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Dependence on Tail Copula
Paramahansa Pramanik

Department of Mathematics and Statistics, University of South Alabama, Mobile, AL 36608, USA;
ppramanik@southalabama.edu

Abstract: In real-world scenarios, we encounter non-exchangeable dependence structures. Our
primary focus is on identifying and quantifying non-exchangeability in the tails of joint distributions.
The findings and methodologies presented in this study are particularly valuable for modeling
bivariate dependence, especially in fields where understanding dependence patterns in the tails is
crucial, such as quantitative finance, quantitative risk management, and econometrics. To grasp the
intricate relationship between the strength of dependence and various types of margins, we explore
three fundamental tail behavior patterns for univariate margins. Capitalizing on the probabilistic
features of tail non-exchangeability structures, we introduce graphical techniques and statistical tests
designed for analyzing data that may manifest non-exchangeability in the joint tail. The effectiveness
of the proposed approaches is illustrated through a simulation study and a practical example.
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1. Introduction

The existence of asymmetric dependence, both within and between extreme returns in
bivariate scenarios across diverse market conditions, is not only a crucial factor in asset
and risk management but also a primary focus of market supervision. In times of financial
crises, there is a noticeable amplification of cross-sectional co-movements in the (lower)
tails of return distributions within financial markets [1–3]. This amplification accentuates
the likelihood of simultaneous extreme events. In devising investment strategies, this
phenomenon should be considered through timely and appropriate asset reallocations,
such as capitalizing on arbitrage trading opportunities, and making judicious adjustments
to hedging decisions [2].

Alternatively, in adverse market conditions, risk managers and market supervisors
may find it necessary to establish larger capital buffer requirements if the inclination to-
wards joint occurrences of extreme losses increases during market distress. Standard linear
dependence measures prove inadequate in such cases, necessitating the exploration of
alternative statistical models, such as the Gaussian copula, which serves as a convenient
tool for modeling dependence near the mean of multivariate distributions [1]. However, it
is essential to recognize that the Gaussian copula lacks the capability to measure depen-
dence at the tails, underscoring the need to explore alternative methodologies in extreme
situations [4,5].

A tail copula is a function derived from complete tail dependence, and the use of
empirical tail copulas provides flexibility, mitigating potential risks associated with para-
metric misspecification. This approach stands in contrast to established methods that solely
estimate and compare scalar summary measures of extreme dependence, like the tail depen-
dence coefficient. Quantifying the degree of (tail) non-exchangeable dependence [6] poses
a significant challenge in insurance and risk management literature. Tail-dependence coeffi-
cients often underestimate this degree and fail to capture non-exchangeable tail dependence
as they assess the limiting tail probability solely along the diagonals [5].

This paper focuses on quantifying the degree of tail non-exchangeability for a bi-
variate random vector with identical marginal distributions. The concept of tail non-
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exchangeability in this context relies on limiting properties of bivariate copulas. The paper
introduces a meaningful measure to quantify the strength of tail non-exchangeability,
providing details for constructing non-exchangeable bivariate copula families based on
commonly-used approaches. Various non-exchangeable copulas have been explored in the
literature, such as the Marshall-Olkin copula, the generalized Clayton copula [7], and copu-
las constructed through comonotonic latent variables [8]. However, this paper specifically
considers Khoudraji’s device [9] for generating non-exchangeable copulas, leaving the
exploration of other methods, such as using the non-exchangeable Pickands function for
extreme value copulas, for future studies.

For a two-dimensional random vector X = {X1, X2} with its continuous marginal distri-
butions FXi(xi) for i = 1, 2, the dependence is characterized by the copula Λ : [0, 1]2 → [0, 1],
(i.e., the distribution function of

[
FX1(x1), FX2(x2)

]
. In extreme value analysis, a key focus

is on assessing the level of dependence at the extremes. This involves measuring the
inclination of variables V1 and V2 to simultaneously exhibit extreme (either large or small)
values. Hua and Joe (2011) [10] propose a method to characterize the lower tail dependence
of a pair of random variables, denoted as X. They introduce the concept of tail order
represented by λ−1, where λ ranges from 0 to 1, indicating various levels of dependence.
Additionally, they establish a condition for the tail dependent parameter γ ≥ 0 to ensure
the the following condition:

Λ(q, q) ≈ q1/λg(q), for all q ↓ 0 and γ = lim
q↓0

g(q),

where g : R+ → R+ is slowly varying function with fX1 ≈ fX2 as x1 → x2, for functions
fX1 , fX2 : R → R. Therefore, limx1→x2 FX1(x1)/FX2(x1) = 1, ∀ x2 ∈ R ∪ {±∞}. For λ = 1,
the tail -dependence parameter γ(Λ) = limq↓0 Λ(q, q)q−1 becomes the tail dependence
coefficient [11,12]. While widely used, the tail dependence coefficient tends to underes-
timate the extent of tail dependence. This is due to its focus on measuring the rate of
decline of joint tail probability exclusively along the main diagonal of Λ [5]. Furthermore,
the tail dependence coefficient falls short in capturing non-exchangeable tail dependence
situations, where γ(Λ) = γ(Λ̂) holds true, and Λ̂ represents the copula of the random
variables X2, X1 [1,6]. Furman (2015) [7] confronts these challenges by proposing adjust-
ments to the tail dependence coefficient, opting to substitute the diagonal with the path
that optimizes joint tail probability. Yet, the estimation of these tail indices proves to be
notably challenging, primarily due to the intricate nature of determining the path that max-
imizes dependence for a copula Λ within a broad context. A parallel endeavor to quantify
non-exchangeable tail dependence was undertaken by Genest and Jaworski (2021) [13].

One reasonable approach involves examining the disparity in certain conditional
quantities when transitioning between X1 and X2. Without loss of generality, assuming
identical nonnegative random variables X1 and X2, we leverage the asymptotic behavior of
η(t) = E[X1|X2 > t]/E[X2|X1 > t] as t approaches infinity to investigate the robustness of
tail non-exchangeability. In the work by Hua et al. (2014) [14], the expressions E[X1|X2 > t]
and E[X1|X2 = t] are employed to analyze the intensity of tail dependence as t tends to
infinity. Furthermore, Bernard et al. (2015) [15] utilize conditional quantiles to assess the
strength of tail dependence.

Notations

In this section, we elucidate the notation and symbols employed throughout this paper.
We define distribution functions as FX(x), survival functions as FX(x), and density func-
tions as f (x) = F′

X(x) = ∂FX(x)/∂x, assuming their existence wherever utilized. Further-
more, we introduce the concept of the survival copula, denoted as Λ̂∗, derived from an ordi-
nary copula. To facilitate discussion, we use Λ̂∗ as the copula pre-transformation, following
the non-exchangeable approach proposed by Khoudraji (1996) [9]. Post-transformation,
the survival copula is denoted as Λ̂. As the survival copula itself is a copula function,
our focus in this paper is primarily on discussing the corresponding survival copulas di-
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rectly. To compute the first-order derivative, we introduce Λ̂∗
1|2(x1|x2) := ∂Λ̂∗(x1, x2)/∂x2.

For any given 0 < x2 < 1, Λ̂∗
1|2(x1|x2) serves as a univariate cumulative distribution

function (cdf). When addressing tail behavior and calculating conditional expectations
through Laplace approximation, we require the second-order derivative of our survival
copula. Hence, we define Λ̂∗

1|2,2(x1|x2) := ∂2Λ̂∗(x1, x2)/∂(x2)
2 = ∂Λ̂∗

1|2(x1|x2)/∂x2.

2. Preliminaries
2.1. Basic Concepts and Motivation

In the realm of dependence modeling, copula functions are frequently employed to
capture diverse dependence patterns that manifest in the tail portion of a joint distribution.
This becomes especially crucial when conventional multivariate models like the multi-
variate Normal or Student-t distributions struggle to adequately represent these patterns.
Many commonly used bivariate copulas exhibit exchangeable structures, implying that
Λ(x, y) ≡ Λ(y, x), for all (x, y) ∈ [0, 1]2. Given the pivotal role copula modeling plays in ad-
dressing dependence in the tails, there arises a keen interest in exploring non-exchangeable
structures within the joint tails. Inspired by the work of Hua et al. (2014) [14], which inves-
tigates the tail behavior of E[X1|X2 > t] or E[X1|X2 = t] to quantify the tail dependence
strength in the bivariate random vector V, we introduce the following definition.

