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Abstract: Mixed models are useful tools for analyzing clustered and longitudinal data. These models
assume that random effects are normally distributed. However, this may be unrealistic or restrictive
when representing information of the data. Several papers have been published to quantify the
impacts of misspecification of the shape of the random effects in mixed models. Notably, these
studies primarily concentrated their efforts on models with response variables that have normal,
logistic and Poisson distributions, and the results were not conclusive. As such, we investigated
the misspecification of the shape of the random effects in a Weibull regression mixed model with
random intercepts in the two parameters of the Weibull distribution. Through an extensive simulation
study considering six random effect distributions and assuming normality for the random effects
in the estimation procedure, we found an impact of misspecification on the estimations of the fixed
effects associated with the second parameter σ of the Weibull distribution. Additionally, the variance
components of the model were also affected by the misspecification.
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1. Introduction

Mixed models are useful tools for analyzing correlated, clustered and longitudinal data that arise
from medical, social and behavioral sciences studies. However, this class of models makes a strong
assumption about the distribution of random effects. For computational convenience, random effects
are assumed to be normal, but this assumption may be unrealistic for some applications [1]. Since the
random effects are not observable, checking the assumption is difficult, and if the true distribution of
the random effects is far from normality, the estimation and inferences could be considerably affected.

In the literature, many studies have evaluated the impacts of mixed models that assume a normal
distribution for random effects on several aspects related to the estimation and inference, when
in fact the underlying distribution of the random effects is non-normal. This situation was called
the “misspecification problem” by Neuhaus and McCulloch [2]. In these studies, the covariates are
classified into two types. A covariate can be a “between-cluster” covariate, meaning that it is constant
over the units in a cluster. Conversely, it can be a “within-cluster” covariate, which means that it varies
within a cluster, but it has an average that is constant between clusters [3]. Some of these studies are
summarized below.

Considering linear mixed models (LMM), Verbeke and Lesaffre [4] used simulations to show
that maximum likelihood estimators for fixed effects and variance components are consistent and
asymptotically normally distributed, even when the random effect distribution is not normal. Using the
relative distance, the authors showed the clear consistency of the maximum likelihood estimators as
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the total sample size increased. Unfortunately, these conclusive results were not found for other classes
of mixed models.

Neuhaus et al. [5] conducted a simulation of a logistic random model (LRM) in which gamma,
t-Student and normal distributions were considered for the random effects. They estimated the model
parameters assuming a normal distribution for the random effects and found that the estimated
parameters were asymptotically biased, but the magnitude of the bias was typically small.

Heagerty and Kurland [6] considered an LRM in which the random effect followed one of four
situations: a random intercept that was non-normally distributed, the variance of the random intercept,
which depended on a between-cluster covariate, assuming a random intercept, when in fact there was a
random intercept and slope, and autocorrelated random intercepts. Through a simulation study using
relative bias, the authors found that incorrect assumptions regarding the random effects could lead to
substantial bias in the estimates for the fixed effects when the random effect distribution depended on
the measured covariates or when there was an autoregressive random effect.

Agresti et al. [7] showed that a considerable loss of efficiency occurred when the random effect
distribution differs from the true distribution for three different models: LRM, random effects model
for log odds ratio and frailty model.

Litière et al. [8] used simulations to study the impacts of the misspecification of the random
effect distribution on the power of the Wald test for the fixed effect parameters in an LRM. Four true
distributions for the random effects (normal, power function, discrete and a mixture of two normal)
and each simulated dataset were fitted assuming normality for the random effects. They claimed that
the misspecification of the random effect distribution could produce a marked increase or decrease in
the power of the Wald test, depending on the shape of the random effect distribution.

Litière et al. [9] also studied the impact of misspecification on parameter estimation and hypothesis
testing through simulations using an LRM based on a schizophrenia study considering nine different
distributions of the random effects. These authors found that the estimates of the variance components
were severely affected by the misspecification. Additionally, they found that the coefficient of the
within-cluster covariate appeared to be less affected by the misspecification of the variance of less
than four for the random effects. With respect to hypothesis testing, they found that misspecification
severely affected the power of the test.

