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Abstract: In this article, a nowcasting technique for meteorological radar images based on a generative
neural network is presented. This technique’s performance is compared with state-of-the-art optical
flow procedures. Both methods have been validated using a public domain data set of radar images,
covering an area of about 104 km2 over Japan, and a period of five years with a sampling frequency
of five minutes. The performance of the neural network, trained with three of the five years of data,
forecasts with a time horizon of up to one hour, evaluated over one year of the data, proved to be
significantly better than those obtained with the techniques currently in use.
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1. Introduction

Forecasting precipitation at very high resolutions in space and time, particularly with the aim
of providing the boundary conditions for hydrological models and estimating the associated risk,
is one of the most difficult challenges in meteorology [1]. In short, the problem is to predict the field of
precipitation on grids of 1 km or less and for horizons of less than a few hours (nowcast) [2]. Due to
the high spatial resolutions required, methods based on meteorological models are not effective,
because they are too onerous computationally and the time to perform a simulation is usually
excessively too long for operational purposes. They also depend, in a critical way, on the initial
conditions as the level of uncertainty is too high and it is difficult to assimilate locally recorded
data [3,4]. Even if these difficulties were overcome, a fundamental difficulty would remain, the gap
between the spatial scales provided by the meteorological models and those useful to hydrologists for
operational purposes. To overcome this difficulty and quantify the uncertainty involved, probabilistic
approaches were proposed [5].

In contrast, simplified approaches based on image processing and related data extrapolation,
based on radar reflectivity or remote sensing data, have proven to be more effective. For example
in [6], an application in Mediterranean basins of a semi-distributed hydrological model using rainfall
estimated by radar was discussed, and in a more recent paper an application with a coupled soil
and groundwater model was discussed [7]. A study discussing the propagation of the uncertainty
in weather radar estimates of rainfall through hydrological models can be found in [8]. This approach
showed to be even more promising by using new methodologies based on recent advances in deep
learning techniques [9].

The simplest techniques for nowcasting on meteorological radar data consist of two phases,
tracking and extrapolation, i.e., first the velocity field is estimated, typically with image comparison
techniques called Optical Flow (OF), this field is then used to extrapolate a prediction of radar
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images through semi-Lagrangian schemes, or interpolation procedures [10]. This procedure estimates
the precipitation as seen by the radar, assuming that the rate of advection evaluated by comparing
a sequence of two or more consecutive images stays constant with no terms of sink or source altering
the intensity of the field in the chosen forecast range. Unfortunately these two assumptions, given
the high space-temporal variability of the precipitation, most never occur, and this is all the more true
the longer the forecast time horizon is. For this reason, a forecast procedure based on optical flow
has a limited validity with lead times of the order of the hour. Despite this, there are several nowcasting
procedures for radar images and related by-products based on OF, operational in meteorological
centers, that are able to provide predictions with appreciable skills with a time horizon of up to three
hours [11,12], when used with additional information from numerical model’s data, and real-time
precipitation measurements. For this reason, the topic, although widely investigated, is still of interest
for research [13]. This work will focus on the analysis of nowcast methods based only on radar data.
The intent is to assess the degree of the predictive potential of the data itself and with the idea that this
can add value even when operating in conjunction to additional information.

The first nowcasting methods based on OF [14] foresaw the evolution of the image from one
instant to the next by means of a rigid translation, with an advection field determined by the criteria of
maximum correlation between two or more images, immediately preceding the time of emission of
the forecast. In the TREC method, the advection field is not constant but is evaluated by comparing
boxes of pixels of equal size between two successive radar images, and identifying similar boxes
through cross correlation. An advection vector connects the centers of two similar boxes. Repeating
the process on boxes of optimal size distributed on the image, it is possible to determine a non constant
field of advection that is then used for the extrapolation of the precipitation field [15]. Over the years
these methods have been refined, providing the possibility to advect separately the features defined
as “interesting” within the images, such as the position of the precipitating centers, or the maximum
gradient points, as in the method described in Shi-Tomasi [16]. Then the possibility of deformation of
the advected pattern was added, applying for example an affine transformation [17]. All these methods
and several other variants have the conceptual limitation of being deterministic, not taking into account
the high uncertainty inherent in this overly simplistic approach. The so-called SPROG [18] approach
takes into account the diverse predictability of the precipitation at different scale. It decomposes
the logarithmic transformation of the initial field into a multiplicative cascade of decreasing spatial
scale fields, and advects each of them separately, keeping the coherence with the pre-forecast period.
Finally, the field at each forecast deadline is calculated as the antilogarithm of the product of the fields
at the individual scales. More details of this and other techniques used as benchmarks will be provided
in the following section.

