric (required): metric to be evaluated. It can take the values: MAE,
MAPE, MedAPE, SMAPE, MSE, RMSE. By default: MAE;

• maxiter (required): maximum number of iterations carried out by the algorithm.
By default: 200;

• subsamplePercent (optional): observed percentage of the training dataset ran-
domly selected in each iteration for the adjustment process. If this value is
omitted, then all the observations of the training dataset are used;

• earlyStoppingIterations (optional): maximum number of iterations allowed
without an improvement of the metric specified by the evalMetric parameter. If
this value is omitted, then the algorithm does not stop early stopping criterion;

• epsilon (optional): a precision parameter that identifies the number of decimal
positions considered in the measurement of the evalMetric parameter. It al-
lows one to evaluate if this metric improves from one step to the next one. By
default: 14;

• numBins (optional): number of equidistant points generated for approximat-
ing the calculus involved in the estimation of the density function c∗k|1. By
default: 2000;

• modelCopula: output returned by the model. It is an object of the type referenced
in Equation (20).

https://github.com/jfvelezserrano/ADABOC
https://github.com/jfvelezserrano/ADABOC
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2. Function ADABOCPredict.R implements Algorithm 2. It depends on the next
input parameters:

• model (required): name of the object returned by the ADABOC.R function;
• scoreDataset (required): name of the dataframe associated with the dataset to be

scored. It must contain the input variables involved in the predictor given by the
previous parameter;

• prediction: output returned by the function. It contains the predictions obtained
for each one of the observations i stored in scoreDataset. Observe that the ex-
pected values are given by ε̂(k)(i) = E[ε(k)|X∗j = x∗j (i)], which must only be calcu-
lated for the values x∗j (i) not registered in trainingDataset or tvalidationDataset.
So, the estimated ones already generated by the ADABOC function during the
adjustment process are used.

Algorithm 2: Score function associated with ADABOC.
Inputs : {Ŷ0 = Ȳn1 , (Xj1 , FXj1

, C∗1 , data1), ..., (Xjk∗ , FXjk∗
, C∗k∗ , datak∗ )} From ADABOC

scoreDataset = {Xjk
score} Dataset to be scored (Xjk variables must be in copulaModel)

for i = 1 to rows(scoreDataset) do
ŷ0(i) = Ŷ0
for k=1 to k∗ do

if Ek.contains(Xj, xscore
jk

(i)) then
errorEstimator = Ek[Xj, xscore

jk
(i)]

else
uscore

jk
(i) = FXjk

(xscore
jk

(i))
errorEstimator = E[εk|X∗jk = xscore

jk
(i)] Use g−1

ε(k=1)
and c∗k|1

ŷk(i) = ŷk−1(i) + errorEstimator

return ŷ = [ŷk∗ (1), ŷk∗ (2), ..., ŷk∗ (ns)]

3. Results

In this chapter, ADABOC and other competitive machine learning models are com-
pared over some typical datasets.

3.1. Datasets Used

The datasets used have been extracted from Knowledge UCI: Machine Learning
Repository (archive.ics.uci.edu/ml/datasets, accessed on 25 May 2021), imposing some
filters on the search criteria:

• The dependent variable must be of the interval type but there must not be a tempo-
rary dependence between its values. ADABOC is not oriented to the modeling of
time series.

• Datasets must be big enough to make it reasonable to apply machine learning methods.
Thus, the number of rows of the dataset must be between 1000 and 10,000 and the
number of attributes must be higher than 5.

Taking into account these filters, the datasets considered are shown in Table 2. Next,
some observations are made:

• Dataset 2 has two target variables: next-day maximum and minimum air temperatures.
To consider only one problem associated with this dataset, next-day medium air
temperature has been considered. This one has been calculated as the average of the
two target variables.

• Dataset 8 has two target variables too: motor_UPDRS and total_UPDRS. The relative
positions between the different tested models are similar with one another, which is
the reason why only one of them (total_UPDRS) has been considered.

• Dataset 4 is the same that Dataset 3 but adding two additional input variables and not
normalizing data. That is the reason why only the first one has been considered.

https://archive.ics.uci.edu/ml/datasets.php
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• Dataset 7, available in the UCI repository associated with the problem KDD Cup 1998
Data, has been replaced by the one available in www4.stat.ncsu.edu/~dickey/Analytics/
Datamine/data (accessed on 25 May 2021) as the number of input variables of this
dataset is considerably lower, allowing the reduction in the computational cost of
the proof tested while keeping a good predictive capacity (with this dataset, the SAS
Institute achieved the second position in the KDD 1998 competition).