Definition 1. Let {X1, X2} be a bivariate random vector with identically distributed marginals,
supported on [0, ∞)2. Then the random vector V is said to be tail exchangeable of Type I if

lim
t→∞

η1(t) := lim
t→∞

E[X1|X2 > t]
E[X2|X1 > t]

= 1, (1)

and tail exchangeable of Type II if

lim
t→∞

η2(t) := lim
t→∞

E[X1|X2 = t]
E[X2|X1 = t]

= 1. (2)

Remark 1. In this context, we establish the concept of tail exchangeability as a limiting property
observed between two random variables when both attain large values. If either of the Condi-
tions (1) or (2) fails to hold, we classify the random vector as tail non-exchangeable. The con-
vergence behavior of functions η1(t) and η2(t) towards 1 as t → ∞ quantifies the extent of tail
non-exchangeability.

Without loss of generality, assume {X1, X2} has a unique copula Λ, with corresponding
survival copula Λ̂. Therefore, the above conditions become

lim
t→∞

η1(t) = lim
t→∞

∫ ∞
0 Λ̂(FX1(x1), FX2(t))dx1∫ ∞
0 Λ̂(FX2(t), FX1(x1))dx1

= 1, (3)

where FXi for all i = 1, 2 is the cdf of the identical univariate marginals. The second
condition is

lim
t→∞

η2(t) = lim
t→∞

∫ ∞
0 Λ̂1|2(FX1(x1)|FX2(t))dx1∫ ∞
0 Λ̂2|1(FX2(t)|FV1(v1))dx1

= 1. (4)

Clearly, the tail behavior of η1(t) and η2(t) rely on both the copula Λ and the marginal
FXi . We will examine how different marginals and copula structures affect the tail non-
exchangeability defined above.

Since closed-form solutions for conditional expectations are not available, Hua et al.
(2014) [14] recommend employing Laplace approximation or Watson’s lemma for asymp-
totic approximation as v approaches infinity. These approximations are traditionally applied



J 2024, 7 130

in the context of exchangeable copulas. In our study, we employ a similar methodology
but adapt it to cope with a copula transformed into a non-exchangeable structure.

2.2. Khoudraji’s Device

Consider X1 and X2 have identical marginal distribution functions, with the cdf FXi ,
for i = 1, 2, being continuous on [0, ∞), and density functions and moments exist whenever
they are used. Following Khoudraji’s device, see [9,16–18], the copula in (3) becomes

Λ̂
(

FX1(x1), FX2(t)
)
= FX1(x1)

1−α1 FX2(t)
1−α2 Λ̂∗(FX1(x1)

α1 , FX2(t)
α2
)
, (α1, α2) ∈ [0, 1]2, (5)

where Λ̂∗ is the survival copula of Λ∗ which is exchangeable.

3. Tail Non-Exchangeability

In this section, our emphasis is on deriving outcomes related to tail non-exchangeability
across various dependence structures and univariate marginals. We consider three primary
univariate marginals: Pareto, exponential, and Weibull. These marginals essentially capture
distinct degrees of tail heaviness.

3.1. Type I

In this subsection, we explore Type I non-exchangeability across three distinct types
of univariate marginals. Laplace’s method proves effective for the Pareto marginal,
whereas the Exponential and Weibull cases necessitate the application of Watson’s lemma
for approximation.

Proposition 1. Let {α1, α2} ∈ [0, 1]2, Λ̂∗ be a bivariate copula, and X1 and X2 be identically
distributed positive random variables with univariate cdf FXi and density function f . Assume

w := limx1→0+ ln
[

f (F−1
X1

(x1))
]
< ∞, and write T := − log(FX2(t)) and

h(s, T ) = α2 − s(2 − α1) +
1
T

{
log[Λ̂∗(exp(−α1sT ), exp(−α2T ))[ f (F−1

X1
(1 − exp(−sT )))]−1] + w

}
. (6)

If T0 < ∞ , and T > T0 implies h(0, T ) = 0, h(∞, T ) = −∞, h′(0, T ) > 0, and
s0(T ) = argmaxs h(s,T ), then,

E[X1|X2 > t] ∼ T exp{T h(s0(T), T)− w}
√

2π

−T h′′(s0(T ), T )
, as t → ∞.

See in the Appendix A.

Remark 2. If α1 = α2 = α we have an exchangeable survival copula. Furthermore, if we consider
α = 1 we get the same result as in [14].

Example 1 (Clayton copula with Pareto marginals). Let Λ̂∗ be the Clayton copula, such that
Λ̂∗(x,y) = (x−δ+y−δ−1)−1/δ. Let X1 and X2 followParetodistributionswithcdf FXi(xi) = 1−(1+xi)

−β,
and 1 < β < (1 − α1)

−1. Based on (6), for any given α1, α2 ∈ [0, 1]2, T := β ln(1 + t),

h(s, T ) = α2 − (2 − α1)s −
ln(eα1δsT + eα2δT − 1)

T δ
+

(
1 +

1
β

)
s. (7)

It is clear that h(0, T ) = 0 for any T ∈ [0, ∞). Moreover, since β > 1, it can be verified that
h(∞, T ) = −∞ for any T ∈ [0, ∞). Also,

h′(s; T ) =
1
β
− α1

1 + eα2δT −α1δsT − e−α1δsT − (1 − α1).
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Hence, for any given α1 ∈ (0, 1) and β > 1, there exists T0 > 0 such that T > T0 yields
h′(0, T ) > 0.

Therefore, for any positive T , the root s0(T ) of h′(s, T ) = 0 becomes

s0(T ) =
1

α1δT ln
(eα2δT − 1)(1 − β + α1β)

β − 1
. (8)

Therefore, we require that 1 < β < (1 − α1)
−1 must have a well defined root. Moreover,

clearly limT →∞ s0(T ) = α2(α1)
−1. Consider

h′′(s; T ) =
α1(−α1δT eα2δT −α1δsT + α1δT e−α1δsT )

(1 + eα2δT −α1δsT − e−α1δsT )2 , (9)

and therefore, for T = β ln(1 + t),

E[X1|X2 > t] ∼ T eT h(s0(T ),T )

√
2π

−T h′′(s0(T ), T )
, t → ∞, (10)

where h(s, T ), s0(T ), and h′′(s, T ) are given in (7), (8), and (9), respectively.

In Figure 1 we present a simulation using the Laplace approximation. In Figure 1a we
take α1 and α2 as 0.97 and 0.85, respectively. In Figure 1b we reduce α1 such that its value
comes closer to α2. We do this because if α1 and α2 are the same, we get exchangeability
as the result of symmetric copulas. In these two panels we assume β = 5 and δ = 10
throughout this simulation. The values of α1 and α2 are very high. The main reason is that,
if we take lower values, the distance between two conditional expectations are so big that
we cannot find any pattern. Apart from that, these Laplace approximation simulations
look similar to the simulations when we use Pareto margins and use the definitions of
conditional expectations.

pareto margin (5) 
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Figure 1. Comparison of E[X1|X2 > t] and E[X2|X1 > t] when α1 and α2 are different, using
Laplace Approximation. (a) α1 = 0.97, α2 = 0.85, δ = 10. (b) α1 = 0.90, α2 = 0.85, δ = 10.
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Proposition 2. Let α1, α2 ∈ [0, 1]2, Λ̂∗ be a bivariate copula and that X1 and X2 are identically
distributed positive random variables with univariate cdf FXi and density function f . Assume∫ ∞

0 eTh(s,T )ds < ∞ and T := − ln(FX2(t)) and

h(s, T ) = α2 − s(2 − α1) +
1
T

{
ln
[
Λ̂∗(e−α1sT , e−α2T)[ f (F−1

X1
(1 − e−sT))]−1

]
+ w

}
.

For all T0 < ∞ ,and T > T0 if h(0, T ) = 0, h(∞, T ) = −∞, h′(0, T ) ≯ 0, then,

E[X1|X2 > t] ∼ 1
[(2 − α1) + D1 + D2]

, as t → ∞,

where D1 =
α1Λ̂∗

2|1(e
−α2T |1)

Λ̂∗(1,e−α2T )
, and D2 =

f ′(F−1
X1

(0))

f 2(F−1
X1

(0))
.

