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Sendai 984-8588, Japan; kotak@nzm.jrnet.ne.jp

Abstract: This paper is aimed at eliciting consistency conditions for the existence of unsteady
incompressible axisymmetric swirling viscous Beltrami vortices and explicitly constructing solutions
that obey the conditions as well as the Navier–Stokes equations. By Beltrami flow, it is meant that
vorticity, i.e., the curl of velocity, is proportional to velocity at any local point in space and time.
The consistency conditions are derived for the proportionality coefficient, the velocity field and
external force. The coefficient, whose dimension is of [length−1], is either constant or nonconstant. In
the former case, the well-known exact nondivergent three-dimensional unsteady vortex solutions
are obtained by solving the evolution equations for the stream function directly. In the latter case,
the consistency conditions are given by nonlinear equations of the stream function, one of which
corresponds to the Bragg–Hawthorne equation for steady inviscid flow. Solutions of a novel type are
found by numerically solving the nonlinear constraint equation at a fixed time. Time dependence
is recovered by taking advantage of the linearity of the evolution equation of the stream function.
The proportionality coefficient is found to depend on space and time. A phenomenon of partial
restoration of the broken scaling invariance is observed at short distances.

Keywords: hydrodynamics; incompressible fluid; vortex solution; Beltrami flow; stream function;
scaling invariance; Bragg–Hawthorne equation

1. Introduction

Three-dimensional swirling vortex solutions to the Navier–Stokes equations have been
of researchers’ particular interest because of their immediate relevance to phenomena in
nature, laboratory and practical engineering. Besides numerical solutions, exact analytical
solutions should make it possible to deepen the understanding of the details of the structure
of vortices characterized by speed, vorticity, pressure, shearing, stretching, stagnation, etc.

In solving the non-linear Navier–Stokes equations, it is a common practice to assume
the functional form of a solution that reduces the original partial differential equations to a
more tractable system of ordinary differential equations. The well-known vortex solutions
found in this way involve the steady axisymmetric one-cell solution by Burgers [1] and
Rott [2], the two-cell solution by Sullivan [3], and the unsteady multi-cell solutions by
Bellamy-Knights [4,5]. Solutions with a line singularity were presented in [6,7]. Solutions
which temporally approach the Burgers’ solution were studied in [8].

It was not clear if the unsteady solutions in [4,5] were linked to the steady solutions
in [1–3]. Recently, these steady and unsteady solutions were treated in a unified way
in [9], wherein the “instability” of these solutions were shown to be attributed to their
extreme sensitivity to boundary conditions. For other vortex solutions and a review, see
Drazin and Riley [10].

All the solutions given above are similarity solutions that have been obtained by taking
advantage of the invariance of the Navier–Stokes equations under the scaling transformation.
As a consequence, some components of their velocity fields linearly diverge at spatial infinity.
Hence, the solutions are regarded as modeling flow patterns near the symmetry axis or plane.
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Observable physical excitations on a uniform background flow must have a finite
energy density, except for logarithmic singularity [9]. In particular, the divergence at spatial
infinity will be problematic when we are interested in investigating the global nature of a
vortex. The primary interest in this paper is to find three-dimensional unsteady viscous
swirling vortex solutions whose energy density is globally not divergent. (In this paper, by
“three-dimensional”, we mean that there is no Cartesian coordinate system in which one of
the velocity components identically vanishes).

Beltrami flow, whose vorticity is parallel to velocity in the whole space under con-
sideration, is expected to be a promising candidate for the above purpose because of
the existence of the proportionality coefficient, a scalar quantity of dimension [length−1],
thereby raising the possibility of generating vortices of finite extension in space and/or
time. Incidentally, we recall that tilting the vorticity is also accompanied by the breaking of
the scaling invariance [8].

The marked characteristics of the Beltrami flow, the study of which was originated by
Trkal [11] and Gromeka [12], is that the vorticity equations are apparently linear by virtue
of the vanishing vector product of vorticity and velocity. In particular, inviscid Beltrami
flows obeying the Euler equations have been of researchers’ intense concern because of
their close relevance to the flows with large Reynolds numbers that are expected to model
the flows in meteorology [13,14] or engineering [15–17]. The so-called ABC flow that shows
rich physical content in the Lagrangian dynamics provides a key to understanding chaotic
or dynamo phenomena in fluids [18–21].