• Each one of the datasets has been split into training, validation and test samples, with
40%, 30% and 30% of the observations for each one, respectively. The corresponding
sizes are shown.

Table 2. Datasets selected from UCI repository.

Dataset Inputs Total (Rows) Training (Rows) Validation (Rows) Test (Rows)

Airfoil (1) 6 1503 601 451 451
Bias (2) 21 7590 3036 2277 2277

Communities (3) 100 1994 798 598 598
CommunitiesU (4) 102 1994 798 598 598

Concrete (5) 8 1030 412 309 309
Electrical (6) 12 10,000 4000 3000 3000
KDD1998 (7) 18 4843 1937 1453 1453

Parkinsons (8) 16 5875 2351 1762 1762

In addition to the filters imposed, some of the variables of the datasets have
been dropped:

• On the one hand, the ones with missing values were removed. This is justified by the
nature of some of the models used in the comparison. For example, random forest and
gradient boosting models allow these kinds of values. However, ADABOC as well as
some of the other models taken into account in the comparative, such as GLM and
neural networks, need the imputation of the mentioned values, with a lot of methods
available for this task: to impute by using the mean or the median value, to impute
according to the distribution of the variable, predict them, etc. Thus, with the aim of
isolating the effect that these methods could have on the final results obtained, these
variables have been removed.

• On the other hand, the ones of nominal nature (factors) were removed. This is justified
by the convenience of not making inferences with copulas using non-continuous
variables (see Section 2.1).

3.2. Experiments

Algorithm 1 has been applied to the datasets described in the previous section. It
could use any type of copula functions. Specifically, taking into account that the algorithm
has been implemented depending on BiCopEst (Parameter Estimation for Bivariate Copula
Data) R-function of the VineCopula package to select the copula with best AIC value, the
ones contained in this function have used (see Table A1 in Appendix A). Only Tawn’s
copulas have been excluded as they severely increased the computational time cost without
any noticeable improvement in the results achieved.

Regarding the parameters of the function itself, all of them take the default values
presented in Section 2.2. Due to the fact that there is a validation table, the earlySopping
Iterations parameter has been used. Its value has been set to 10 iterations. Additionally,
several values of the subsamplesize parameter have been tested, from 10 to 100 with a
bystep value equal to 10. Table 3 allows comparing of MAE results over validation table,
according to the variation of this parameter. In general, it can be noted that there are no
significant differences between them and that higher sizes do not provide better results.
This is an important observation as it allows reducing of the computational time cost of the
model, making use of small samples to train it.

https://www4.stat.ncsu.edu/~dickey/Analytics/Datamine/data
https://www4.stat.ncsu.edu/~dickey/Analytics/Datamine/data
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Table 3. ADABOC MAE results by subsample parameter value.

Subsample Airfoil Bias CommunitiesU Concrete Electrical KDD1998 Parkinsons

10% 3.829 0.8007 235.3 11.04 0.0145 4.149 8.274
20% 3.637 0.8102 235.9 10.52 0.0141 4.159 8.236
30% 3.730 0.7805 250.9 10.54 0.0142 4.115 8.106
40% 3.632 0.7847 245.5 10.34 0.0142 4.133 8.057
50% 3.614 0.8437 263.2 10.26 0.0139 4.152 7.964
60% 3.604 0.8457 253.1 10.43 0.0146 4.143 8.080
70% 3.732 0.8503 242.6 10.26 0.0141 4.101 8.099
80% 3.579 0.8660 240.4 10.07 0.0141 4.145 8.183
90% 3.579 0.8674 249.8 10.48 0.0146 4.094 8.202

100% 3.5514 0.8622 239.4 10.42 0.0144 4.104 8.242

Then, the predictor associated with the best results obtained for this parameter over
each validation dataset (highlighted in bold in Table 3) was applied over the test sample. The
corresponding results are the ones presented in the row identified as ADABOC in Table 4. It
can be observed that theses values are similar to those obtained over the validation table,
avoiding overfitting effects.