Example 2 (Clayton copula with Weibull marginals). Let Λ̂∗ be the Clayton copula, such as
Λ̂∗(x, y) = (x−δ + y−δ − 1)−1/δ. Let X1 and X2 follow Weibull distributions with cdf FXi (xi)

= 1 − FXi (xi) = e−xγ
i ∀ xi, γ > 0 and i = 1, 2. Then based on (6), for given α1, α2 ∈ [0, 1]2,

T := tγ,

h(s, T ) = 1 − 1
T

[
1
δ

log(eα1δsT + eα2δT − 1) + (1 − α1)sT + (1 − α2)T
]

. (11)

Equation (11) implies h(0,T ) = 0 and h(∞,T ) = −∞ for any T ∈ [0, ∞). Also Equation (11)
yields,

h′(s; T ) = −
[

α1

1 + e(α2−α1s)δT − e−α1δsT + (1 − α1)

]
< 0. (12)

By Proposition 2,

lim
s→0+

h(s, T ) = −a = −
[ α1

eα2δT + (1 − α1)
]
< 0. (13)

Moreover, K(s) = s
1
γ −1, b = 1 and m = γ−1. Finally before using the result of Proposition 2

we have to show
∫ ∞

0 |K(s)|eh(s,T )ds < ∞. Here we have,

∫ ∞

0
|K(s)|eh(s,T ) ds =

∫ ∞

0

∣∣∣s 1
γ −1

∣∣∣e1− 1
T [ 1

δ ln(eα1δsT +eα2δT −1)+(1−α1)sT +(1−α2)T ] ds

≤ eα2

[∫ α2
α1

0
s

1
γ −1 e−α2−(1−α1)sds +

∫ ∞

α2
α1

s
1
γ −1 e−(α1+1−α1)s ds

]
, as T → ∞

= eα2

[
e−α2 e−(1−α1)s

1
γ −1

∑
i=0

(−1)
1
γ −i−1 ( 1

γ − 1)!

i!(α1 − 1)
1
γ −i

si
∣∣∣∣

α2
α1

0

+ e−s

1
γ −1

∑
i=0

(−1)
1
γ −i−1 (

1
γ − 1)!

i!
si
∣∣∣∣∞α2

α1

]
(14)

Both the terms on the right hand side of (14) are always finite. The main reasons are we have
e−s and γ > 0; which leads us to three possibilities, γ ∈ (0, 1), γ = 1 and γ > 1. Let us discuss
each of the cases separately. As we have e−s as the first term, it is always finite as s → ∞. Now,
the only thing that matters is the value of γ. When γ ∈ (0, 1), γ−1 − 1 takes the highest value
when γ → 0. By assumption γ > 0. So γ−1 − 1 < ∞. Under this case we still possibility to have
si → ∞ as s → ∞. Therefore, we need further restrictions on γ. For the bound of (0, 1) si is not
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finite. Furthermore, when γ = 1, si → ∞ as s → ∞. Hence, we need γ > 1 to make si < ∞ for
any large s. Using the above conditions and Proposition 2 we get

E[X1|X2 > t] ∼ γ−1Γ
(

1
γ

)
1

α1
eα2δT + (1 − α1)

as t → ∞ and T = tγ, (15)

where (α1, α2) ∈ [0, 1]2, γ > 0 and t → ∞.
Figure 2a represents a simulation from Watson’s lemma and Figure 2b is the actual integration

result. In Figure 2a the dotted black line represents E[X2|X1 > t] and the purple line represents
E[X1|X2 > t]. The pattern of the movement of the two lines are same but the gap between them is more
than in Figure 2b. Hence, we clearly claim that, Watson’s lemma gives more tail non-exchangeability.
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Figure 2. Comparison of E[X1|X2 > t], E[X2|X1 > t], and η(t) for Weibull margins when α1 and
α2 are different, γ = 2, δ = 10, and t takes values from the 1st percentile to the 99th percentile.
(a) α1 = 0.97, α2 = 0.85. (b) α1 = 0.90, α2 = 0.85.

Example 3 (Clayton copula with Exponential marginals). Like before we have the same Clayton
copula but we have exponential marginals. Let X1 and X2 follow Exponential distributions with
cdf FXi (xi) = 1 − exp(−γxi), for all xi ∈ [0, ∞). For α1, α2 ∈ [0, 1]2, δ > 0, and T := γt
Equation (6) yields

h(s, T ) = 1 − 1
T

[
1
δ

ln(eα1δsT + eα2δT − 1) + (1 − α1)sT + (1 − α2)T
]

. (16)

Again, g(0, T ) = 0 and g(∞, T ) = −∞ for all T ∈ [0, ∞). Moreover,

h′(s; T ) = −
[

α1

1 + e(α2−α1s)δT − e−α1δsT + (1 − α1)

]
< 0. (17)

To satisfy Proposition 2 we need to examine the behavior of h(s, T ) around zero. In other words,

lim
s+→0

h′(s, T ) = −a = −
[
α1e−α2δT + 1 − α1

]
< 0,

for all (α1, α2) ∈ [0, 1]2 and δ > 0. This implies that, the slope of h(s,T ) is negative even in the
neighborhood of zero. In this case b = m = K(s) = 1. Furthermore, similar to Weibull case, we can show
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that,
∫ ∞

0 |K(s)|eh(s,T )ds < ∞. Proposition 2 implies E[X1|X2 > t] ∼ γ−1(α1e−α2δT + 1− α1)
−1 as

t → ∞, γ > 0 and T = γt.
In Figure 3a, we conducted a simulation based on Watson’s lemma. On the right-hand side

in Figure 3b, the plot illustrates the results of numerical integration. Upon comparing these two
images, it is evident that Watson’s lemma yields nearly identical simulation results. Notably, when
employing the KB4 copula with exponential margins, there is a noticeable absence of significant
non-exchangeability in the outcomes [19].
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Figure 3. Comparison of E[X1|X2 > t], E[X2|X1 > t], and η(t) for exponential margins when α1 and α2

are different, γ = 2, δ = 10, and t takes values from the 1st percentile to the 99th percentile. (a) α1 = 0.97,
α2 = 0.85. (b) α1 = 0.90, α2 = 0.85.

3.2. Type II

In this section, our focus is on exploring the non-exchangeability of Type II across
three distinct types of univariate marginals. For the Pareto marginal, we employ Laplace’s
method, whereas for the Exponential and Weibull cases, we rely on Watson’s lemma to
achieve accurate approximations.

Definition 2. If E[X1|X2 = t] is a conditional expectation for any given t, then it can be ex-
pressed in terms of non-exchangeable copula as E[X1|X2 = t] =

∫ ∞
0 Λ̂1|2(FX1(x1)|FX2(t)) dx1,

for all t where

Λ̂1|2(FX1(x1)|FX2(t)) :=
∂

∂FX2(t)

[
FX1(x1)

1−α1 FX2(t)
1−α2 Λ̂∗(FX1(x1)

α1 , FX2(t)
α2)

]
,

with survival functions FX1(x1) and FX2(t), and α1, α2 ∈ [0, 1]2.

Proposition 3 (Laplace Method). For α1, α2 ∈ [0, 1]2, let Λ̂∗ be a bivariate copula, Λ̂∗
1|2 be a

conditional bivariate copula, X1 and X2 be identically distributed positive random variables with
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univariate cdf FXi , and density f . Assume w := limx1→0+ log( f (F−1
X1

(x1)) < ∞, and write
T := − ln(FX2(t)),

h1(s, T ) = −(α2 + sα1) +
1
T

[
ln

Λ̂∗(e−α1sT , e−α2T )

f [F−1
X1

(1 − e−sT )]
+ w

]
,

and

h2(s, T ) = −s(2 − α1) +
1
T

[
ln

Λ̂∗
1|2(e

−α1sT |e−α2T )

f [F−1
X1

(1 − e−sT )]
+ w

]
.

For T0 < ∞, and T > T0 if hj(0, T ) = 0, , hj(∞, T ) = −∞, h′j(0, T ) > 0, and
s0j(T ) = arg maxs hj(s, T ), for all j = 1, 2 then,

E[X1|X2 = t]

∼ − ln FX2(t)(1 − α2)e
− ln FX2 (t)h1(s01(T ),− ln FX2 (t))

√
2π

ln FX2(t)(1 − α2)h
′′
1(s01(T ),− ln FX2(t))

− ln FX2(t)α2e− ln FX2 (t)h2(s02(T ),− ln FX2 (t))

√
2π

ln FX2(t)α2h′′
2(s02(T ), T )

, as t → ∞.