McCulloch and Neuhaus [3] used a simulation study to assess the impacts of misspecification on
the inference of covariate effects, to estimate the random effects variance and to predict the random
effects in an LRM. The authors used the Tukey distribution as the true distribution for random
effects, and they fitted models assuming normal and Tukey (with known and unknown parameters)
distributions for random effects. They found that the estimation of the intercept may be biased for
a random effect distribution far from normal, and for the other parameters, the estimations had low
biases. With respect to the prediction of random effects, they found that the mean square error of the
prediction was slightly higher for the assumed normal distribution.

Neuhaus et al. [10] were not in agreement with Litière et al. [8] with respect to the LRM.
They reanalyzed the scenarios and found that the misspecification of the shape of the random effect
distribution led to a minimal increase in the Type II error. Moreover, to demonstrate the effects of
misspecification, they argued that the assumed distribution needs to vary while the true distribution is
held constant.

Litière et al. [11] presented a rejoinder to Neuhaus et al. [10], in which they defended the approach
of varying the true underlying distribution for the random effects while fitting the model by assuming
a normal distribution. Litière et al. considered an LRM and argued that, by using both approaches, the
power associated with the test for the fixed-effect parameters in the logistic random model may be
affected by misspecifying the random-effect distribution.

McCulloch and Neuhaus [12] used theory and a simulation study to investigate the impacts of
the misspecification of the random effect distribution on how well the predicted values recover the
true underlying distribution and the accuracy of the prediction of the realized values of the random
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effects. They considered two situations: LMM and LRM, with three random effect distributions.
For each generated dataset, the model was fitted by assuming normal and exponential distributions
for the random effects. The authors found that the shape of the distribution of the predictions of the
random effects did not necessarily match the shape of the true distribution. In addition, the use of an
incorrect distribution for the random effects only caused modest degradation of the mean square error
of the prediction.

Neuhaus et al. [13] analyzed the impacts of the misspecification on the shape of the joint
distribution of the random intercepts and slopes on the estimates and confidence intervals for
generalized linear mixed models (GLMM). Through analytical and simulation studies, the estimates of
the covariate effects showed little bias.

As shown, until now, most simulation studies focused on LRM or GLMM, and no significant
studies have considered other classes of mixed models or other distributions for the response variable.
The Weibull distribution is one of the most popular distributions associated with the models that
can be applied to diverse areas ranging from engineering (reliability), health (survival analysis) and
ecology (Fleming [14], Carroll [15], Abdel-Ghaly et al. [16]). The contribution of this paper is to explore
the impacts of a misspecified random effect distribution on the estimation of the parameters in a mixed
model with a response variable that follows a Weibull distribution.

Our paper is organized as follows. In Section 2, we present a case study of the lifetime of rubber
in an abrasive process. In Section 3, we define the mixed model under consideration. In Section 4, we
present the structures and the scenarios that were used in the simulation study, and in Section 5, we
analyze the results of the simulation. The final Section 6 provides some concluding remarks.

2. A Case Study of Lifetime in an Abrasive Process

The data were obtained from an experimental design to study the effect of the density, torque,
viscosity and temperature on the wear time of rubber pieces in an abrasive process. Ten pieces were
analyzed, and each piece was cut into 15 small sub-pieces. For each piece, the density (g/cm3) and
the viscosity (Mooney viscosity) were measured; in the abrasive experiment, for each sup-piece, the
torque (Tan δ) and temperature (◦C) were measured. The test involved submitting each sub-piece to
an abrasive process to measure the wear time (minutes). Figure 1 depicts the empirical density (left)
over time and boxplots for the time for the piece (right). The mean time was 12.9 min with a standard
deviation of 8.9 min.
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Figure 1. Empirical density function for time (left) and boxplot for time given each piece (right).

In this application, we have clustered data because several sub-pieces were obtained from a
specific piece. In this situation, it was appropriate to consider a mixed model to model the response
variable. The variables density and viscosity were between-cluster covariates because they were
measured over pieces; whereas torque and temperature were measured over the sub-pieces. Several
mixed models were fitted to explain the timeij of the sub-piece j within piece i where i = 1, 2, . . . , 10
and j = 1, 2, . . . , 15. Using the Akaike information criterion (AIC) proposed by Akaike [17] and the
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Schwarz Bayesian criterion (SBC) proposed by Schwarz [18], the best mixed model for the dataset had
a response variable showing a Weibull(µ, σ) distribution, and the model can be summarized as:

timeij | u1i, u2i
ind∼ WEI(µij, σij),

log(µij) = β10 + β11 densityi + β12 torqueij + u1i,

log(σij) = β20 + β21 viscosityi + β22 temperatureij + u2i,

(1)

The corresponding maximum likelihood estimates for the model (1) are summarized in Table 1.