Table 4. MAE results by algorithm.

Method Airfoil Bias CommunitiesU Concrete Electrical KDD1998 Parkinsons

Intercept 5.148 2.0481 482.4 13.51 0.0309 7.443 9.091
GBM 1.313 0.5386 273.2 10.10 0.0066 4.083 6.827
GLM 3.569 0.7860 310.0 10.42 0.0174 4.193 8.380

ADABOC 3.339 0.7696 270.1 10.16 0.0138 3.837 8.198
NN 1.729 0.4901 287.3 9.32 0.0048 4.071 6.369
DRF 2.800 0.5922 277.9 10.16 0.0093 4.109 6.915
XGB 1.283 0.6202 287.1 10.90 0.0077 4.516 7.298

On the other hand, some popular machine learning models have been adjusted to
compare the results they provide with ADABOC. To this end, h2o.autoML function, which
invokes to H2O platform, has been used. This function adjusts the following type of models:

• GBM—Gradient Boosting Model (A);
• GLM—General Linear Model (B);
• NN—Neural Network, identified as Deep Learning models in H2O (C);
• DRF—Distributed Random Forest (D);
• XGB—Extreme Gradient Boosting (E).

Tuning of the parameters associated with each of these models was carried out by
h2o.autoML function. For instance, in GBM, tree depth and shrinkage parameters are
allowed to vary on a grid of values, while in NN different architectures are tested.

Additionally, the h2o.autoML function allows specification of the metric to be op-
timized along the adjustment process of each model over the validation table (spec-
ified through the validation_ f rame parameter). That metric is specified through the
stopping_metric parameter (MAE has been used). Results, obtained with the best model
identified for each one of the mentioned types, are compared over the test dataset (specified
through the leaderboard_ f rame parameter) in Table 4. The results corresponding to the
winner model are remarked in bold.

It should be noted that these results were obtained with the execution of the h2o.autoML
function conditioned by the value of a random seed whose value was set to 12345. Fixing
the value of this seed allows the results to be replicated. However, the documentation of
this function aims for replication to not be possible if NNs are included in the modeling
process. For this reason, two executions of this function have been made:
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• The first of them excludes NN models. In this one, it has been specified that the
function adjusts a maximum of 10 models. According to these considerations, in each
execution, 5 GBM, 3 XGB, and 1 of each of the other types mentioned (GLM and DRF)
are compared (see Table 5).

• The second one includes only NN models. The number of them have been fixed to 10
(see Table 6).

A reasonably high value has been specified in the computation time of each of these
executions, which have guaranteed the complete execution thereof. This value have been
specified through the max_runtime_secs parameter of the h2o.autoML function. It was set
to 10,800 s (3 h) in the first execution and to 25,200 (7 h, although they were not spent) in
the second. The fact that it has been significantly greater in the latter is justified by the high
computational time needed by the neural network models.

Table 5. Top 10 machine learning models excluding neural network models.

Rank Airfoil Bias CommunitiesU Concrete Electrical KDD1998 Parkinsons

1 1.283 (E) 0.5386 (A) 273.2 (A) 10.10 (A) 0.0066 (A) 4.083 (A) 6.827 (A)
2 1.313 (A) 0.5424 (A) 274.4 (A) 10.13 (A) 0.0070 (A) 4.109 (D) 6.968 (A)
3 1.314 (A) 0.5477 (A) 277.9 (A) 10.14 (A) 0.0070 (A) 4.155 (A) 7.016 (A)
4 1.349 (A) 0.5558 (A) 277.9 (D) 10.16 (D) 0.0072 (A) 4.181 (A) 7.022 (D)
5 1.362 (A) 0.5763 (A) 279.6 (A) 10.34 (A) 0.0077 (A) 4.193 (B) 7.022 (A)
6 1.379 (E) 0.5922 (D) 285.5 (A) 10.42 (B) 0.0077 (E) 4.211 (A) 7.233 (A)
7 1.397 (E) 0.6202 (E) 287.1 (E) 10.54 (A) 0.0081 (E) 4.270 (A) 7.428 (E)
8 2.758 (A) 0.6288 (E) 294.7 (E) 10.90 (E) 0.0087 (E) 4.516 (E) 7.495 (E)
9 2.800 (D) 0.6298 (E) 299.7 (E) 11.32 (E) 0.0093 (D) 5.014 (E) 7.730 (E)
10 3.569 (B) 0.7860 (B) 310.0 (B) 11.37 (E) 0.0174 (B) 5.024 (E) 8.380 (B)

Table 6. Top 10 neural network models.