More recently, the potential offered by the highly non-linear approach of neural networks has
been investigated. These techniques use a large amount of past data to “learn” and devise a predictive
model. The first studies that have started this line of research for forecasting precipitation from
radar images have been introduced by the Hong-Kong Meteorological Observatory Group [19,20].
In a work published in 2015 [19], the authors introduced the ConvLSTM model and demonstrated
that it outperforms the OF-based operating model, called SWIRLS (Short term forecast of Intense Rain
Localized Systems), for forecasting horizons of up to two hours. In a follow up [20], the same authors
have introduced the TrajGRU model, which uses the same convolutional and recursive deep networks
as the previous one, but where a location feature for radar image processing is introduced, improving
the performance of both SWIRLS and convLSTM models. Recently a variant of PredNet architecture
has been proposed in [21] while in [22] a completely convolutional deep neural network is used,
investigating in particular the importance of data pre-processing, network structure and loss function.

With the aim of investigating and comparing the predictive potential of different approaches
and, in order to find methods that can offer room for improvement, this work proposes and evaluates
the performance of a PredNet deep neural network [23]. The architecture is borrowed from computer
vision for short-term video prediction, where it represents one of the state of the art approaches.
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Compared to [21], where a similar network was used, this version has a modified loss function for
training phase that tries to maximize the predictive performance of the architecture. A quantitative and
qualitative comparison of the results obtained with the PredNet versus the reference OF methods is
presented here that will highlight not only the different performance but also the distinct characteristics
of the forecast obtained, and their limits.

The rest of the paper is organized as follows: Section 2 illustrates the methodologies used as
benchmarks, Section 3 presents the modified neural network used in this analysis, Section 4 describes
the data used for the numerical comparison while results are discussed in Section 5. Section 6 hosts
the conclusions and a discussion of potential future developments.

2. Benchmark Nowcast Techniques

The methodologies used as benchmarks to assess the performance of the approach proposed in this
paper are those implemented in two public domain libraries called rainymotion [10] and pysteps [24].

The rainymotion library, built on opencv [25], implements four different nowcasting methods called
Dense, Dense Rotation, SparseSD and Sparse. The Dense and Dense Rotation methods are based on
standard Optical Flow estimation techniques. The Sparse and SparseSD methods, instead of tracking
the displacement of all pixels in the image, first detect a chosen number of “good features to track” [16],
typically the boundaries of moving objects with respect to the constant background, and trace their
most likely displacement with optical flow techniques [14]. Next, they calculate, and apply, the affine
transformation that maps the “interesting” features from one frame to the following [17] and eventually
fill the final image by interpolation [26]. The Sparse method uses a sequence of images of variable length
(in our case 12) preceding the instant of the nowcast, in order to trace the “interesting” characteristics of
the field, while SparseSD uses only the last two images. Since, in all the tests we carried out, the Sparse
(SP henceforth) and Dense Rotation (DR henceforth) methods have proven to perform better than
the corresponding SparseSD and Dense methods, the results presented below will be only related to
SP and DR.