Steady axisymmetric inviscid Beltramian solutions in bounded or unbounded space
have been found by focusing on the so-called Bragg–Hawthorne equation [17,22,23]. How
the structure of the fundamental modes admitted by the linear equation varies by depend-
ing on the coordinate system chosen for solving the equation has been revealed in [22,24].
Non-axisymmetric solutions with vanishing helicity, i.e., inner products of velocity and
vorticity, as well as the vortices with a constant proportionality coefficient, c hereafter, are
presented in [24]. A Beltrami flow whose c is constant is called a Trkalian flow.

Despite the seemingly quite artificial setting for the Beltrami flows, the physical
mechanism of generating a Beltramian (i.e., force free magnetic) field was considered as
early as about 70 years ago by Chandrasekhar [25] and Chandrasekhar and Woltjer [26]
in an astrophysical context with a suggestion of a principle of minimum dissipation and
maximum energy. Let us recall that, with the correspondence of magnetic field to vorticity,
the force-free motion of charged particles in magnetic field has mathematical similarity to
Beltrami flow. The idea in [25,26] parallels the expectation in the Newtonian fluid dynamics
that an increase in the Reynolds number tends to align velocity and vorticity [27,28]. Later,
the importance of the maximization of helicity [21] and the minimization of magnetic energy
due to dissipation in the evolution of magnetic field of nontrivial topology has been pointed
out in [29,30]. It is convincing to explore the role of Beltrami flows in meteorology [31]
and plasma physics [32,33] where strong flows participate. There exist profound physical
meanings in studying Beltrami flows.

It is known that a steady incompressible viscous Beltrami flow is possible when
external force is nonconservative. Steady compressible solutions were presented in [34].
Examples of unsteady Beltrami flow with a constant c were given by [11,35]. That three-
dimensional unsteady incompressible viscous Beltrami flows with a constant c decay
exponentially in time is also argued by [36,37]. These solutions are specified by, in addition
to c, a wavevector that describes spatial oscillations of the flow. In this paper, we shall call
such a flow (solution) a single mode flow (solution).

The works by [11,35–37] assert that the viscous Trkalian velocity field of a single
mode in an unbounded space exponentially decays in time with the characteristic time
proportional to 1/νc with ν being the kinematic viscosity. The appearance of this time
scale is due to the parameter c of the dimension [length−1], thereby violating the scaling
invariance of the original Navier–Stokes equations. With a characteristic length scale
being defined, it is thus expected that the spatial extension of vortex solution may also



J 2023, 6 462

be rendered finite. The generalized Beltrami flows [10,38,39] and the extended Beltrami
flows [40,41] will share the same features in common.

An axisymmetric genuine meridional Beltrami vortex does not exist (see the next
section). Local alignments of velocity and vorticity, meanwhile, are observed in numerical
simulations of turbulence [27,42–44]. A constraint on the time evolution of a spatially
periodic flow from an arbitrary initial condition was given in [45]. That the incompressible
Beltrami flow decays timewise exponentially if c does not depend on time was shown
in [46]. These works naturally let us nourish an expectation that the Beltrami flows with
the spatially variable proportionality coefficient exist. If that is the case, recalling that the
decay time is 1/νc, we may address a question: how is the anticipated “rapid” decay of
the flow avoided especially for small Reynolds numbers? To the author’s knowledge, any
works on this problem have not been reported thus far.

Our plan in this paper is as follows. We derive and solve the evolution equation and the
constraint equation for the stream function and the coefficient c on the projected meridional
motion, i.e., a projection of the three-dimensional flow onto the local meridian plane in the
cylindrical coordinates. The derived constraint equation corresponds to the Bragg–Hawthorne
equation that has been frequently used for studying steady inviscid flows. However, our
constraint does not depend on viscosity. An obstacle is that the constraint equation, although
it reduces to the Bragg–Hawthorne equation in a special case, is generally nonlinear and
is difficult to be solved analytically in the whole space and time. However, since the evo-
lution equation is linear and the temporal behaviors of single mode solutions are uniquely
determined, we can construct the entire time-dependence by superposing the single mode
solutions obtained by mode-decomposition of a numerical solution of the constraint equation.
Of course, it must be assured that the superposed flow is Beltramian.