Ranking Airfoil Bias CommunitiesU Concrete Electrical KDD1998 Parkinsons

1 1.729 0.4901 287.3 9.326 0.0048 4.071 6.369
2 1.763 0.4967 294.4 9.358 0.0053 4.137 6.471
3 1.834 0.5005 294.4 9.620 0.0066 4.146 6.690
4 1.956 0.5721 297.8 9.954 0.0095 4.277 6.915
5 2.124 0.5889 299.1 10.115 0.0101 4.277 7.114
6 2.356 0.6174 307.3 10.195 0.0102 4.342 7.273
7 2.759 0.6324 308.5 10.616 0.0106 4.523 7.298
8 2.887 0.7517 321.3 10.640 0.0106 4.630 7.381
9 3.305 0.9060 324.6 10.645 0.0127 4.762 7.510
10 3.418 1.1164 335.2 10.692 0.0149 4.910 7.841

In Table 4, results corresponding to the best modeling strategy have been highlighted
in bold. A baseline associated with the MAE of predictions is given by the intercept term
of a regression model only, and the average of the target variable over the training dataset
is shown too.

It is important to remark that the aim is to compare ADABOC with other well known
machine learning methods. A previous phase of processing data would allow better results
to be achieved with any of them. However, this phase was been carried out as the purpose
is to test if the algorithm is competitive versus other techniques, when all of them are
trained and tested with common datasets.

4. Discussion

According to the results shown in Table 4, ADABOC seems to be a competitive
machine learning algorithm. In fact:
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• It provides the best results in 2 of the 7 forecasting problems, CommunitiesU
and KDD1998, even improving the ones obtained with NN and GBM, the best
models globally.

• In the dataset Concrete, it improves the results given by DRF, XGB and GLM models, ,
which are not far from the other ones. In fact, it is superior to two of the GBM models
and five of the adjusted NN models (see Tables 5 and 6, respectively).

• It is always better than GLM, which is the worst model, although the predictions of
the latest cause the MAE given by only an intercept term to reduce. Thus, in any case,
it can be considered as a better alternative to a linear model.

Not in vain, the ADABOC methodology incorporates some of the modeling strategies
used by other well known machine learning techniques such as the use of an early stopping
criterion or the use of subsamples of the training dataset in each one of the steps of the
iterative process. Next, other relevant points in common with some of these methods
are presented:

• On the one hand, it can be observed that the same input variable can be selected
repeatedly to explain the resultant error terms from different iterations. Note that
some of the algorithms, such as random forest [43] or gradient boosting [39], allow this
kind of circumstances. In fact, they allow the same variable to not only to participate in
different trees but to do it several times in the same tree. In addition, in the proposed
algorithm, it could be allowed that, in each one of the iterations, p (≤ m) explanatory
variables were randomly selected as models, as in random forests. This way, it would
avoid those with greater predictive power being repeatedly selected, in favor the rest
of them.

• On the other hand, it can be observed that the predictor adjustment process was
carried out sequentially, and so each one of them was conditioned by the order of
selection of the explanatory variables—that is, the same result will not be obtained
by predicting Y as a function of X1 and the resulting residual from X2, by predicting
Y as a function of X2 and the resulting residual from X1. In fact, neither the family
of copulas selected for each one of these variables proceeding in one way or another
nort the estimation of the parameter they depend on would be the same.
Alternatively, the predictor could be built by using, simultaneously, all the explanatory
variables at a time, through a (m + 1)− copula that would link the target variable
Y with the m independent ones Xj. This way, the same input variable could not be
entered more than once in the model and the multidimensional parameter estimation
the copula depends on would be carried out jointly, as occurs, for example, in a
regression model. However, as it has been pointed in Section 1.1, attempting to
capture dependency structures using a single multivariate parametric copula could
be an arduous task.
As an intermediate possibility, making an adjustment based on 3-copula functions
could be considered,. This means that, in each iteration, the copula would relate
each error term, εk, with a couple of explanatory variables. This way, possible effects
associated with interactions between variables could be reflected in the same way that
would be achieved with the regression techniques or with the ensemble modeling
mentioned when handling decision trees with depth values higher than 1.
It must be taken into account that the variety of m-dimensional copula functions
studied when m is greater than 2 is significantly smaller than those available in the
bidimensional case, which is the most referenced in the literature. This would signifi-
cantly reduce the spectrum of those available to identify the dependency relationship
and, in consequence, the accuracy of the predictions.