Pysteps [24] is also a public domain library, managed and developed by a large community, which
besides being an operational tool for nowcasting, is used as a development and study platform for
the implementation of new techniques. For the estimation of the field of advection, pysteps implements
three methodologies: a local type based on the classic Lucas-Kanade (LK) technique [14,27], a global
variational type (VET) [28,29] and a spectral type (DARTS) [30]. Extrapolation by advection is done
with a semi-lagrangian scheme backward in time [29]. The most sophisticated technique of the pysteps
library, used here as a benchmark, is called STEPS, takes into account the different predictability of
the precipitation phenomena at different scales. In practice, using an approach called SPROG [18],
after a logarithmic transformation, a decomposition of the initial field into a multiplicative cascade
of fields with decreasing spatial scales is performed and each of these spatial fields is advanced with
an advection obtained consistently during the period before the nowcast. The decomposition of
the field at different scales can be achieved using techniques of varying degrees of complexity, such as
Discrete Cosine Transform or wavelet. In this case an FFT was used in which the different portions
of the spectrum are weighed by Gaussian functions [31] and then, by inverse FFT, brought back into
the spatial domain. The additional uncertainty due to the fact that, during the period of the forecast
validity there may be growth, decay, creation and/or definitive disappearance of the precipitating cells,
alongside the uncertainties linked to different spatial scales, were taken into account trough a stochastic
noise built on the space and time variability, observed in the period preceding the emission, added
to each partial field. For the implementation details please refer to [24] and the references therein.
This approach makes it possible to obtain not a single deterministic forecast, but a set of equally
probable forecasts (ensemble) and therefore also to quantify its space-time uncertainty. In this work,
we limited ourselves to study the performance of deterministic forecasts, deliberately avoiding to
discuss aspects related to space-time uncertainty, aspects that emerge from the discussion at the end of
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Section 5. To allow the comparison also with the other methodologies we will use the deterministic
forecast obtained averaging all the STEP members and we will indicate this estimate with ST hereafter.

3. Proposed Nowcast Technique

The nowcasting problem can be tackled with artificial intelligence techniques exploiting the recent
results of neural network approaches in the fields of computer vision and natural language processing.
As a matter of fact, radar imagery nowcasting can be thought as a supervised learning problem,
where the parameters of a neural network are modified to minimize an objective function that depends
on the differences between the estimated precipitation image and the real field. Among the various
network architectures proposed in computer vision and, in some cases, also already applied to
the problem of meteorological nowcasting, we opted for the PredNet model, developed in computer
vision for the forecasting of future frames in a video sequence. A key insight of this and other deep
neural network methods is that, in order to be able to predict how the visual scenery will change
over time, an agent must have at least some implicit structural model of the object represented by
the sequence of images and the possible transformations that these objects may undergo. In the case of
precipitation nowcasting this translates into the need for the network to assimilate a representation of
the movement of the clouds and the development of related precipitation. In the proposed architecture,
this translates into the ability to interpret the cloud movements considering the advective part of
the phenomena, and also predict variations in intensity, linked for example to the orography of
the domain.

The PredNet architecture [23] continuously strives to predict the appearance of future video
frames, using a deep and recursive convolutional network with connections from large scale to small
scale (top-down) and vice versa. The approach exploits the experience of similar models based
on recursive and convolutional networks for the prediction of successive video frames, but draws
particular inspiration from the concept of “predictive coding” in neuroscience literature, which assumes
that the brain continuously makes predictions by anticipating incoming sensory stimuli. The top-down
connections of the PredNet network transmit these forecasts, gradually increasing the details, compared
with real observations, to generate an error signal. This is then propagated back to coarser scales
(bottom-up) across the network, ultimately leading to a forecast update.

The PredNet architecture used is shown schematically in Figure 1 and consists of a ladder structure
with a descending branch that generates the prediction of the precipitation field image at progressively
more detailed scales, and an ascending branch where the prediction is compared with the real data.

The generative block Gl receives as input a representation of the state coming from the upper
block rl+1, performs an upscaling (with factor 2) and concatenates the image thus obtained with
the representation of the error el for that scale, calculated at the previous iteration and stored
in memory. This data is passed to a recurrent Long Short-Term Memory cell with convolutional
filters [19], which in turn retains a memory of its own state. The result of processing is the state at
the l layer, rl , where this image is further processed by a convolutional layer to get a representation of
the precipitation hl .

The discriminant block Dl receives as input the hl precipitation forecast for the scale
under examination, and the representation of the real precipitation field at the same scale al .
From the comparison of the two images an error image is generated. This is stored in memory
as the input of the generative block at the next iteration of the model, and is further processed by
convolution and pooling, generating a representation of the al+1 precipitation of lower detail, passed
then to the upper discriminative block.
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Figure 1. PredNet architecture: in the left the general architecture with the Discriminator blocks and
the Generator blocks, in the right details of blocks.

Table 1 shows the tensor sizes al , hl , rl , el used in the model. The convolution filters have a kernel
size of 3 with a padding of 1. The hidden state for the LSTM network has a size equal to the tensors rl .

Table 1. PredNet tensors: size of the tensors for the different levels of the PredNet architecture
expressed as (channels, width, height).