The outline of the paper is as follows. After the implication of the axisymmetric
viscous Beltrami vortex is reviewed and summarized, we derive the constraint equation
for unsteady three-dimensional axisymmetric viscous swirling Beltrami vortices. It is
proved that, if the velocity field is time-dependent and c is variable, c is time-dependent,
too. Finally, the well-known exact vortex solution for constant c and a new solution with
nonconstant c are constructed.

2. Dynamical and Constraint Equations for the Axisymmetric Beltrami Vortex

The Navier–Stokes equations for the respective components of the velocity field in
cylindrical coordinate (r, θ, z) are expressed as

∂vr
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where v = (vr, vθ , vz)
T is the velocity, ν the kinematic viscosity, p the pressure, ρ the

density, and F = (Fr, Fθ , Fz)
T the external force. In this paper, we restrict ourselves to

axisymmetric flows so that all the θ-derivative terms in (1)~(3) are ignored.
A Beltrami flow is one whose velocity and vorticity are parallel:

ω =

ωr
ωθ

ωz

 =

 −∂zvθ

∂zvr − ∂rvz
r−1∂r(rvθ)

 = c

vr
vθ

vz

 = cv, (4)
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where c may generally be a function of time and spatial coordinates. Hereafter, we use a
symbol ∂α for partial derivative with respect to the variables α = r, z. Note that, if vθ ≡ 0,
then v ≡ 0; that is, a genuinely meridional Beltrami flow does not exist. Note that rvθ plays
the role of the stream function for the meridional components vr and vz. Employing the
parallelism of velocity and vorticity, the variables vr and vz in the second row of (4) can be
eliminated to give a kinematic relation between vθ and c:

∂r

(
1
r

∂r(rvθ)

)
− ∂rc

c
1
r

∂r(rvθ) + ∂2
zvθ −

∂zc
c

∂zvθ + c2vθ = 0. (5)

Furthermore, the incompressible flow must fulfill the continuity condition

∇ · v =
1
r

∂r(rvr) + ∂zvz = 0 (6)

Since ω given by (4) is divergence-free, too, these conditions lead to another one on c:

v · ∇c = 0 = ω · ∇c (7)

∂rc and ∂zc are determined by (5) and (7), respectively, as

∂rc = (∇2−r−2+c2)vθ

v2
r+v2

z
vz ≡ cΛωz,

∂zc = − (∇2−r−2+c2)vθ
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z
vr ≡ −cΛωr,

(8)

where
Λ =

(∇2 − r−2 + c2)vθ

ω2
r + ω2

z
. (9)

Equation (8) implies that, if c is nonzero and constant, then Λ = 0, provided that ωr 6= 0 6= ωz.
If c depends on either r or z only, either ωr or ωz may vanish.

3. Consistency of Dynamical and Constraint Equations

The two constraints (8) for the partial derivatives of the (pseudo) scalar c are generally
incompatible with each other. Consistency of (8) for arbitrary regular solution requires the
partial derivatives ∂r and ∂z to commute. From (8), a straightforward calculation yields

0 = [∂r, ∂z] ln c = −rω · ∇(Λ/r) (10)

Let φ′ denote any function that satisfies ω · ∇φ′ = 0. Then, the function Λ given by

Λ = rφ′, (11)

is a solution to (10). In terms of such a function φ′, Equation (9) is expressed as

(∇2 − r−2 + c2)vθ = r(ω2
r + ω2

z)φ
′. (12)

On the other hand, employing (11) and referring to (4), the conditions (8) read

∂r ln
∣∣c∣∣ = φ′∂r(rvθ), (13)

and
∂z ln

∣∣c∣∣ = φ′∂z(rvθ). (14)

Equations (13) and (14) imply that c will depend on the spatial coordinates via the
stream function ψ ≡ rvθ only. Notice that ∂(φ′, ψ)/∂(r, z) = 0 for regular c so that φ′ and
ψ are mutually dependent when the spatial variations are concerned. We thus may write

ln|c| = φ(ψ, t) or c = c(ψ, t) (15)
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with a relation φ′ = ∂φ(ψ, t)/∂ψ. Namely, the conditions (12) with (15) are equivalent
to (8). Note that ψ can be time-dependent, too. Recalling the definition (4) of ω, (12) is
written as

r∂r

(
1
r

∂rψ

)
+ ∂2

zψ + c2ψ = φ′(ψ, t)
(
(∂rψ)2 + (∂zψ)2

)
(16)

This equation elicits the hidden nonlinearity of the dynamics of the axisymmetric Beltrami
vortex when φ′ 6= 0 and will henceforth play the central role in our arguments.