Table 1. Parameter estimates, standard errors, p-values, AIC and Schwarz Bayesian criterion (SBC) for
the model (1).

Model for log(µ) Estimate Std. Error t-Value p-Value

Intercept 0.96 0.0065 149.1 <2× 10−16

β11 1.80 0.0094 191.3 <2× 10−16

β12 0.99 0.0077 127.8 <2× 10−16

Model for log(σ) Estimate Std. Error t-Value p-Value

Intercept −0.64 0.1620 −3.97 0.000125
β21 2.69 0.2454 10.97 <2× 10−16

β22 3.62 0.2078 17.45 <2× 10−16

AIC 486.46 SBC 560.93

3. Weibull Regression Mixed Model

The Weibull distribution was named after Swedish mathematician Waloddi Weibull (1887–1979).
This distribution is important because it describes the failure times of many different phenomena [19].
The Weibull distribution has been extensively used and cited in the fields of engineering, chemistry,
meteorology, material science, medicine, quality control and biology. More details about the
applications were provided by Murthy et al. [20] and Rinne [21].

The importance of the Weibull distribution can be viewed in terms of the parameterizations
that were proposed in the literature. Almalki and Nadarajah [22] provided an extensive review of
29 modifications of the Weibull distribution. Bagheri et al. [23] proposed the generalized modified
Weibull power series distribution that contains, as special cases, several important distributions that
are modifications of the Weibull distribution. Domma et al. [24] proposed the generalized weighted
Weibull distribution that includes decreasing, increasing, upside-down bathtub, N-shape and M-shape
hazard rates.

In the literature, some regression models have used the Weibull distribution. Silva et al. [25]
proposed a log-extended Weibull regression model to analyze survival time for patients with cancer
using the performance status at diagnosis, a measure of general fitness, the age of the patient and
the number of months since the cancer diagnosis as explanatory variables. Vigas et al. [26] used
the Poisson–Weibull distribution to explain the survival time of the patients who were admitted
into a heart transplant program using the year of acceptance to the program, the age of the patient,
information about previous surgery (where one was yes and zero was no) and if the patient had the
transplant within the program (where one was yes and zero was no) as covariates. Prataviera et al. [27]
considered a generalized odd log-logistic flexible Weibull regression model to explain the breaking
time for a part located in a sugarcane cutting system using the agent causing the failure as the covariate.

Mixed Weibull models have been also used to analyze real datasets. Sohn et al. [28] used a
random effects Weibull model to explain the reliability of modules in a fighter aircraft based on
the characteristics and operational conditions of the plane. Sohn et al. [29] considered a random
effects Weibull regression model to study the occupational lifetime of the employees who join another
company, based on characteristics such as position, gender, marriage status and age, among others.
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Bartolucci et al. [30] proposed a Bayesian mixed Weibull model to explore the survival time of patients
with myelodysplastic syndrome by comparing the efficacy and toxicity of two treatments. Lv et al. [31]
used a mixed Weibull model for data from a design experiment to explain the lifetime of a thermostat
using 12 low- or high-level explanatory variables.

The original Weibull distribution has several parameterizations; however, in this work, we used
the parameterization called WEI3, which can be found in Stasinopoulos and Rigby [32]. The probability
density function, mean and variance for the WEI3 parameterization are as follows:

fY(y | µ, σ) =
σ

κ

(y
κ

)σ−1
exp

[
−
(y
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)σ]
, y > 0, µ > 0, σ > 0, (2)
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[
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2
σ
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σ
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)
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]

, (4)

where κ = µ/Γ(1/σ + 1) and Γ(·) is the gamma function.
Assuming that yij is the j-th observation for the i-th cluster and conditional on the independent

random intercepts u1i and u2i, the response variable yij is distributed as an independent random
variable with a Weibull distribution as follows:

yij | u1i, u2i
ind∼ WEI3(µij, σij),

log(µij) = X1i,j· β1 + u1i,

log(σij) = X2i,j· β2 + u2i,

(5)

where i = 1, 2, . . . , N represents the number of clusters and j = 1, 2, . . . , ni represents the number of
observations within cluster i. In the model (5), X1i and X2i are known design matrices for the cluster
i; thus, X1i,j· and X2i,j· correspond to the j-th rows of X1i and X2i respectively, and β1 and β2 are
vectors of unknown fixed effects. The log function included in the model (5) ensures that the linear
predictors for µ and σ map to the appropriate values for µ and σ, respectively. The model assumes

that u1i
iid∼ N(0, τ2

1 ) and u2i
iid∼ N(0, τ2

2 ) and uncorrelated. Then, the parameter vector for the model (5)
is θ = (β>1 , β>2 , τ2

1 , τ2
2 )
>.