Level l al hl el rl

0 (1, 96, 96) (1, 96, 96) (2, 96, 96) (1, 96, 96)
1 (16, 48, 48) (16, 48, 48) (32, 48, 48) (16, 48, 48)
2 (32, 24, 24) (32, 24, 24) (64, 24, 24) (32, 24, 24)
3 (64, 12, 12) (64, 12, 12) (128, 12, 12) (64, 12, 12)

The model, as already said, provides more accurate results as new inputs are provided.
The procedure presented here uses the images of the precipitation for the hour before the lead
time, then the model is further iterated for the next hour’s forecast times, replacing the real image of
precipitation a0 with the one that the model estimated h0. With a time sampling of 5 min, 12 images a0

for the first hour are provided and 24 images h0 for the reconstruction of the first hour of precipitation
and the estimates (without radar input) for the following hour are obtained by model iteration.

More details about the architecture can be found in Lotter, Kreiman and Cox [23]. This work is
focused on forecasting the next frame in a video sequence, and it shows how the architecture is able to
generate increasingly accurate forecasts as new frames are input, demonstrating to be able to refine
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forecasts and learn from mistakes made during the process. The training is performed with a Gradient
Descent procedure in which the network parameters are changed to minimize el errors at the different
levels of image representation with a loss function based on Mean Absolute Error. The results obtained
in [23] show that in case of real video sequence the best results are achieved with the minimization of
e0 only, i.e., the MAE between the calculated and the actual image.

Based on those results here the loss function is released from the representation of the internal error
in the network and the minimization of the Mean Squared Error between the image of the estimated
and the actual precipitation is used.

Since the forecast is extended beyond the next frame, the loss function used in the training phase
is realized as the Mean Squared Error of the 24 h0 images generated by the network compared to
the real a0 precipitation images:

Loss =
24

∑
t=0

MSE(a0(t), h0(t)) (1)

where MSE is an operator that returns the Mean Squared Error between the actual radar image
and the one estimated by the model; the sum is extended both to the 12 steps used for learning
the current weather situation and to the 12 steps of the forecast, in order to train the network to
“optimally” reconstruct both the radar images used as initial conditions and the predicted ones.
Other experiments have also been carried out, using for example the MAE as loss function, obtaining,
in the verification, an improvement limited to the specific metric (i.e., the MAE) but a more marked
worsening for all the other metrics considered (i.e.,: RMSE, r and ETS). By using both MSE and
MAE we verified that the training of a specific network for each forecast horizon did not produce
an improvement in performance. Furthermore, tests were conducted using both the normalized rain
intensity and a logarithmic transformation to feed NN. The best results were obtained using directly
the color indexes of the image, and only after the predictive phase the rain rate transformation function
described in Table 2. The weights of the neural network are optimized using a Gradient Descent
procedure with Adam optimizer. Having data from 2013 to 2017 we used the images of the first 3 years
for training, the images of 2016 for validation while the tests were conducted on the radar images
of 2017. The neural network model and training procedures are implemented in python [32] using
the PyTorch library [33] and are available in open source (https://github.com/lmssdd/RadarNowcast),
the calculation was run on NVIDIA Tesla K80 GPU with 12GB of onboard RAM. The model will be
referenced hereafter as NN.

4. Data

The data used in this application come from a meteorological radar located in the region between
Osaka and Kyoto. These public domain data, already used in [21], have been collected from an online
archive available on Yahoo (https://developer.yahoo.co.jp/webapi/map/openlocalplatform/v1/
js/) and span five consecutive years from 2013 to 2017. Their spatial resolution is equal to 1 km2,
the temporal frequency is 5’, the domain covers an area of about 104 km2 as shown in Figure 2
(https://www.jma.go.jp/en/highresorad/ and https://www.google.com/maps). The climate of
the area is classified as hot-temperate, precipitation is intense (cumulative annual 1730 mm) and
particularly heavy during the summer season as shown for 3 meteorological stations in Figure 3
(http://ds.data.jma.go.jp/gmd/tcc/tcc/products/climate/).