Equation (16) governs the spatial variation of the stream function ψ and in this sense
corresponds to the Bragg–Hawthorne equation for inviscid flow [47,48]:

r∂r

(
1
r

∂rψ

)
+ ∂2

zψ = r2 dH
dψ
− C

dC
dψ

,

where ψ is the stream function (not necessarily equal to rvθ), H ≡ p/ρ + v2/2 is called the
(pressure or energy) head, and C ≡ rvθ (= ψ) is supposed to be a function of the stream
function ψ for the axisymmetric inviscid flow. Note that ψ and C are not related a priori.
For recent applications of the Bragg–Hawthorne equation, see, e.g., [17,22,23].

The Bragg–Hawthorne equation is an expression of the equation of motion for inviscid
flow under steadiness assumption. Therefore, the solution of this equation is a solution of
equation of motion. On the other hand, our Equation (16) has been derived not from the
dynamical equations but from the constraints on the unsteady incompressible axisymmetric
Beltrami flow. There is no immediate reason that these two equations should coincide
with each other except the same derivative terms that result from taking the velocity
multiplied by the coordinate as the dependent field. Nevertheless, two equations become
essentially identical when they are linear. In fact, assuming that dH/dψ = 0 and C ∝ ψ,
the Bragg–Hawthorne equation writing dC/dψ as c (being constant) reduces to (16) with
φ′ = 0.

Because the advection term is the vector product of vorticity and velocity added by
the gradient of the specific kinetic energy, the Navier–Stokes Equation (2) for axisymmetric
(i.e., ∂θ = 0) Beltrami flow is linearized as

∂tψ = ν

(
r∂r

(
1
r

∂rψ

)
+ ∂2

zψ

)
+ rFθ . (17)

Equivalently, from (16) and (17), we have

∂tψ = ν
{
−c2ψ + φ′

(
(∂rψ)2 + (∂zψ)2

)}
+ rFθ , (18)

with lnc = φ. This is the dynamical equation for ψ that expresses the effect of the dissipation
as well as the torque rFθ on the rate of temporal change of ψ. Noting that ψ is the angular
momentum component per unit mass about the symmetry axis, the first term with a
negative sign in the large braces of (18) represents the direct resistance on the fluid element.
This resistance term, being proportional to c2 and an invariable concomitant of alignment of
velocity and vorticity, reveals the hallmark of the Beltrami flow. When ψ is steady and has
negligible spatial variations, the direct resistance is balanced with the torque. The second
term involves the mixed effects of the rate of strain and vorticity.

The constraint (16) Is written in terms of the velocity component as

∇2vθ −
vθ

r2 + c2vθ = rφ′
{(

1
r

∂r(rvθ)

)2
+ (∂zvθ)

2

}
. (19)

When c is constant and φ′ = 0, it is obvious that the fundamental spatial length scale of
the velocity field is given by c−1. Many analytic Beltrami flow solutions are known for
constant c.

It remains to examine in what way the conditions found so far for unsteady axisym-
metric Beltrami flows are consistent with the rest of the Navier–Stokes equations, i.e.,
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(1) and (3). The details are relegated to Appendix A. One condition is that 1/c(ψ, t) is
integrable over ψ. The components Fr and Fz are related to c through (A2) and (A3) in
Appendix A. Then, we have the second condition

∇2H = ∇ · F. (20)

When c is constant, (20) can be decomposed to

1
c

∂zFθ = ∂r H − Fr, (21)

1
cr

∂r(rFθ) = −∂zH + Fz. (22)

H must be spatially constant if external force is absent. Suppose that c is constant. If ei-
ther the external force is derived from an axially symmetric potential V or Fθ = Fθ(r) ∝ 1/r,
then (21) and (22) immediately lead to Bernoulli’s law H + V = constant.