Example 4 (Clayton copula with Pareto marginals). Let Λ̂∗ be the Clayton copula, or,
Λ̂∗(x, y) = (x−δ + y−δ − 1)−1/δ. Let Λ̂1|2 be the conditional non-exchangeable Clayton cop-
ula with the form,

Λ̂1|2(x|y) = (x−α1δ + y−α2δ − 1)−1/δx1−α1 y−α2
[
(1 − α2) + (α2y−α2δ)(x−α1δ + y−α2δ − 1)−1

]
.

Let X1 and X2 follow Pareto distributions with cdf FXi (xi) = 1 − (1 + xi)
−β, and 1 < β <

(1 − α1)
−1. Then, based on the combination of h1(s, T ) and h2(s, T ) in Proposition 3 implies,

h(s, T ) =
s
β
+

1
T

[
α2T − (1 − α1)sT − 1

δ
ln(eα1δsT + eα2δT − 1)

+ ln
[
(1 − α2) +

α2eα2δT

eα1δsT + eα2δT − 1

]]
. (18)

If we carefully look at (18) and combine this result with h1 and h2 in Proposition 3, we observe
that, one of the hj’s vanishes. As a result, we get only one h function. Therefore, h(0, T ) = 0
for any T ∈ [0, ∞). Moreover, since β > 1, it can be verified that g(∞, T ) = −∞ for any
T ∈ [0, ∞). Also,

h′(s, T ) =
1
β
− (1 − α1)−

α1eα1δsT

eα1δsT + eα2δT − 1

− α1α2δeα1δsT +α2δT

(eα1δsT + eα2δT − 1)2
[
1 − α2 +

α2eα2δT

eα1δsT +eα2δT −1

] ,

which implies that for any given 0α1 ∈ [0, 1] and 1 < β, there exists T0 > 0 such that T > T0
implies h′(0, T ) > 0.
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For T > 0, the root s0(T ) of h′(s, T ) = 0 is

s0(T ) =
1

α1δT

[
ln

{
eα2δT (α1α2βδ − 2[1 − β(1 − α1)])

+ 2[1 − β(1 − α1)]
}]

− 1
α1δT

[
ln

{
2[1 − β(1 − α1)]

}]
. (19)

Therefore, we require that 1 < β < (1 − α1)
−1 to have a well defined root. Clearly,

limT →∞ s0(T ) = α2/α1. Consider

−h′′(s, T ) = − ∂

∂s

[
1
β
− (1 − α1) + A + B

]
, (20)

where
A = −(α1eα1δsT )(eα1δsT + eα2δT − 1)−1,

and

B = −(α1α2δeα1δsT +α2δT )((eα1δsT + eα2δT − 1)2[1− α2 +(α2eα2δT )(eα1δsT + eα2δT − 1)−1])−1.

Furthermore,

lim
t→∞

∂A
∂s

= lim
t→∞

−(α2
1δTeα1δsT)(eα1δsT + eα2δT − 1)−1

[
1− (eα1δsT)(eα1δsT + eα2δT − 1)−1

]
= 0.

Again,

∂B
∂s

= −

 α2
1α2δ2e(α1s+α2)δT

(eα1δsT + eα2δT − 1)2
[
1 − α2 +

α2eα2δT

eα1δsT +eα2δT −1

]
− α1α2δT e(α1s+α2)δT

(eα1δsT + eα2δT − 1)4
[
1 − α2 +

α2eα2δT

eα1δsT +eα2δT −1

]2 (21)

−
α1α2δe(α1s+α2)δT

[
2α1δT (eα1δsT + eα2δT − 1)

[
1 − α2 +

α2eα2δT

eα1δsT +eα2δT −1

]]
(eα1δsT + eα2δT − 1)4

[
1 − α2 +

α2eα2δT

eα1δsT +eα2δT −1

]2

.

Moreover, limT →∞ −h′′(s, T ) = (α2α2
1δ2)/2 when α2 > α1 and, with T = β ln(1 + t),

E[X1|X2 > t] ∼ T eT g(s0(T ),T )

√
2π

−T h′′(s0(T ), T )
, as t → ∞,

∼ 1
β
(1 + t)

α2
α1

−(1−α1)
α2β
α1

√
4πβ ln(1 + t)

α2(α1δ)2 , as t → ∞. (22)

where h(s, T ), s0(T ), and h′′(s, T) are given in (18), (19) and (20) respectively.
In Figure 4, we juxtapose the simulations using Laplace approximation against the actual

conditional tail expectations. In Figure 4a, the simulation results obtained in (22) are utilized,
with fixed parameter values of α1 = 0.85, α2 = 0.90, β = 5, and δ = 1. The choice of δ = 1 is
made to mitigate uneven fluctuations observed at higher and lower values. Despite no discernible
pattern in these extreme cases, Figure 4a reveals a lack of significant non-exchangeability around 0,
with an increase as we approach the 90th percentile.

On the contrary, Figure 4b shows a relatively subdued presence of non-exchangeability through-
out the plot. It is noteworthy that Laplace approximation may tend to overestimate small changes
between two tail order conditional expectations at higher quantiles. A closer examination of α1 and
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α2 reveals their marginal difference. Even when these two parameters are closely aligned, we observe
heightened tail non-exchangeability.

Pareto margins with conditional copula (5) 
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Figure 4. Comparison Between Laplace Approximation and the Actual Conditional Tail Expectations
when α1 and α2 are Different. (a) α1 = 0.85, α2 = 0.90, β = 5 and δ = 1. (b) α1 = 0.85, α2 = 0.90,
β = 5 and δ = 1.

Proposition 4. Let Λ̂∗ be a bivariate copula, Λ̂∗
1|2 be a conditional bivariate copula. Assume∫ ∞

0 eT hj(s,T )ds < ∞ for all j = 1, 2, w := limx1→0+ ln( f (F−1
X1

(x1))) < ∞, T := − ln(FX2(t)),

h1(s, T ) = −(α2 + sα1) +
1
T

[
ln

Λ̂∗(e−α1sT , e−α2T )

f [F−1
X1

(1 − e−sT )]
+ w

]
,

and

h2(s, T ) = −s(2 − α1) +
1
T

[
ln

Λ̂∗
1|2(e

−α1sT |e−α2T )

f [F−1
X1

(1 − e−sT)]
+ w

]
.

Moreover,

E[X1|X2 = t] ∼ 1 − α2

Υ1
+

α2

Υ2
, as t → ∞, (23)

where

Υ1 = α1 + {α1e−α1sT Λ̂∗
2|1(e

−α2T |e−α1sT )}[Λ̂∗(e−α1sT , e−α2T )]−1

+ {e−sT f ′[F−1
X1

(1 − e−sT )]} f−2[F−1
X1

(1 − e−sT )],

and

Υ2 = (2 − α1) + {α1e−α1sT Λ̂∗
2|1,1(e

−α2T |e−α1sT )}[Λ̂∗
2|1(e

−α2T |e−α1sT )]−1

+ {e−sT f ′[F−1
X1

(1 − e−sT )]} f−2[F−1
X1

(1 − e−sT )],

for all {Υ1, Υ2} ∈ R \ {0}.
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Example 5 (Clayton copula with Weibull marginals). Let Λ̂∗ be the Clayton copula such that
Λ̂∗(x, y) = (x−δ + y−δ − 1)−1/δ. For a conditional non-exchangeable Clayton copula Λ̂1|2 let X1

and X2 follow Weibull marginals with cdf FXi (xi) = 1 − FXi (xi) = e−xγ
i , i = 1, 2, and, γ > 0.

Then,

h(s, T ) =
1
T

[
α2T − (1 − α1)sT − 1

δ
ln(eα1δsT + eα2δT − 1)

+ ln
[
(1 − α2) +

α2eα2δT

eα1δsT + eα2δT − 1

]]
. (24)

Equation (24) implies h(0,T ) = 0 and h(∞,T ) = −∞ for any T ∈ [0, ∞). Also Equation (24)
yields

h′(s, T ) = −

(1 − α1) +
α1eα1δsT

eα1δsT + eα2δT − 1
+

α1α2δe(α1s+α2)δT

(eα1δsT + eα2δT − 1)2
[
1 − α2 +

α2eα2δT

eα1δsT +eα2δT −1

]
 < 0. (25)

By Proposition 4 ,

lim
s+→0

g(s, T ) = −
[
(1 − α1) +

α1

eα2δT +
α1α2δ

eα2δT

]
< 0. (26)

In this case, K(s) = s
1
γ −1, b = 1 and m = γ−1. A similar argument like in example 2 implies∫ ∞

0 |K(s)| exp(h(s, T ))ds < ∞. Now, Proposition 4 implies

E[X1|X2 > t] ∼ γ−1Γ
(

1
γ

)
1

(1 − α1) +
α1

eα2δT + α1α2δ

eα2δT

as t → ∞, and T = tγ, (27)

where (α1, α2) ∈ [0, 1]2, δ > 0, and γ > 0.