The dimension of the images obtained through the API is 1000 × 1000 pixels. After a crop
necessary to remove text characters in the image, since the actual resolution of the radar is lower,
a down-sampling of the image is performed, finally generating a 96 × 96 matrix. The data represent
the precipitation intensity per pixel in a palette of 15 false colors. It is thus possible to map the colors
as a progressive index of rain intensity with a range from 0 to 14 as reported in the Table 2.

https://github.com/lmssdd/RadarNowcast
https://developer.yahoo.co.jp/webapi/map/openlocalplatform/v1/js/
https://developer.yahoo.co.jp/webapi/map/openlocalplatform/v1/js/
https://www.jma.go.jp/en/highresorad/
https://www.google.com/maps
http://ds.data.jma.go.jp/gmd/tcc/tcc/products/climate/
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Figure 2. On the left the map of Japan in which is highlighted the area shown in detail on the right that
represents the domain covered by the Japanese meteorological radar whose data is used in this work.

Figure 3. Climate data of monthly average temperature (a) and precipitation (b) for three meteorological
stations in the domain.

Table 2. Table of correspondence between the colors of the radar image representation and
the precipitation intensity.

Index Color (RGB) Rain (mm/h)

0 (255, 255, 255) 0
1 (236, 254, 252) 1
2 (196, 254, 252) 2
3 (156, 234, 252) 4
4 (156, 218, 252) 8
5 (180, 198, 252) 12
6 (180, 254, 156) 16
7 (180, 234, 156) 24
8 (164, 218, 156) 32
9 (252, 254, 156) 40

10 (252, 234, 156) 48
11 (252, 218, 156) 56
12 (252, 190, 196) 64
13 (252, 158, 156) 80
14 (228, 158, 164) 100
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The array containing the color index is normalized to a maximum unitary value to be processed
in the neural network, and it is mapped back to rain intensity values during the post-processing.
The use of precipitation intensity, or its elaboration using a logarithmic transform, has proven to be less
effective than direct processing of the color scale index. The data has also been filtered by eliminating
all weather events where the radar images were incomplete (i.e., either totally or partially missing).

All other methods have been applied to the logarithm transform of the rain rate estimates
and only on rainy events, defined as those with at least 5% of the domain with precipitation rate
greater or equal to 1 mm/h. The comparison between the different methodologies is limited to 2017,
to maximize the use of previous years for the neural network training and favour a direct comparison
with the results of optical flow methodologies that, instead, do not require training.

In the operational phase, all methods applied need to process a different number of the most
recent steps of the radar images. The Table 3 lists the number of time steps needed for processing
and the number of forecast steps obtained by each procedure. The NN and SP methodologies need,
as initial conditions, several steps equal to the number of forecast occurrences, while all others can
work with only two time steps except ST that needs three steps as initial condition.

Table 3. Comparison of the number of images processed by the different methodologies to
obtain a forecast of 12 steps, equivalent to 1 h.

Method Past Steps Forecast Steps

NN 12 12
ST 3 12
SP 12 12
DR 2 12
LK 2 12

5. Results

The performance of NN, ST, SP, DR, LK nowcasting techniques described in the Sections 2 and 3,
were assessed for 2017. The 2013, 2014 and 2015 data were used for training, the data of year 2016
were used for validation of the NN method. The performance indicators were evaluated against
the precipitation value, at forecast verification time as estimated by the radar itself. Therefore,
although expressed in mm/h, they do not represent in any way an estimate of the predicted
precipitation forecast error. As a matter of fact, they gauge the error of the radar measures once
transformed into mm/h. The indicators used are: the root mean square error (RMSE), the mean
absolute error (MAE), the Pearson correlation coefficient (r), and the equitable threat score (ETS) for
precipitation exceeding 0, 1, 2, 4 mm/h respectively.

Before starting the discussion on the results, a preliminary consideration need to be made to
understand both strenghts and limitations of nowcasts based on optical flow extrapolation techniques.
All methods used (ST, SP, DR and LK) can fall into this category of course except the NN. Figure 4
shows the spatial autocorrelation of radar images as a function of the delay, in minutes, for 200 2017
“rainy” events, randomly chosen. As can be seen, the autocorrelation decays quickly but is appreciable
(the orange line represents the inverse of the number of Nepero: 1/e) up to a delay of about 60’.
This can be taken as a limit of predictability for persistence, a particular case of optical flow with zero
advection, and therefore it is expected the optical flow procedures to have non negligeable skills for up
to one hour. For the same reason, 60’ is also the maximum delay that makes sense to use as input for
any extrapolation procedure based on recent history. That is why both for the SP and NN procedure
12 images (at 5’ intervals) preceding the nowcast time were used as initial conditions.
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Figure 4. Autocorrelation of precipitation field as function of the delay expressed in minutes for
a sample of 200 “rainy” events.