Suppose that vθ of a Beltrami flow that obeys the Navier–Stokes Equation (2) is
known. Notice that, in solving (2), information of the pressure is not needed because
of the system’s axisymmetry. It has been shown in Appendix A that the Navier–Stokes
Equations (1) and (3) are transformed to (A2) and (A3), and the equations of χ ≡

∫ ψ c−1dψ.
vr and vz derived from χ as described in Appendix A are automatically guaranteed to
fulfill the continuity condition as well as the Beltrami relation (4). Equations (A2) and (A3)
implicitly involve p/ρ through the head H. Therefore, what we need to obtain vr and vz
from χ, besides the boundary conditions which are compatible with the Beltrami relation
(4), are H and the external force F related by (20) or (21) and (22). Once each component of
v is determined as a function of r, z, and t, c is obtained from the Beltrami relation. That this
procedure is possible is a peculiarity of the axisymmetric Beltrami flow. F will be present
when c is not constant. The details on the relation of nonconstant c and F are elaborated in
Appendix B.

4. Vortex Solutions

In this section, we consider viscous Beltrami vortices with constant c (Trkalian flow)
and nonconstant c separately. The Beltrami flows, inviscid or viscous, with constant c were
studied in many works, as was cited in Introduction. The case in which c is variable is
studied formally in [46] for axially asymmetric flows in a Cartesian coordinate system. In
particular, if c has no explicit time dependence and the external force is conservative and
the Bernoulli function is constant, then v2 decays timewise exponentially. The generalized
ABC flow solution for compressible flow was also found for c that is dependent on a single
spatial variable in [34].

4.1. Constant c

We first solve the dynamical equations with the constraints of constant c and Fθ = 0.
From (13) and (14), c can be constant when ψ is constant or vθ ∝ 1/r, too. However, this
does not satisfy (16).

In case ψ is not constant, constant c implies φ′ = 0. Then, (19) is linear and homoge-
neous. It is easily solved for a single mode flow by the separation of variables:

vθ =
ψ

r
= α(t)J1(Λr) sin(kz + δ), Λ =

√
c2 − k2, (23)

where J1 is the Bessel function of the first order, α(t) a function of t to be determined later
and δ a phase. k and δ are both real or pure imaginary. If we require the solution to be
nondivergent in the whole spatial region, k must be real and |k| < c. Single mode solutions
of this type frequently appear, irrespective of the symmetry when the nonlinear terms are
somehow removed [22,35]. See also [49], wherein the Coriolis force is taken into account.
From (23) and (4), it follows that
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vr = −
k
c

α(t)J1(Λr) cos(kz + δ), vz =
Λ

c
α(t)J0(Λr) sin(kz + δ). (24)

Referring to (4), it is readily confirmed that the equality ω = cv holds.
Equation (18) gives

(∂t + νc2)α(t) = 0. (25)

Since c 6= 0, this equation has a nontrivial solution

α(t) ∝ e−νc2t.

The time-dependent velocity fields given by (23) and (24) then fulfill the Navier–Stokes
Equations (1)~(3). As was expected, solutions exist whose kinetic energy density v2/2 is
finite in the whole space.

The characteristic decay time is given by 1/νc2. Only steady vortex solutions are
allowed in the inviscid limit. Separation of the variables r and t in the above solution is
a consequence of breaking the scaling invariance of the Navier–Stokes equations. Exact
three-dimensional solutions with the decay-time inversely proportional to the kinematic
viscosity have been presented by several authors [11,35,36,50].

4.2. Nonconstant c

The proportionality coefficient c will be variable when F is nonconservative or H + V
is not spatially constant. Unfortunately, we do not know the functional form of c(ψ, t) or
φ(ψ, t), whose temporal evolutions will be governed by the dynamics. However, it may be
sensible to set their instantaneous form as an initial condition. We consider a simplest case
given by

φ(ψ, t) = ln A + Bψ, i.e., c(ψ, t) = AeBψ, (26)

where A and B, whose dimensions are [length−1] and [length−1·velocity−1], respectively,
are spatially constant (but possibly time-dependent). The assumption (26) amounts to
keeping the first two terms in the power series expansion of φ in ψ. With this choice, the
scales of the spatial extension and velocity of the solution will be given by A−1 and A/B,
respectively. The turn-over time of the vortex rotation will be the order of B/A2. The
representative Reynolds number is given by Re = 1/νB.

In passing, the assumption of time-independent c employed in [46] and the form (26)
are compatible with each other for a single mode solution whose stream function decays as
e−νc2t. In this case, the parameter B may be chosen as to be proportional to eνc2t to cancel
the decay factor e−νc2t. Investigating whether this is possible or not for axisymmetric flow
is beyond the scope of the present paper.