The likelihood function for the i-th cluster is given by:

Li(θ) =
∫∫
<2

[
ni

∏
j=1

fy(yij | µij, σij)

]
p(u1i | τ1) p(u2i | τ2) du1i du2i, (6)

where fy is the probability density function of WEI3 and p(·, a) corresponds to the normal density
with zero mean and variance a2. The integrals in Equation (6) do not have a closed form, and
approximations are required for a computationally-feasible estimation [33]. In this work, we used the
Gauss–Hermite quadrature (GHQ) approximation to obtain Equation (6). We choose the maximum
likelihood method to obtain the estimates for the parameter vector θ, in which the objective is to
maximize the log-likelihood function l(θ) given by:

l(θ) =
N

∑
i=1

log(Li(θ)). (7)

4. Simulation Study

We performed a simulation study to evaluate the impacts of misspecification on the estimation
of parameters. We adopted the approach used by Verbeke and Lesaffre [4], Agresti et al. [7],
Litière et al. [8], Litière et al. [9], Litière et al. [11], Alonso et al. [34] and Alonso et al. [35], in which we
varied the true distribution of the random effects while the assumed distribution remained constant.
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For the random intercepts u1i and u2i, we considered six different distributions: normal, uniform,
exponential, log-gamma, log-normal and symmetric mixture of two normal densities that were defined
as in McCulloch and Neuhaus [12]. The distributions were transformed such that the zero-mean
condition was satisfied, and the corresponding variances were equal to the prespecified values τ2

1
and τ2

2 for u1i and u2i, respectively. Figure 2 shows the respective densities for the case with unit
variance. With this choice, we cover a range of densities varying from very symmetric to very
skewed distributions.
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Figure 2. Probability density function used for random effects, each one with zero mean and
unit variance.

For the simulation study, we considered the next model:

yij | u1i, u2i
ind∼ WEI3(µij, σij),

log(µij) = β10 + β1b x1bi + β1w x1wj + u1i,

log(σij) = β20 + β2b x2bi + β2w x2wj + u2i,

(8)

with i = 1, 2, . . . , N being the number of clusters and j = 1, 2, . . . , ni the number of observations per
cluster. The variables x1b and x2b represent between-cluster covariates, whereas x1w and x2w represent
within-cluster covariates. We considered x1b, x1w, x2b and x2w distributed as U(0, 1). The vector
parameter in the simulation study is given by θ = (β10, β1b, β1w, β20, β2b, β2w, τ2

1 , τ2
2 )
>.

The true values for the fixed parameters in the simulation were chosen to ensure that the datasets
had a response variable with mean and variance of approximately 12 and nine, respectively. The fixed
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effects were considered constant with the following values: β10 = 1, β1b = 2, β1w = 1, β20 = −0.5,
β2b = 2.5, β2w = 3.5. This selection emulated the dataset shown in Section 2.

We considered equal variances for the random intercepts u1 and u2, and these variances were
τ2

1 = τ2
2 = 0.5, 1.0, 1.5 and 2.0. The variances greater than 2.0 were not considered because they

caused larger values of u1 and u2, which directly affected the parameters µ and σ, which increased the
variance Var(Y) that depends on µ and σ shown in Equation (4). We considered a variety of different
numbers of clusters and observations per cluster, and the values were N = 5, 10, 15, 20, . . ., 45, 50 and
ni = 5, 10, 15, 20.

The simulation study included 960 cases, given by 6 distributions and 4 variances for the random
intercepts, 10 values of N and 4 values of ni. For each distribution setting, the variance, N and ni,
we generated 1000 samples with the model given by Equation (8). For each sample, we obtained the
estimates of θ̂ for the parameter vector θ that maximized the log-likelihood function in Equation (7)
using our own code in R Core Team [36].