To clarify some aspects on which the discussion of the results will be based, in Figure 5 we show
a sequence of images lasting one hour and related to the forecast of a precipitation event occurred
on 8 January 2017. The first column shows the 12 frames that precede the forecast emission (train
from minute −55 to 0), the second column (NN_train) shows the reconstruction of the precipitation
field by the neural network. The network produces an estimate at each time step, starting from a zero
field and gradually learning from the radar images provided. The third column (verif) shows instead
the 12 images recorded by the radar and to be compared to in the following hour of forecast (minutes
from 5 to 60). The following columns show, except the fourth (NN_flip) which we will discuss later,
the nowcast for the procedures NN, ST, DR, SP and LK.

The domain of existence of the nowcast depends on the procedure used. The NN technique,
being based on a neural network of generative type, returns a prediction for the whole domain
while the SP and DR methods after the advective and extrapolative part try to “fill” the domain
through interpolation, although generally this is never complete. Vice versa the ST and LK techniques,
based only on the advection, have a field of existence just limited to the areas where the initial field
has been “moved” while is undefined in the complementary areas. Note, in particular, in Figure 5
the frames for the forecast from 30’ onwards in which the area covered by the forecast is progressively
reduced for all the forecasts except for NN. When comparing the performance of the different methods
this fact is taken into account by evaluating the errors in the Domain of existence of each Single forecast
(DS hereafter) and in the Domain resulting from their Intersection (DI henceforth). This problem
is also highlighted by the extension of the domain covered by the radar data that is limited with
respect to the typical advection speed of that climate zone and confirmed by the depicted event.
This inconvenience could be avoided, or at least mitigated, considering a domain large enough to
cover the central zone of greatest interest. To simplify the analysis of the results the discussion that
follows is organized in subsections.
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Figure 5. Frame sequence illustrating the mode of operation of the different nowcast techniques
calculated for the one-hour forecast starting on January 8 at 16:25 UTM. See the text for a detailed
description of the figure.
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5.1. RMSE

The use of RMSE metrics is not completely appropriate, for a field as discontinuous as precipitation.
Nonetheless it provides an interesting “bulk” measure to compare the performance of the various
methods. The box (a) of Figure 6 shows the RMSE of the averaged forecast for the whole year 2017,
depending on the forecast time from 1’ to 60’, for the procedures NN, ST, SP, DR and persistence,
evaluated on the DS domains. It is clear that for all techniques there is an added value compared to
persistence that lasts for the entire duration of the forecast. NN and ST have an RMSE significantly
lower than all the other techniques and in particular ST prevails over NN only in the second half hour.
However, since the mean RMSE has been evaluated and then averaged again over different domains
for each technique, a direct comparison is not possible. For this reason, in Figure 6, on box (b), is always
shown the average RMSE evaluated only on the domain DI. In this case the trend is confirmed but NN
prevails over the other techniques for all the 60’ of duration of the forecast. The slight prevalence of ST
over NN in the second half hour forecast can be related to ST’s ability to incorporate the average effects
of stochastic noise, whose influence increases with the forecasting time. On the other hand, NN has
the clear advantage of providing a prediction for the entire domain covered by the radar. In addition
this ST prevalence, as be shortly shown, disappears when the performance is evaluated using scores
more suitable to assess the quality of the precipitation forecast, such as the MAE, r and, especially,
the ETS.

Figure 6. Average RMSE as function of the forecast time from 1’ to 60’, for all nowcast methods and
persistence (2017). In box (a) the indicators are evaluated in the DS domain , in (b) the same indicators
are calculated in DI.

5.2. MAE and Pearson Correlation Coefficient r

Figure 7 shows the values of the MAE and of the Pearson’s correlation coefficient r as a function
of the forecast time, from 1’ to 60’, for the nowcast of the 5 procedures and for persistence, for 2017.
The superiority of NN over all other procedures is clear, both in terms of MAE and of r, even when
these were calculated over the DS domain (boxes (a) and (b)). To verify the robustness of the results
obtained, we repeated the calculation of the MAE and r, limiting the analysis to the DI domain.
The results are shown in boxes (c) and (d) of Figure 5. In this case too the performance of the NN
method proved to be better than those of each of the others.