We begin with exploring the spatial dependence of the velocity fields with the time
fixed. Since φ′ = B, we rewrite Equation (16) as(

∂2
r −

1
r

∂r

)
ψ + ∂2

zψ + A2e2Bψψ = B
{
(∂rψ)2 + (∂zψ)2

}
. (27)

Changing the variable by Bψ = − ln|g|, Equation (27) is put into the form(
∂2

r −
1
r

∂r

)
g + ∂2

z g + A2 ln|g|
g

= 0. (28)

The analytic solution of (28) is not known. Since the term A2g−1ln|g| results from a
variation of U(g) = A2 (ln|g|) 2/2, we may approximate it around the minimum point
g = 1 by a harmonic potential U(g) ≈ A2(g− 1)2/2 and linearize (28) as(

∂2
r −

1
r

∂r

)
ĝ + ∂2

z ĝ + A2 ĝ = 0, (29)
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where ĝ ≡ 1− g ≈ Bψ. Equation (29) is identical to (19) with φ′ = 0. Therefore, when
|ĝ| is sufficiently smaller than unity, the solution to (28) is given by (23), with c replaced by
A. If vθ decreases as fast or faster than 1/r for r → ∞ , the flow is approximately given by
(23) and (24). The velocity decays exponentially with time.

Equation (27) permits a variety of solutions. Shown in Figure 1 are three examples,
(i), (ii), and (iii), obtained numerically under the condition that

∣∣∂zψ
∣∣ =∣∣∂2

zψ
∣∣ = 0 . That

is, these solutions have no z-dependence. Each solution for vθ has one peak and decays
gradually at long distances. Equations (28) or (29) show that 1/|A| defines the system’s
length scale, so that, grossly speaking, the (half) width of the peak becomes larger with
the decrease in A. From Figure 1, the radial distance to the peak and the azimuthal ve-
locity at the peak are grossly read off as 0.5A−1 and A|B|−1, respectively. Taking these
as the rules of thumb, the turn-over time of the vortex at the peak is given grossly by
2π(0.5A−1)/(A

∣∣B∣∣−1) ∼ O(
∣∣B∣∣/A2) , as was already expected. The existence of the solu-

tions (i), (ii), and (iii) implies the existence of an infinite number of continuous sequences
of solutions in accordance with the continuous change in the parameters A, B, and the
boundary condition ∂rψ(r0).
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Figure 1. Numerical solutions of (27) under the conditions ∂zψ = ∂2
zψ = 0. Ordinate is vθ = ψ/r.

Three curves, (i), (ii), and (iii), are the solutions for three sets of the parameters A, B, and ∂rψ(r0), as
designated in the figure. Each ψ(r0) is chosen so that the straight extrapolation of the curve directs
the origin. Integrations were performed in a region r0 = 0.002 ≤ r ≤ 8.

It is easily confirmed by substitution that, ignoring the last term on the l.h.s. of (27),
the solution to (27) for large r and fixed z is approximated by ψ ≈ ψ0 ≡ −(2/B) ln r with
negative B. The tail of the solution is therefore approximated by

vθ ≈ −(2/B) ln r/r,

which, from (26), implies that c is nearly proportional to 1/r2 at long distances. Vortex
solutions with such a long tail were numerically confirmed to exist up to r = 30 for
|A| ≤ 6.84 · · · . We disregard the case of larger |A|, for which, although not shown here,
numerical calculations exhibited that the solutions keenly oscillate around z = 0.

As regards the behavior in the finite z region, Equation (27) suggests that nondivergent
ψ will be expanded in a power series of e−|A|z. By substituting the expression

Bψ(r, z, t) =
∞

∑
n=0

ψn(r, t) e−n|A|z, ψ0 6= 0, (30)
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to (27) and comparing the coefficients of e−n|A|z, the equations of ψn are, to n = 2,

ψ0 ′′ − ψ0
′

r + A2c2
0ψ0 = ψ0

′2,
ψ1
′′ − ψ1

′

r + A2(1 + c2
0(1 + 2ψ0)

)
ψ1 = 2ψ0

′ψ1
′,

ψ2 ′′ − ψ2
′

r + A2{(4 + c2
0(1 + 2ψ0)

)
ψ2 + 2c2

0(1 + ψ0)ψ
2
1
}
= 2ψ′0ψ′2 + ψ′1

2 + A2ψ2
1,

(31)

where c0 ≡ eψ0 for the choice (26) for c(ψ). The prime stands for a differentiation with
respect to r. The first equation in (31) gives the solutions shown in Figure 1. Specifically,
ψ0 ∼ −2 ln r for large r.