As in Verbeke and Lesaffre [4], we used the relative distance (RD) to quantify the impact of the
misspecification on the estimates. The relative distance is defined as

RD =
‖θ̂− θ‖
‖θ‖ (9)

The smaller the value of the relative distance, the lower the impact. We also studied the impact of
the misspecification on the estimation procedure using the median of θ̂k.

5. Results

In this section, we present the results of the simulation study that was conducted to evaluate the
impact of the misspecification of the random effect distribution in a Weibull mixed model as defined
in Equation (8). The results are shown using figures that are provided in the Appendix A.

5.1. Relative Distance between the Estimated Parameter Vector θ̂ and the True Parameter Vector θ

In Figures A1–A4, we can observe the median of the relative distance between the estimated
parameter vector θ̂ and the true parameter vector θ versus N for several combinations of ni and
τ2

1 = τ2
2 . Blue was assigned to the symmetric distributions ( , , ), whereas green, orange and

red ( , , ) correspond to exponential, log-gamma and log-normal (asymmetric distributions),
respectively. Dark blue ( ) corresponds to the normal distribution used as the reference case.
Figures A1–A4 have the same y-axis scale to facilitate comparison.

In each figure, the expected pattern of the relative distance decreasing as the number of clusters
N increasing is observed. Additionally, we note an increase in the relative distance as the variances
τ2

1 = τ2
2 increase.

If we compare the corresponding panels in Figures A1–A4, the relative distance decreases as
the number of observations per cluster ni increases, due to the increase in the number observations
available to estimate the parameter vector θ.

From the third and fourth panels in Figures A2–A4, the blue lines tend to be below the asymmetric
distributions ( , , ) when N ≥ 30. This means that when asymmetric distributions are used to
generate the random intercepts and the model is fitted assuming normality for the random intercepts,
the estimated parameter vector θ̂ is far from θ.

5.2. Relative Distance between the Estimated Parameter θ̂k and the True Parameter θk

In Figures A5–A20, the medians are displayed of the relative distance between the estimated
parameter θ̂ and the true parameter θ versus N for several combinations of ni and τ2

1 = τ2
2 . Again, blue

was assigned to the symmetric distributions ( , , ), whereas green, orange and red ( , , )
correspond to exponential, log-gamma and log-normal (asymmetric distributions), respectively. Dark
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blue ( ) corresponds to the normal distribution used as the reference case. In these figures, six
colored lines are found within each panel, excluding the panels for β1w and β2w in which the red line
( ) intersects the other lines. The y-axis has different scales that clearly show the variability in the
relative distance in each case.

By analyzing Figures A5–A20, we note that the relative distance for each estimated parameter
decreases as N increases, except for β1w and β2w, in which the relative distance appears to be constant.
The intercept β20 shows the largest relative distance. By comparing Figures A5–A8, in which τ2

1 = τ2
2

is constant at 0.5, the relative distance decreases as ni incrementally increases. This pattern is also
observed in Figures A9–A20 when the variances are τ2

1 = τ2
2 = 1, 1.5 and 2. If the figures are compared

with ni fixed, the relative distance increases as the variances τ2
1 = τ2

2 increase.
The relative distance curves for the estimations of β10, β1b, β1w, β2b and β2w present the same

shape as in Figures A5–A20 in which all colored lines tend to be near each other. In fact, for the
estimated fixed coefficients (β1w and β2w) associated with the within variables, the relative distance
curves are close. For this reason, we see only the red line that was drawn last.

For the estimated intercept β20, we note that the lines are slightly separated, but all lines show the
same pattern. In half of the figures, the red line (log-normal) has a lower relative distance.

From Figures A5–A20, the blue lines (symmetric distributions) tend to be below the other lines
(asymmetric distributions) as ni increases in the estimations for τ2

1 and τ2
2 . This means that when

the random intercepts have asymmetric distributions, the estimated variances tend to have large
relative distances.

5.3. Median for the Estimated Fixed Parameters θ̂k

Figures A21–A36 demonstrate the median for the estimated parameters θ̂k obtained in the
simulation study versus N for several combinations of τ2

1 = τ2
2 and ni. Within each panel, the

true value for the parameter and a dashed purple line (- - - -) on the right side of the panel are included
to identify if the estimators converge to the correct value.