Finally, it must be taken into account that the predictor generated by the Algorithm 1
could be combined through a stacking strategy with the ones provided by other techniques,
to try to achieve an improvement of the results.
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5. Conclusions

In this paper a novel methodology for forecasting interval variables based on the use
of bivariate copula functions is proposed. The core of the methodology is an iterative algo-
rithm that identifies those bicopulas that best fit the dependency relationships between the
independent variables and the different error terms obtained during the adjustment process.
The method has been tested on several known datasets, establishing a comparison with
other popular and competitive machine learning techniques, achieving satisfying results.

Nowadays, the authors are working on several lines of improvement of this algorithm:

• First of all, ensuring the ability to handle variables of a discrete nature, in a similar
way that the vine copula regression method proposed in [29] do;

• Secondly, the possibility of assigning higher weights to higher value errors, in a similar
way that boosting methods do to improve the training of the method.

• Thirdly, the capacity to include analysis of the interactions between the independent
variables use in the model. The proposed method has already shown the concept of
interaction since the predictor mixes different explanatory variables in its definition.
However, the use of 3-copula functions that would allow relating pairs of independent
variables with the successive error terms obtained during the adjustment could be an
interesting possibility [44] as it would capture more complex dependency relationships
and possibly improve the predictive capacity of the method.

• Finally, although the number of problems in which there is not a single dependent
variable is significantly lower, the possibility of adapting it to problems in which
there is a vector of dependent variables is also being evaluated. In this regard, the
concept of conditional copula associated with the variable (X, Y) | W introduced
by [45], which would allow the prediction of the pair (X, Y) based on the value of a
dependent variable W, is being considered.

The final aim is that ADABOC achieves more competitive results and works regard-
less of the amount and the nature of exogenous and endogenous variables involved in
the model.
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Abbreviations
The following abbreviations are used in this manuscript:

ADABOC Additive Decomposition Algorithm Based On Copulas
AIC Akaike Information Criterion
BIC Bayesian Inference Criterion
DRF Distributed Random Forest
GBM Gradient Boosting Model
GLM General Linear Model
MAE Mean Absolute Error
MAE Mean Absolute Percentage Error
MedAPE Median Absolute Percentage Error
MSE Mean Squared Error
NN Neural Network
RMSE Root Mean Square Error
SMAPE Symmetric Mean Absolute Percentage Error
XGB Extreme Gradient Boosting

Appendix A. Copula Families Used by ADABOC

Table A1. Copula families of VineCopula R-package considered in ADABOC.

Id Family Name

0 Independence copula (π)
1 Gaussian copula
2 Student t copula (t-copula)
3 Clayton copula
4 Gumbel copula
5 Frank copula
6 Joe copula
7 BB1 copula
8 BB6 copula
9 BB7 copula

10 BB8 copula
13 rotated Clayton copula (180 degrees; “survival Clayton”)
14 rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 rotated Joe copula (180 degrees; “survival Joe”)
17 rotated BB1 copula (180 degrees; “survival BB1”)
18 rotated BB6 copula (180 degrees; “survival BB6”)
19 rotated BB7 copula (180 degrees; “survival BB7”)
20 rotated BB8 copula (180 degrees; “survival BB8”)
23 rotated Clayton copula (90 degrees)
24 rotated Gumbel copula (90 degrees)
26 rotated Joe copula (90 degrees)
27 rotated BB1 copula (90 degrees)
28 rotated BB6 copula (90 degrees)
29 rotated BB7 copula (90 degrees)
30 rotated BB8 copula (90 degrees)
33 rotated Clayton copula (270 degrees)
34 rotated Gumbel copula (270 degrees)
36 rotated Joe copula (270 degrees)
37 rotated BB1 copula (270 degrees)
38 rotated BB6 copula (270 degrees)
39 rotated BB7 copula (270 degrees)
40 rotated BB8 copula (270 degrees)
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