Splitting the term A2c2
0ψn as the sum of linear and nonlinear terms by

A2ψn + A2(c2
0 − 1)ψn and discarding all the nonlinear terms, the equations in (31) for

n ≥ 1 may be linearized as

ψn
′′ − ψn

′

r
+ A2(n2 + 1)ψn = 0.

The n2 emerges from ∂2
z in (27). This means that ψn/r obeys the Bessel differential

equation. Thus, restricting ourselves to regular solutions to (31), ψn will behave as
rJ1((n2 + 1)1/2

∣∣∣A∣∣∣r) both near r = 0 and at medium distances provided that the non-
linear terms are negligible.

At very large distances, the term involving the derivative of ψ0 on the r.h.s. will have
to be retained. Thus, for the leading form of the solutions, we solve the equation

ψn
′′ +

3
r

ψn
′ + 2A2ψn = 0.

Regular solutions exist and are given by r−1 J1((n2 + 1)1/2|A|r).
The expected exponential behavior in z specified by (30) can be observed analytically

in the vicinity of the symmetry axis, as is shown below.
Near the z-axis, vθ behaves as vθ ∝ r. With the time being fixed, let us put

ψ = a(z)r2 + O(r4), (32)

for r ≈ 0. Substituting (32) to (27), we have

a′′ + A2a + (contribution from O(r4)− term in ψ) = 4Ba2, (33)

where prime stands for a derivative with respect to z. Referring to Figure 1, it will not be
unreasonable as a first approximation to ignore the O(r4)-term at the very vicinity of z-axis.
Multiplying ∂za to the both sides of (33) and integrating once, we have

a′ = ±
√

C− A2a2 + (8B/3)a3, (34)

where C is an integration constant, which is generally time-dependent. Solutions to (34)
may be expressed in terms of Jacobi’s elliptic function or are easily found via numerical
integration. Here, we give an exact solution that is constructed by elementary functions
for a special combination of the parameters, i.e., 48B2C = A6. In this case, the polynomial
in the square root in (34) is factorized to (8B/3)(a + q)2(q/2− a), q = A2/4B. Using the
integration formula∫ dx

(x + α)
√

β− x
=

2√
α + β

ln

√
α + β−

√
β− x√

x + α
,

with α = q = A2/4B and β = q/2 = A2/8B, we have
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a(z) =
A2/4B

1 + G(z)

[√(
2G(z) +

3
1 + G(z)

)(
4 +

3
1 + G(z)

)
+ 3− 2− G(z)− 3

1 + G(z)

]
(35)

where
G(z) ≡ (2 +

√
3)eAz. (36)

The numerical factor in front of eAz in (36) has been chosen for a convention a(0) = 0.
(Recall that the origin of the coordinate z is arbitrary.) As was already expected, a(z) has a
power series expansion in e−|A|z and converges exponentially to a constant value as z→ ∞
near the symmetry axis.

The quantity 4a(z)/A2 as a function of z was numerically calculated, and the result is
shown in Figure 2 for four cases: A = −10, −5, 10, and 5. When A is positive, |a|monotoni-
cally increases with z, while a negative A gives rise to an additional zero, z0. Numerical
calculation gives |A|z0 = 2.6391 · · · , which is independent of |A| because a(z) is a func-
tion of Az only. At this point vz vanishes. In each case depicted in the figure, 4a/A2

exponentially approaches a constant, either 1 (exact value) or 0.101020 · · · , for z→ ∞ .
Note also that, when A is negative, there is a z at which da/dz = 0 or vr = 0 from

(4). The distance of the stream line from the symmetry axis minimizes at this z and then
increases to infinity as the stream line approaches the plane z = 0 or z0. The case of negative
A may be suited to describing a flow between two parallel planar boundaries. As regards
the solutions depicted in Figure 2, the flow directing toward the symmetry axis just below
the plane z = z0 forms a downdraft (i.e., a(z) < 0) near the axis and then changes the
direction to far infinity near z = 0. The flow above the plane z = z0 forms an updraft
(a(z) > 0). These characteristics of the flows will be altered if the solutions are extrapolated
to negative z.
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Figure 2. The (ordinate)-dependence of 4a/A2 (abscissa), where a(z, t) ≈ ψ/r2 near the symmetry
axis. Boundary condition is a(0, t) = 0.