Figures A21–A36 show some similar patterns. In all figures, the estimations for β2w have a small
bias that decreases as ni increases. As the variances of the random intercepts increase, the estimations
for β20 have a small bias when the true distributions of the random intercepts are normal, a mixture
of normal, uniform and log-gamma. When the variances of the random effects are 1.5 or two, the
estimations for β2b tend to have a bias when the true distributions for the random intercepts are
normal, a mixture of normal, uniform and log-gamma. The estimations for the variance components
(τ2

1 = τ2
2 ) tend to have a bias when the true distributions for the random intercepts are log-gamma

and log-normal.

6. Conclusions

This simulation study was conducted to explore the impacts of a misspecified random effect
distribution in a Weibull mixed model. The datasets for the study were simulated following six different
distributions for random intercepts, but assuming normality for the random intercepts in the parameter
estimation procedure. Two measures were used to evaluate the impacts of the misspecification on the
parameter estimation, the relative distance and the median of the estimated parameters.

In Section 5.1, we calculated the relative distance between the estimated parameter vector θ̂ and
the true parameter vector θ. We found that when the true distributions of the random intercepts
were exponential, log-gamma and log-normal (asymmetric distributions), the relative distance tended
to be higher for N ≥ 30, variances τ2

1 = τ2
2 =1.5, 2.0 and ni ≥ 10. This means that when the true

distributions for the random intercepts are asymmetric, the estimated vector θ̂ tends to be far from the
true vector θ.

In Section 5.2, the individual relative distance was obtained between each estimated θ̂k parameter
and the true parameter θk. The intercept β20 demonstrated the largest relative distance, and the
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estimates of the variance components were severely affected when the random intercepts had an
asymmetric distribution.

In Section 5.3, the median for each estimated θ̂k parameter was obtained. From these results, we
observed a large bias for β̂2w that was not identified with the individual relative distance. However,
the bias decreased as ni increased. We noted a bias in β̂20 and β̂2b for all distributions that were used to
simulate the random intercepts. This bias tended to be higher for normal, mixture of normal, uniform
and log-gamma when τ2

1 = τ2
2 = 1.5, 2. Additionally, we identified a remarkable bias in the estimated

variance components when τ2
1 = τ2

2 = 1.5, 2 and the random intercepts had exponential, log-gamma,
and log-normal distributions.

Despite that we did not consider the variances for random effects higher than two in the simulation
study, we think that this could severely impact the measures for the cases when the random effects
have asymmetric distributions (exponential, log-gamma and log-normal).

With these findings, we conclude that the misspecification impacts the estimations for the
fixed effects β20, β2b and β2w associated with the second parameter σ of the Weibull distribution.
Additionally, the variance components τ2

1 and τ2
2 were also affected by the misspecification. For these

reasons, in practice, we recommend checking the random effect distribution using diagnostic tests as
proposed by Drikvandi et al. [37] and Efendi et al. [38]. Then, if the random effect distribution is not
normal, use flexible procedures by considering non-normal distributions for the random effects to
estimate the model parameters.

Overall, the misspecification of the random effects significantly impacts the estimation of all
the parameters of the Weibull mixed model mainly when the distribution of the random effects
is asymmetric.
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The following abbreviations are used in this manuscript:

GLMM Generalized linear mixed model
LMM Linear mixed model
LRM Logistic random model
WEI3 Third parameterization of Weibull distribution
GHQ Gauss–Hermite quadrature
RD Relative distance
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Appendix A

Next are the figures for Section 5.1.
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Figure A1. Median of relative distance between θ̂ and θ versus N for ni = 5.
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Figure A2. Median of relative distance between θ̂ and θ versus N for ni = 10.
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Figure A3. Median of relative distance between θ̂ and θ versus N for ni = 15.
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Figure A4. Median of relative distance between θ̂ and θ versus N for ni = 20.
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Next are the figures for Section 5.2.
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Figure A5. Median of relative distance between θ̂k and θk versus N for with τ2
1 = τ2

2 = 0.5 and ni = 5.
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Figure A6. Median of relative distance between θ̂k and θk versus N for with τ2
1 = τ2

2 = 0.5 and ni = 10.
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Figure A7. Median of relative distance between θ̂k and θk versus N for with τ2
1 = τ2

2 = 0.5 and ni = 15.