Example 6 (Clayton copula with Exponential marginals). Let Λ̂∗ be the Clayton copula with
conditional non-exchangeable form,

Λ̂1|2(x|y) = (x−α1δ + y−α2δ − 1)−1/δx1−α1y−α2
[
(1− α2) + (α2y−α2δ)(x−α1δ + y−α2δ − 1)−1

]
.

Let X1 and X2 follow Exponential distributions with cdf FXi (xi) = 1 − e−γxi , for all i = 1, 2.
Then,

h(s, T ) =
1
T

[
α2T − (1 − α1)sT − 1

δ
ln(eα1δsT + eα2δT − 1)

+ ln
[
(1 − α2) +

α2eα2δT

eα1δsT + eα2δT − 1

]]
. (28)

By Equation (28), h(0, T ) = 0 and h(∞, T ) = −∞ for any T ∈ [0, ∞). Moreover,

h′(s, T ) = −

(1 − α1) +
α1eα1δsT

eα1δsT + eα2δT − 1
+

α1α2δe(α1s+α2)δT

(eα1δsT + eα2δT − 1)2
[
1 − α2 +

α2eα2δT

eα1δsT +eα2δT −1

]
 < 0. (29)

Proposition 4 yields

lim
s+→0

h(s, T ) = −
[
(1 − α1) +

α1

eα2δT +
α1α2δ

eα2δT

]
< 0. (30)
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In this example, K(s) = b = m = 1 . A similar analogy like in example 3 implies∫ ∞

0
|K(s)| exp(g(s, T ))ds < ∞.

By Proposition 4,

E[X1|X2 > t] ∼
(

1
γ

)
1

(1 − α1) +
α1

eα2δT + α1α2δ

eα2δT

as t → ∞, and T = γt, (31)

where (α1, α2) ∈ [0, 1]2, δ > 0, and γ > 0.

Remark 3. By examining the h functions presented in Examples 4–6 in relation to Propositions 3 and 4,
a notable distinction emerges. In the propositions, the h functions manifest in the combined form
of h1 and h2 simultaneously, whereas in the examples, such a duality is absent. This disparity
is principally attributed to the dominance of one hi function (where i = 1, 2) over the other.
Consequently, the subordinate hi function becomes negligible, effectively vanishing in the context of
the given examples.

4. Test of Tail Non-Exchangeability

In preceding sections, our analytical exploration has delved into the interplay between
univariate marginals and tail non-exchangeability, particularly concerning the Type I and II
expectation ratios. Notably, we discovered the utility of this ratio in instances featuring
Pareto marginal distributions, thus directing our focus in this section. When endeavoring
to construct a statistical test for tail non-exchangeability, the Type I ratio emerges as the
more apt choice. This is attributed to the comparative ease in estimating the conditional
tail expectation of the form E[X1|X2 > t] within the framework of the Type I ratio.

Assuming we have observed pairs {X11, X21}, . . . , {X1n, X2n} drawn from the joint
distribution of X1 and X2, a statistical test for bivariate tail non-exchangeability can be
formulated when the marginal distributions adhere to a Pareto density. This involves
constructing a test based on the estimator for η1(t) = E[X1|X2 > t]/E[X2|X1 > t], wherein
the empirical version of this estimator is

η̂1(t) =
|W1(t)|−1 ∑j∈W1(t) X1j

|W2(t)|−1 ∑j∈W2(t) X2j
,

where W1(t) = {j : X2j > t}, W2(t) = {j : X1j > t}, and |Wi(t)| indicating the cardi-
nality of the set Wi(t) for i = 1, 2. Under the null hypothesis of tail non-exchangeability,
the estimator η̂1(t) is expected to approximate 1 for large values of t. This characteristic
forms the foundation for an approximate statistical test. Given that the numerator and
denominator of η̂1(t) involve essential sample means, establishing asymptotic normality
becomes straightforward.

Proposition 5. Let E[Xi] > 0 and 0 < V(Xi) < ∞ for i = 1, 2 with unbounded support on
[0, ∞) for fixed t > 0. If X1 and X2 are exchangeable then

√
n[η̂1(t)− 1] d→ Z, as n → ∞,

where Z ∼ N[0, θ2
η(t)], and

θ2
η(t) =

Σ11(t)
µ2

2(t)
F2

X1
(t) +

µ2
1(t)

µ4
2(t)

Σ22(t)F2
X2
(t)− 2

µ1(t)
µ3

2(t)
Σ12(t)FX1(t)FX2(t),

such that, Σ11(t) = E(X2
1j|X2j > t)FX2(t)− µ2

1(t)F
2
X1
(t), Σ22(t) = E(X2

2j|X1j > t)FX2(t)−
µ2

2(t)F
2
X2
(t), and Σ12(t) = E(X1j, X2j|X1j > t, X2j > t)P(X1j > t, X2j > t)−µ1(t)µ2(t)FX1(t)FX2(t).
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Proof. See in the Appendix A.

To apply Proposition 5 in constructing a statistical test, one can set a fixed value for
t and compare

√
n[η̂1(t)− 1]/θ̂η(t) with a normal rejection region. Here, θ̂η(t) represents

an estimation of θη(t), derived either from its empirical form or an alternative method,
such as the bootstrap. In the case of a bootstrap-based estimator, both parametric and
nonparametric bootstrap techniques can be readily adjusted [6].

For the parametric bootstrap, resampling from the joint distribution under the assump-
tion of exchangeability can be accomplished by initially simulating (U∗

11, U∗
21), . . . , (U∗

1n, U∗
2n)

using a fitted copula. Subsequently, transformations X∗
1j = F̂−1(U∗

1j) and X∗
2j = F̂−1(U∗

2j)

for j = 1, 2, . . . , n are applied [6]. Here, F̂ :=
{

F̂X1 = F̂X2

}
denotes the estimated common

marginal distribution based on the combined observed data from each margin.
For the nonparametric bootstrap, generating a resample under the assumption of ex-

changeability involves simulating X∗
ij = QX∗

1j + (1 − Q)X∗
2j for i = 1, 2 and j = 1, 2, . . . , n.

In this expression, X∗
1j is a simulated observation from the empirical distribution of

X11, . . . , X1n, X∗
2j is a simulated observation from the empirical distribution of X21, . . . , X2n,

and Q is a Bernoulli random variable with a success probability of 1/2, independent of X∗
1j

and X∗
2j [6]. It is important to note that X∗

1j is also independent of X∗
2j.

Given the emphasis on tail exchangeability, it is reasonable to choose a large value
for t. Nevertheless, the selection of t should be carefully weighed against the availability of
data beyond t, as this factor influences the standard error of η̂1(t). The reliance on a specific
value of t in the methodology is unattractive due to the potential for test results to vary
based on this choice. As an alternative approach, we propose aggregating the test over a
range of t values and using the maximum difference as the test statistic.

In particular, let ψ̂p = F̂−1(p) and ψ̂q = F̂−1(q), where 0 < p < q < 1, represent two
estimated marginal quantiles determined by observed data. Compute η̂(ti) for i = 0, . . . , g,
where ψ̂p = t0 < t1 < . . . < tg = ψ̂q forms a grid of values. The test statistic for assessing
the null hypothesis of exchangeability is then expressed as

ζ = max
i=0,..,g

|η̂(ti)− 1|.

The rejection region for this test statistic can be calculated using the bootstrap method.
The effectiveness of the weak convergence, as outlined in Proposition 5, may necessi-

tate considerably large sample sizes. This stems from the fact that the effective sample size
diminishes, given that only data in the upper tail is utilized in computing η̂1(t). Moreover,
the nature of η̂1(t) being a ratio implies that skewness may persist in the sampling distribu-
tion until sample sizes reach substantial magnitudes. These observations are validated by a
small-scale empirical study conducted on a computer.