Forecasting 2020, 2 205

Figure 7. As in the previous figure for MAE and Pearson’s correlation coefficient. First row of plots
(boxes (a) and (b)) shows results evaluated in the domain DS, second row (boxes (c) and (d)) those
in DI.

5.3. ETS

Figure 8 shows in boxes (a), (b), (c), (d) the ETS for the 0, 1, 2, 4 mm/h thresholds exceedance.
While it is clear the advantage of the tested procedures with respect to persistence, the NN procedure
stands out for the case of 0 mm/h (rain/no-rain) and 1 mm/h thresholds. For higher thresholds there is
a slight prevalence of the LK method over all other procedures. However, the maximum values of ETS
are significantly lower, as are the differences between the LK, NN and DR methods, which makes this
lead not significant. The results reported in Figure 8 are obtained calculating the ETS in the DS domain
(therefore different for each one), but the results obtained limiting the calculation to the common DI
domain are basically identical and therefore not shown for brevity.



Forecasting 2020, 2 206

Figure 8. ETS, for 0, 1, 2, 4 mm/h thresholds shown on boxes (a), (b), (c), (d) respectively, as function
of the forecast time from 1’ to 60’, for all nowcast methods and persistence, for 2017.

5.4. Skill Score

To have a measure of the accuracy of the nowcasting methods, for the entire duration of
the forecast, we used two skill scores (SS) based on RMSE and MAE.

The accuracy is evaluated relatively to the persistence using the following espression:

SS(RMSE)meth = 1− RMSEmeth(t)
RMSEpers(t)

(2)

where meth = {NN, ST, SP, DR, LK} is the method for which the skill score is calculated. Similar
formulas was used to calculate the SS(MAE). The values of the two SS obtained are summarized
in Table 4. Looking at table, the plots and the discussion of the previous paragraph a clear superiority
of the NN method is evident, despite the fact that both the RMSE and the MAE have been evaluated
in the DS domain of each of the used methods. Once more, it is also worth to note that the only method
able to produce a prediction on the entire radar domain is NN, while all others are limited to a portion
of it, depending from the advection speed of the event and the forecast time. This is also the reason
the SS(RMSE) for ST is slightly better than the one for NN (see discussion of Figure 6).

Table 4. RMSE- and MAE-based skill scores relative to the persistence for all nowcasting method used.
Both RMSE and MAE are calculated within the domain DS of existence of each nowcast.

Method SS (RMSE) SS (MAE)

NN 0.29 0.32
ST 0.30 0.23
SP 0.13 0.14
DR 0.12 0.15
LK 0.11 0.14
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5.5. NN vs. ST

The results clearly show that the NN nowcast procedure, based on generative neural network,
has a significantly better performance than all the algorithm that, to the best of our knowledge,
represent the current state of the art. At least in the chosen configuration: a domain of relatively
small size, compared to the typical advection speed of the climate zone where the radar used operates.
To investigate the origin of this performance difference, the input data for the nowcast were flipped
with respect to the increasing direction of latitude and longitude and the nowcast repeated throughout
the year 2017. All methods based on optical flow are invariant with respect to this transformation.

Not so for NN, as demonstrated by the MAE and r shown in Figure 9. In particular from
a quantitative point of view, it is clear that the nowcast for the data flipped in latitude and longitude
are completely wrong (see MAE for NN_flip on box (a)) while those for the correlation coefficient
worsen considerably but remain in line with those of the other methods, in particular for forecast
times over 30’ (see box (b)). Most likely this result is an indication of the neural network “learning”
correctly, from the three years of training data, the climatic characteristics of the phenomena related
to the particular domain. The behavior of NN applied to the flipped data, with respect to those on
the natural domain, can be verified by the analysis of the test case shown in Figure 5. Comparing
the NN frames with the corresponding NN_flip (see the fifth column of images), the similarity of
the two predicted patterns is clear and might be related to the NN advective component. Regarding
the amount of rain, NN_flip provides much more intense precipitation, and this can be related to
the generative component of the network. This is consistent with the considerably higher values of
MAE and, at the same time, with the r values similar to the other procedures.