τ1
2 = τ2

2=0.5 and ni=20

N

R
el

at
iv

e 
di

st
an

ce

0.0

0.2

0.4

0.6

0.8

1.0

1.2
β10

10 20 30 40 50

β1b β1w

β20 β2b

0.0

0.2

0.4

0.6

0.8

1.0

1.2
β2w

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10 20 30 40 50

τ1
2 τ2

2

NO
MN
UN
EX
LG
LN

Figure A8. Median of relative distance between θ̂k and θk versus N for with τ2
1 = τ2

2 = 0.5 and ni = 20.
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Figure A9. Median of relative distance between θ̂k and θk versus N for with τ2
1 = τ2

2 = 1 and ni = 5.
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Figure A10. Median of relative distance between θ̂k and θk versus N for with τ2
1 = τ2

2 = 1 and ni = 10.



Stats 2018, 1 62

τ1
2 = τ2

2=1 and ni=15

N

R
el

at
iv

e 
di

st
an

ce

0.0

0.5

1.0

1.5

β10

10 20 30 40 50

β1b β1w

β20 β2b

0.0

0.5

1.0

1.5

β2w

0.0

0.5

1.0

1.5

10 20 30 40 50

τ1
2 τ2

2

NO
MN
UN
EX
LG
LN

Figure A11. Median of relative distance between θ̂k and θk versus N for with τ2
1 = τ2

2 = 1 and ni = 15.
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Figure A12. Median of relative distance between θ̂k and θk versus N for with τ2
1 = τ2

2 = 1 and ni = 20.
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Figure A13. Median of relative distance between θ̂k and θk versus N for with τ2
1 = τ2

2 = 1.5 and ni = 5.
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Figure A14. Median of relative distance between θ̂k and θk versus N for with τ2
1 = τ2

2 = 1.5 and
ni = 10.
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Figure A15. Median of relative distance between θ̂k and θk versus N for with τ2
1 = τ2

2 = 1.5 and
ni = 15.
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Figure A16. Median of relative distance between θ̂k and θk versus N for with τ2
1 = τ2

2 = 1.5 and
ni = 20.
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Figure A17. Median of relative distance between θ̂k and θk versus N for with τ2
1 = τ2

2 = 2 and ni = 5.
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Figure A18. Median of relative distance between θ̂k and θk versus N for with τ2
1 = τ2

2 = 2 and ni = 10.
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Figure A19. Median of relative distance between θ̂k and θk versus N for with τ2
1 = τ2

2 = 2 and ni = 15.
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Figure A20. Median of relative distance between θ̂k and θk versus N for with τ2
1 = τ2

2 = 2 and ni = 20.
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Next are the figures for Section 5.3.
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Figure A21. Median for the estimated fixed parameters for τ2
1 = τ2

2 = 0.5 and ni = 5.
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Figure A22. Median for the estimated fixed parameters for τ2
1 = τ2

2 = 0.5 and ni = 10.
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Figure A23. Median for the estimated fixed parameters for τ2
1 = τ2

2 = 0.5 and ni = 15.
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Figure A24. Median for the estimated fixed parameters for τ2
1 = τ2

2 = 0.5 and ni = 20.
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Figure A25. Median for the estimated fixed parameters for τ2
1 = τ2

2 = 1 and ni = 5.
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Figure A26. Median for the estimated fixed parameters for τ2
1 = τ2

2 = 1 and ni = 10.
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Figure A27. Median for the estimated fixed parameters for τ2
1 = τ2

2 = 1 and ni = 15.
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Figure A28. Median for the estimated fixed parameters for τ2
1 = τ2

2 = 1 and ni = 20.
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Figure A29. Median for the estimated fixed parameters for τ2
1 = τ2

2 = 1.5 and ni = 5.
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Figure A30. Median for the estimated fixed parameters for τ2
1 = τ2

2 = 1.5 and ni = 10.
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Figure A31. Median for the estimated fixed parameters for τ2
1 = τ2

2 = 1.5 and ni = 15.
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Figure A32. Median for the estimated fixed parameters for τ2
1 = τ2

2 = 1.5 and ni = 20.
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Figure A33. Median for the estimated fixed parameters for τ2
1 = τ2

2 = 2 and ni = 5.
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Figure A34. Median for the estimated fixed parameters for τ2
1 = τ2

2 = 2 and ni = 10.
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Figure A35. Median for the estimated fixed parameters for τ2
1 = τ2

2 = 2 and ni = 15.
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Figure A36. Median for the estimated fixed parameters for τ2
1 = τ2

2 = 2 and ni = 20.
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