In this study, we generated 1000 samples of sizes n = 100, 500, 750, and 1000 from an
exchangeable joint distribution with Pareto marginals (shape parameter = 3, scale parame-
ter = 1), exponential marginals (rate = 2), and Weibull marginals (shape parameter = 2). We
computed η̂1(t) for each simulated sample, where t was chosen to be the 0.75 quantile of
the marginal distribution. The results of this investigation underscore the need for ample
sample sizes to observe the intended convergence.

Figures 5 and 6 present histograms and normal quantile plots corresponding to each
sample size. These visual representations not only illustrate the occurrence of convergence
to a normal distribution but also underscore the relatively gradual pace of this conver-
gence. These findings reinforce the notion of resorting to the bootstrap method in practical
scenarios, emphasizing its utility in situations where convergence is not swiftly achieved.
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Figure 5. Histograms of the 1000 simulated realizations of η̂1(t) from the empirical study where the
marginal distributions are Pareto. (a) n = 100. (b) n = 500. (c) n = 750. (d) n = 1000.
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Figure 6. Normal quantile plots of the 1000 simulated realizations of η̂1(t) from the empirical study
where the marginal distributions are Pareto. (a) n = 100. (b) n = 500. (c) n = 750. (d) n = 1000.
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5. Real Data Analysis

To illustrate the practical application of this test, we leverage the dataset from
Cook et al. (1986) [20], which encompasses the observed log-concentration values of seven
chemical elements in 655 water samples collected near Grand Junction, Colorado. Our
focus centers on exploring the joint distributions of Uranium and Lithium, as well as
Uranium and Titanium. The original data sets are visually depicted in Figures 7 and 8.
Recognizing that the original data likely do not share identical marginal distributions,
and aiming for demonstrative clarity, we undertake three distinct transformations for each
dataset. Initially, we employ a joint rank transformation on the data, scaling the results
to the unit interval. This preprocessing step sets the stage for a nuanced analysis of the
interplay between Uranium and the selected chemical elements. That is, we computed
(S̃1j, S̃1j) for j = 1, . . . , n where

S̃ij =
1
n

[
ri(Xij)−

1
2

]
,

where ri(Xij is the rank of Xij relative to Xi1, . . . , Xin for i = 1, 2 and j = 1, . . . , n. To facili-
tate a meaningful comparison, we proceeded by transforming the previously scaled ranks
to achieve identical marginal distributions through the probability integral transformation.
In this endeavor, we explored three distinct marginal models: a Pareto distribution charac-
terized by a shape parameter of 5, an exponential distribution with a rate set at 2, and a
Weibull distribution featuring a shape parameter of 2. The outcomes of these transforma-
tions are visually depicted in Figures 7 and 8, showcasing the resulting joint distributions
for the transformed data.

The assessment of tail exchangeability was conducted for each case through the
bootstrap methodology detailed earlier. The outcomes of these calculations are visually
presented in Figures 9–14. In the left panel of each figure, the values of η̂1(t) are depicted
for a range of t values corresponding to the interval between the 75th and 95th percentiles
of the observed marginal distribution of the combined data. The grey lines represent the
η̂1(t) values computed across 500 nonparametric bootstrap resamples.
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Figure 7. Cont.
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Figure 7. Scatter plots of the observed joint distribution between Uranium and Lithium for the original
and transformed marginal data. Panel (a) represents the scatterplot from raw data. Panel (b–d) are
the scatterplots after Pareto, exponential and Weibull transformations respectively.
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Figure 8. Scatter plots of the observed joint distribution between Uranium and Titanium for the origi-
nal and transformed marginal data. Panel (a) represents the scatterplot from raw data. Panel (b–d) are
the scatterplots after Pareto, exponential and Weibull transformations respectively.
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Figure 9. Results of the bootstrap test of the null hypothesis of exchangeability for the joint distribution
of Uranium and Lithium with Pareto marginal distributions. The thick line in panel (a) represents the
expectation of the simulation. Panel (b) represents the histogram of the simulation.
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Figure 10. Results of the bootstrap test of the null hypothesis of exchangeability for the joint distribu-
tion of Uranium and Lithium with exponential marginal distributions. The thick line in panel (a) rep-
resents the expectation of the simulation. Panel (b) represents the histogram of the simulation.
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Figure 11. Results of the bootstrap test of the null hypothesis of exchangeability for the joint
distribution of Uranium and Lithium with Weibull marginal distributions. The thick line in panel
(a) represents the expectation of the simulation. Panel (b) represents the histogram of the simulation.
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Figure 12. Results of the bootstrap test of the null hypothesis of exchangeability for the joint
distribution of Uranium and Titanium with Pareto marginal distributions. The thick line in panel
(a) represents the expectation of the simulation. Panel (b) represents the histogram of the simulation.
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Figure 13. Results of the bootstrap test of the null hypothesis of exchangeability for the joint
distribution of Uranium and Titanium with exponential marginal distributions. The thick line
in panel (a) represents the expectation of the simulation. Panel (b) represents the histogram of
the simulation.
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Figure 14. Results of the bootstrap test of the null hypothesis of exchangeability for the joint
distribution of Uranium and Titanium with Weibull marginal distributions. The thick line in panel
(a) represents the expectation of the simulation. Panel (b) represents the histogram of the simulation.
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Moving to the right panel in each figure, a histogram displays the distribution of
test statistic ζ values computed for each of the 500 resamples. If present, a vertical line
indicates the observed value of ζ from the sample. The bootstrap-generated p-values,
signaling the test of the null hypothesis of Type I exchangeability, are detailed in Table 1.
From the estimated p-values, a clear pattern emerges: there is substantial evidence opposing
exchangeability for the joint distributions of Uranium and Titanium, whereas there is
limited evidence against exchangeability for the joint distributions of Uranium and Lithium.

Table 1. Bootstrap estimates of the p-values for testing the null hypothesis of Type I tail exchangeabil-
ity for the chemical concentration data

Chemicals Marginals ζ p-Value

Uranium and Lithium
Pareto 0.1903 0.628

Exponential 0.1201 0.804
Weibull 0.0644 0.854

Uranium and Titanium
Pareto 0.6182 0.006

Exponential 0.6090 0.004
Weibull 0.4180 0.000

Given the results outlined in the sections above, it may seem surprising at first to
observe notable outcomes in the exponential and Weibull scenarios. However, this outcome
appears to be linked to the nature of the test statistic ζ. The emphasis of ζ on the relative
ranks of the two observed marginal distributions, rather than the gaps between the actual
values, explains this unexpected pattern. This inclination is evident in the consistent behav-
ior observed in the curves of η̂1(t) across different marginal distributions. The impact of
relative ranks, rather than absolute values, seems to contribute to the observed significance
in these specific cases.

6. Discussion

Throughout this manuscript, our primary focus is on quantifying the extent of tail non-
exchangeability. We commence by introducing metrics specifically crafted to measure the
strength of tail non-exchangeability, leveraging conditional tail expectations. Subsequent to
this, we present theoretical outcomes for non-exchangeable bivariate copulas generated
using Khoudraji’s device, in conjunction with three distinct types of univariate marginals.
Our findings underscore the heightened significance of tail non-exchangeability when
Pareto marginals are chosen. Consequently, we advocate for the transformation of each
marginal distribution to adhere to a Pareto distribution. In the pursuit of detecting tail
non-exchangeability, we put forward a graphical tool grounded in theoretical insights,
accompanied by a statistical test. We have used the R package CopulaModel to perform the
copula related simulations and boot to do the empirical studies.

The proposed method in this study introduces a test statistic derived from the ratio of
conditional tail expectations to effectively identify instances of tail non-exchangeability. It
acknowledges the challenge of establishing limiting properties empirically, especially when
concentrating on extreme values that involve fewer data points, leading to a potential loss
of information from the entire dataset.

To mitigate this limitation, the study adopts a strategy involving a series of upper sets
of data when testing non-exchangeability. The asymptotic normality of the proposed test
statistic has been rigorously demonstrated under mild conditions as the sample size tends
towards infinity. For practical applications with unknown variability, the paper suggests
the use of bootstrap methods.

Focusing specifically on non-exchangeability in the context of positive dependence,
the methodology can be extended to bivariate copulas exhibiting tail negative dependence.
However, it is worth noting that the approach is tailored for bivariate cases. To apply it to
cases with tail negative dependence, one can easily transform one of the marginals to ensure
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positive dependence, facilitating the direct application of the proposed method. Addressing
tail non-exchangeability in multivariate scenarios requires employing the approach for
all pairwise bivariate marginals. Nevertheless, it is crucial to highlight that pairwise
exchangeability does not necessarily imply mutual exchangeability. As a result, further
research is warranted to explore and understand the implications of mutual exchangeability
in multivariate cases.