Figure 9. As in Figure 7. On box (a) the MAE and on box (b) the correlation coefficient of Pearson r
as a function of the forecast time from 1 to 60 min, this time for the nowcast obtained by inverting
the axes of longitude and latitude of the domain. The results for NN, the only ones that differ from
those shown in Figure 7, are indicated with NN_flip.

5.6. Space-Time Behavior of the Nowcast

The improvement in performance achieved with NN brings in a reduction in the spatial detail
of the forecast. This can be seen, from a qualitative standpoint, for the case shown in Figure 5,
observing how the smoothing level of the solution NN increases with the lead time, more than for
the other methods. Addressing the quantitative aspect, we calculated the spectral power density of
the logarithmic transformation both for the measured and predicted fields In Figure 10 the results
obtained by averaging the PSD on all the “rainy” events of 2017 for 5’, 30’ and 60’ lead times are shown
on boxes (a), (b) and (c) respectively. NN starts to lose power already at a scale of about 16 km for
the 5’ forecast. This loss of detail moves up to 32 km at 30’ lead time, and 48 km at 60’ lead time, in line
with the results shown in [34] for the RainNet method.

This unintended feature of the NN forecast derives from the network optimization procedure
which, while minimizing the loss function, devises "effective" smoothing the solution. The behavior,
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implicit at each 5’ forecast, is amplified by numerical diffusion as the forecast time progresses,
because of the iterative nature of NN.

This is also reflected in NN’s reduced ability to predict extreme values. As an example, in Figure 11,
a time series of precipitation data, for a severe event (29 June to 2 July 2017), is shown for the point of
the radar nearest to Kyoto. The radar data estimation of precipitation in mm/h are shown along with
the corresponding NN prediction, at lead times of 5’, 30’, and 60’. The smoothing effect of the forecast
could be seen also here, but now over time. For events longer than an hour, in this case the first and
third day of the event, the procedure is able to reproduce the evolution of the precipitation field even at
lead times of 60’. The central part, instead, is poorly predicted as it lasts less then the minimum needed
learning time. The power spectra tells us that this is caused by the pixel scale not being resolved.
However, for hydrological applications, if the basin has a surface as large as the scales resolved by
the nowcast, this effect is minimized since all points within the basin contribute to the runoff.

The increasing space-time “smoothness” of the NN forecast with lead times, is related to
the increasing uncertainty of the forecast, an aspect which is out of the scope of the present paper,
and on which we are currently working on as an extension of the present research.

Figure 10. Power spectral density averaged over all the precipitation events of 2017, for times of
forecast of 5’, 30’ and 60’ on boxes (a), (b) and (c) respectively.

Figure 11. Time series of an event of intense precipitation occurred above Kyoto in the period from
the 29 of June to the 2 of July 2017. Radar observations and corresponding NN forecasts at lead times
of 5’, 30’ and 60’ are shown.

6. Conclusions

In this work, a comparison of state-of-the-art methods for the nowcast of precipitation intensity
derived from weather radar images and based on optical flow, with a deep learning methodology
based on PredNet architecture, trained with a specific loss function, is presented.

The detailed analysis of this extensive test case proves that the proposed algorithm, based on
a generative neural network architecture, is far superior to any other method representing, to the best
of our knowledge, the state of the art for this subject. It must be said, according to a precautionary
principle, that these conclusions cannot be generalized, a priori, to the nowcast of the images of another
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type of radar or a similar one positioned in a different geographical region. This limit originates from
the small size of the domain covered by the radar, compared to the typical advection velocity obtained
through the application of OF techniques.On the other hand, there is no valid reason the procedure
used here could not be used in other domains and/or other radar types, after an appropriate learning
phase, to produce similar encouraging results.

It would be certainly interesting to further develop the proposed concepts and methodologies.
In that respect a modification of the architecture in order to formally separate the advective component
from the source/sink in the generative branch of the network will be applied in an upcoming work.
This should facilitate a transfer learning process and build a general model, able to interpret and predict
radar measures, that can then be specialized onto specific instruments and/or different meteo/climatic
regions. We also intend to study the potential for a probabilistic nowcast, estimating the spatial and
temporal uncertainty that can be obtained from neural network model, for instance through a quantile
regression and the use of a pinball loss function [35].
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