This form of tail non-exchangeability holds significance in the realm of time series
analysis, particularly when assessing how two random variables evolve over time. Such
occurrences are evident when examining the exchangeability of market shares between two
distinct companies operating in the same industry. If these shares exhibit exchangeability,
it becomes possible to predict future share prices for one company based on the knowledge
of the other. Looking ahead, we can explore the presence of tail exchangeability among
different soccer positions across various teams [21]. For instance, our method can be
applied to test the exchangeability of goal dynamics between two strikers from different
clubs in the European Football League. If these dynamics prove to be exchangeable, it
implies that a club can seamlessly replace one striker with another once the first striker’s
contract expires. A similar analysis can be conducted for different batting positions in
cricket matches involving various teams.

In the context of infectious disease modeling, the widely used susceptibility-infection-
recovery (SIR) framework comes into play [22,23]. Our method allows for testing exchange-
ability by examining different SIR datasets between two regions. If exchangeability is
established, it suggests that a specific vaccination strategy could lead to recovery from
infectious diseases in those regions. This versatile approach extends its applicability to
diverse fields, showcasing its potential for extracting meaningful insights from various
types of data.

These tests of non-exchangeability serve a crucial role during financial upheavals like
the Great Depression (1930–1937), the Oil crisis (1968–1970 to 1972–1978), Black Monday
(1987), and the series of crises from Asia to the millennium leading up to the Dot-Com crisis
(1995–2003). It is widely acknowledged that during crises, losses tend to escalate dramati-
cally, leading to a heightened correlation among extreme losses and, consequently, an uptick
in the co-movement of extreme gains. This phenomenon serves as a form of compensation
for investors who face substantial downside risks across various sectors [1]. In simpler
terms, when significant losses occur more frequently, one can anticipate a corresponding
increase in significant gains happening simultaneously. However, in contrast, the 2007–2009
financial crisis stands out due to a temporary spike in tail asymmetries, contrasting with
the overall declining trend in tail asymmetries since the mid-1990s. Some may argue that
only losses exhibiting tail dependence were impacted, while the tail dependence between
gains remained unaffected [1]. This highlights the particularly devastating nature of the
subprime crisis, as investors did not encounter as much potential for extreme upside gains.
In the literature of econometrics and time series, the main focus of risk management is on
Value-at-Risk (VaR), and other measures designed to estimate the probability of large losses,
leading to a demand for flexible models of the dependence between sources of risk [24].
Therefore, the non-exchangeable structures might exist.

In clinical research, when censoring occurs due to competing risks or patient with-
drawal, there’s always a concern regarding the accuracy of treatment effect estimates
derived under the assumption of independent censoring [25]. Since identifying dependent
censoring requires additional information, the most we can do is conduct a sensitivity
analysis to evaluate how parameter estimates change under varying assumptions regard-
ing the relationship between failure and censoring. Such an analysis proves particularly
valuable when insights into this relationship are available through literature reviews or
expert opinions [25]. In regression analysis, the repercussions of mistakenly assuming inde-
pendent censoring on parameter estimates are unclear. Neither the direction nor the extent
of potential bias can be easily anticipated. It is assumed that the joint distribution of failure
and censoring times is a function of their distributions, with this function represented as
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a copula function. Under this assumption, one can examine dependencies at the tails to
assess the non-exchangeability.
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Appendix A

Proof of Proposition 1. By Hua et al. (2014) [14], together with (5),

E[X1|X2 > t] =
∫ ∞

0

Λ̂(FX1(x1), FX2(t))
FX2(t)

dx1,

=
∫ ∞

0

FX1(x1)
1−α1 FX2(t)

1−α2 Λ̂∗(FX1(x1)
α1 , FX2(t)

α2)

FX2(t)
dx1. (A1)

Since y = − ln FX1(x1) =⇒ dy = −∂FX1(x1)/∂x1

FX1(x1)
dx1 =⇒ FX1(x1)dy = −∂FX1(x1)

∂x1
dx1 =⇒

FX1(x1)dy = f(F−1
X1

(1−FX1(x1)))dx1, changing of variables yields, e−ydy = f(F−1
Y (1−e−y))dx1 =⇒

e−y[ f(F−1
Y (1− e−y))]−1dy = dx1. For T = − ln(FX2(t)), the above condition in (A1) yields,

E[X1|X2 > t] =
∫ ∞

0
eT α2−y(2−α1)Λ̂∗(e−α1y, e−α2T )[ f (F−1

Y (1 − e−y))]−1dy. (A2)

Let y = sT . Therefore, dy = T ds. Substituting this condition in (A2) yields,

E[X1|X2 > t] = T e−w
∫ ∞

0
eT h(s,T )ds, ∀ s ∈ [0, ∞). (A3)

By Laplace’s method,

E[X1|X2 > t] ∼ T e−w
∫ ∞

0
exp{T h(s0(T ), T ) +

1
2
(s − s0(T ))2h′′(s0(T ), T )}ds

∼ T eT h(s0(T ),T )−w

√
2π

−T h′′(s0(T ), T )
,

which completes the proof.

Proof of Proposition 2. To prove this proposition we are using Theorem 36 of Breitung
(2006) [26] (p. 48). Since h(s, T ) is a real valued function on the semi-infinite interval [0, ∞)
and in an interval (0, 0 + ϵ] with ϵ > 0, this function is continuously differentiable and
sup0+ϵ≤s≤∞ h(s, T ) ≤ h(0, T )− ψ, with ψ > 0.

If h′(s, T ) ≯ 0 and s → 0, following Theorem 36 of Breitung (2006) [26] implies
h′(s, T ) = −asr−1 + o(sr−1) ∀r > 0. Now, if we assume r = 1, then

h′(s, T ) = −a = −
[
(2 − α1) +

α1e−α1sT Λ̂∗
2|1(e

−α2T |e−α1sT )

Λ̂∗(e−α1sT , e−α2T )
+

e−sT f ′(F−1
X1

(1 − e−sT ))

f 2(F−1
X1

(1 − e−sT ))

]
.

This version of Watson’s lemma requires −a to be constant, which is possible only if

lim
s+→0

h′(s, T ) = −
[
(2 − α1) +

α1e−α1sT Λ̂∗
2|1(e

−α2T |e−α1sT )

Λ̂∗(e−α1sT , e−α2T )
+

e−sT f ′(F−1
X1

(1 − e−sT ))

f 2(F−1
X1

(1 − e−sT ))

]
,
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is a constant. In other words, if lims+→0
e−sT f ′(F−1

X1
(1−e−sT ))

f 2(F−1
X1

(1−e−sT ))
is a constant . Thus,

−a = −
[
(2 − α1) +

α1Λ̂∗
2|1(e

−α2T |1)
Λ̂∗(1, e−α2T )

+
f ′(F−1

X1
(0))

f 2(F−1
X1

(0))

]

or, a = (2 − α1) +
α1Λ̂∗

2|1(e
−α2T |1)

Λ̂∗(1,e−α2T )
+

f ′(F−1
X1

(0))

f 2(F−1
X1

(0))
= 2 +

f ′(F−1
X1

(0))

f 2(F−1
X1

(0))
> 0.

Let there be a real and continuous function K(s) ∈ [0, ∞) such that K(s) = bsm−1 +
o(sm−1) with m > 0. More specifically in our case we have, K(s) = 1 . Thus, bsm−1 +
o(sm−1) = 1 =⇒ b = 1 when m = 1. As we assume

∫ ∞
0 eh(s,T )ds < ∞ then

E[X1|X2 > t] ∼ 1
[(2 − α1) + D1 + D2]

, t → ∞ , (A4)

for all (α1, α2) ∈ [0, 1]2, where D1 =
α1Λ̂∗

2|1(e
−α2T |1)

Λ̂∗(1,e−α2T )
= α1 and D2 =

f ′(F−1
X1

(0))

f 2(F−1
X1

(0))
. This com-

pletes the proof.

Proof of Proposition 3. Following [14], together with (5),

E[X1|X2 = t] =
∫ ∞

0
Λ̂1|2(FX1(x1)|FX2(t)) dx1,

=
∫ ∞

0

[
(1 − α2)FX1(x1)

1−α1 FX2(t)
−α2 Λ̂∗(FX1(x1)

α1 , FX2(t)
α2
)

+ α2FX1(x1)
1−α1 Λ̂∗

1|2(FX1(x1)
α1 |FX2(t)

α2)

]
dx1. (A5)

Since y = − ln FX1(x1) =⇒ dy = −∂FX1(x1)/∂x1

FX1(x1)
dx1 =⇒ FX1(x1)dy = −∂FX1(x1)

∂x1
dx1 =⇒

FX1(x1)dy = f(F−1
X1

(1−FX1(x1)))dx1, changing of variables yields, e−ydy = f(F−1
Y (1−e−y))dx1 =⇒

e−y[ f(F−1
Y (1− e−y))]−1dy = dx1. Above condition with (A5) implies,

E[X1|X2 = t] =
∫ ∞

0
[(1 − α2)e−(1−α1)yeα2T Λ̂∗(e−α1y, e−α2T )

+ α2e−(1−α1)yΛ̂∗
1|2(e

−α1y|e−α2T )]e−y[ f [F−1
Y (1 − e−y)]]−1dy. (A6)

Let y = sT , and thus dy = T ds. This condition with (A6) yields,

E[X1|X2 = t]

= T (1 − α2)e−w
∫ ∞

0
e
T
[
−(α2+sα1)+

1
T

[
ln Λ̂∗(e−α1sT ,e−α2T )

[ f [F−1
X1

(1−e−sT )]]
+w

]]
ds

+ T α2e−w
∫ ∞

0
e
T
[
−s(2−α1)+

1
T

[
log

Λ̂∗
1|2(e

−α1sT |e−α2T )

f [F−1
X1

(1−e−sT )]
+w

]]
ds

= T (1 − α2)e−w
∫ ∞

0
eT h1(s,T )K(s) ds + T α2e−w

∫ ∞

0
eT h2(s,T )K(s) ds (A7)

= T e−w[(1 − α2)Γ1 + α2Γ2],

where Γ1 =
∫ ∞

0 eT h1(s,T )K(s) ds and Γ2 =
∫ ∞

0 eT h2(s,T )K(s)ds. Now we have two separate
integrations consist of hj(s, T ) (with j = 1, 2) functions each of which behaves similarly like
in Proposition 1. Here K(s) = 1. Thus, Laplace Method implies,
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Γj =
∫ ∞

0 exp{T hj(s0j(T ), T ) + 1
2 (s − s0j(T ))2h′′j (s0j(T ), T )}ds for all j = 1, 2. Finally,

the conditional expectation becomes,

E[X1|X2 = t] ∼ − ln FX2(t)(1 − α2)e
− ln FX2 (t)h1(s01(T ),− ln FX2 (t))

√
2π

ln F(t)(1 − α2)h
′′
1(s01(T ),− ln FX2(t))

− ln FX2(t)α2e− ln FX2 (t)h2(s02(T ),− ln FX2 (t))

√
2π

ln F(t)α2h′′
2(s02(T ), T )

, t → ∞

Proof of Proposition 4. We are using Theorem 36 of [26] (p. 48). Since h1(s, T ) and h2(s, T )
are real valued functions on [0, ∞)2, and (0, 0 + ϵi]

2, for all i = 1, 2, with ϵ1, ϵ2 > 0 with

sup
0+ϵ1≤s≤∞

h1(s, T ) ≤ h1(0, T )− ψ1, and

sup
0+ϵ2≤s≤∞

h2(s, T ) ≤ h2(0, T )− ψ2, (A8)

where ψ1, ψ2 > 0.
For h′1(s, T ) and h′2(s, T ) we have h′1(s, T ) < 0 and h′2(s, T ) < 0 for all s ∈ (0, 0 +

max{ϵ1, ϵ2}]. Moreover, h′1(s, T ) = −asr1−1 + o(sr−1) ∀r1 > 0, and h′2(s, T ) = −asr2−1 +
o(sr−1) ∀r2 > 0. Assume r = 1. Then r1 = r2 = 1 and, h′1(s, T ) = −a1 and h′2(s, T ) = −a2.
Furthermore,

h′1(s, T ) = −α1 −
α1e−α1sT Λ̂∗

2|1(e
−α2T |e−α1sT )

Λ̂∗(e−α1sT , e−α2T )
−

e−sT f ′[F−1
X1

(1 − e−sT)]

f 2[F−1
X1

(1 − e−sT)]
= −Υ1,

such that lims+→0 h′1(s, T ) = −2α1 − f ′[F−1
X1

(0)] f−2[F−1
X1

(0)], and

h′2(s, T ) = −(2 − α1)−
α1e−α1sT Λ̂∗

2|1,1(e
−α2T |e−α1sT )

Λ̂∗
2|1(e

−α2T |e−α1sT )
−

e−sT f ′[F−1
X1

(1 − e−sT )]

f 2[F−1
X1

(1 − e−sT )]
= −Υ2,

such that lims+→0 h′2(s, T ) = −2 − f ′[F−1
X1

(0)] f−2[F−1
X1

(0)] which are constants at s+ → 0
and t → ∞. Therefore, −a1 = −Υ1 or, a1 = Υ1 > 0. Similarly, a2 = Υ2.

Let there be another real and continuous function K(s, T ) ∈ [0, ∞) such that, Kj(s, T ) =

bsmj−1 + o(smj−1) with mj > 0 and j = 1, 2. Moreover, Kj(s, T ) = 1, j = 1, 2. Hence,
bjs

mj−1 + o(smj−1) = 1 implies bj = 1, where mj = 1.
Now,

E[X1|X2 = t] ∼ 1 − α2

Υ1
+

α2

Υ2
, as t → ∞, with s+ → 0, (A9)

where T = − ln FX2(t), (α1, α2) ∈ [0, 1]2,

Υ1 = α1 +
{

α1e−α1sT Λ̂∗
2|1(e

−α2T |e−α1sT )
}[

Λ̂∗(e−α1sT , e−α2T )
]−1

+
{

e−sT f ′[F−1
X1

(1 − e−sT )]
}

f−2
[

F−1
X1

(1 − e−sT )
]
,

and

Υ2 = (2 − α1) +
{

α1e−α1sT Λ̂∗
2|1,1(e

−α2T |e−α1sT )
}[

Λ̂∗
2|1(e

−α2T |e−α1sT )
]−1

+
{

e−sT f ′
[

F−1
X1

(
1 − e−sT

)]}
f−2

[
F−1

X1

(
1 − e−sT

)]
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for all {Υ1, Υ2} ∈ R \ {0}.

Proof of Proposition 5. Consider a set of bivariate random vectors Zi = (Q2jX1j, Q1jX2j)
T

for j = 1, . . . , n, where Qij = I(Xij > t) for i = 1, 2 and j = 1, . . . , n. This corresponds to a
sequence of independent and identically distributed random vectors such that

µ(t) = E(Zi) =

[
µ1(t)FX1(t)
µ1(t)FX2(t)

]
,

where µ1(t) = E(X1j|X2j > t) and µ2(t) = E(X2j|X1j > t). The covariance matrix of Zi is

Σ(t) =
[

Σ11(t) Σ12(t)
Σ12(t) Σ22(t)

]
,

where Σ11(t) = E(X2
1j|X2j > t)FX2(t)−µ2

1(t)F
2
X1
(t), Σ22(t) = E(X2

2j|X1j > t)FX2(t)−µ2
2(t)F

2
X2
(t)

and Σ12(t) = E(X1j, X2j|X1j > t, X2j > t)P(X1j > t, X2j > t)− µ1(t)µ2(t)FX1(t)FX2(t). Under
the null hypothesis of exchangeability, the multivariate central limit theorem implies that
√

n(Z̄n − µ(t)) d→ N
¯
(0, Σ(t)) as n → ∞. To obtain the weak convergence described in

Proposition 5 we firstly apply the delta method (Theorem 3.1 of van der Vaat (2000) [27])
to obtain

√
n
(

∑n
i=1 Q2jX1j

∑n
i=1 Q1jX2j

− 1
)

d→ N
(

0, θ2
η(t)

)
,

where θ2
η(t) = Σ11(t)/µ2

2(t)F
2
X1
(t) +Σ22(t)µ2

1(t)/µ4
2(t)F

2
X2
(t)− 2Σ12(t)µ1(t)/µ3

2(t)FX1(t)FX2(t).
The asymptotic normality of η̂1(t) then follows from Slutsky’s theorem and the fact that

|W1(t)|/|W2(t)|
p→ 1 as n → ∞.
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