4.3. Time Dependence

All of the calculations of the velocity field so far are at some fixed time. In order to de-
termine the time-dependence of the solutions, we start from the fact that the time-dependent
solution to the linear equation of motion (17) is generally expressed as a superposition of
the single-mode solutions as

ψ = r
∫

ṽ(q, k, t)J1(qr)eikzqdqdk + r
∫

G0(σ; σ′)Fθ(σ
′)dσ′,

ṽ(q, k, t) = f (q, k)e−ν(q2+k2)(t+t0),
(37)

where σ ≡ (r, z, t) and ṽ(q, k, t) is the Fourier–Hankel transform of vθ = ψ/r with the
integration volume element dσ = rdrdzdt. The integration regions are such that 0 ≤ q < ∞,
−∞ < k < ∞, 0 ≤ r < ∞, −∞ < z < ∞, and −∞ < t < ∞. The retarded Green’s function
G0(σ; σ′) satisfies, together with (A6),
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{
∂t − ν

(
∂2

r −
1
r

∂r + ∂2
z

)}
rr′G0(σ; σ′) = δ(t− t′)δ(r− r′)δ(z− z′),

and is explicitly given in Appendix B. Note that ṽ(q, k, t) has a Gaussian damping factor
with respect to q and k. At the same time, it exhibits a temporally exponential decay.
Spectrum function f (q, k) is the remaining factor of ṽ.

The ṽ(q, k, 0) will be determined from the Fourier–Hankel transformation of vθ

obtained (numerically) by solving (27) or (28) for an unknown t0 and by extracting the
Gaussian damping factor from the solution at large q or k. Finally, the time dependence is
recovered by substituting the damping factor exp(−ν(q2 + k2)(t + t0)) as in (37).

Two hypothetical cases will be instructive. If f (q, k) distributed on a “circle”
q2 + k2 = c2, (37) would be a superposition of (25), allowing the possibility of pure
imaginary q and/or k. If f (q, k) depended on q as qµ−1, the integration over q in (37)
would be performed to give the r-dependence

vθ ∝ (r/(νt)µ/2+1)1F1(µ/2 + 1; 2; −r2/4νt),

where 1F1 is the confluent hypergeometric function, whose limiting behavior is given by

1F1

(
µ

2
+ 1; 2; − r2

4νt

)
→
{

1− (µ + 2)r2/16νt, r → 0,
(2− µ)(r2/4νt)−µ/2−1/2, r → ∞.

Note that, in the above example, the combination of r and t as the similarity variable r2/νt
emerges in the velocity field. This phenomenon results from some distribution of the
wavenumber and indicates the partial restoration of the scaling invariance that had once
been broken by setting c as constant.

The procedure of extracting the Gaussian factor and the spectrum function f from
the data for vθ of the solution (i) in Figure 1 is sketched in Appendix C, and the result is
shown in Figure 3. In the present case, the q-dependence of ṽ depicted in Figure 3 indicates
f (q)→ 1 for 20 < q2 < 40. The spectrum function of the solution (i) is prominent at small

q or long wavelengths and exhibits a Gaussian damping at short wavelengths.
The spectrum function shown in Figure 3 is employed to recover the time-dependence

of the solution (i) in accordance with (37), with the result shown in Figure 4. In the
numerical calculations, the upper bound of each integration was taken to give the tenth
zero of J1 in the integrand. Therefore, calculational errors accumulated near r = 0. It
is notable that the resultant solution temporally behaves similarly to the familiar scale
invariant solutions [4,5,9]. See also Figure 5.17 in [10] for the (two dimensional) scaling
invariant Oseen’s flow.

Unfortunately, the ψ constructed in this way does generally not satisfy the constraint
Equation (16) for t > 0 because the constraint equation is entirely independent of the
equation of motion. Thus, some temporal changes in the tilt of vorticity from the one in the
Beltrami vortex will inhere in the ψ given by (37).

However, we can always choose a continuous and differentiable sequence of solutions
to the constraint equation. This is because the differential Equation (27) is not singular.
Let the sequence start from, e.g., the solution (i) in Figure 1. We specify each solution on
the sequence with a labelling parameter t0 and the spectrum function f (q, k; t0). Shifting
the parameter as t0 → t + t0 with t0 to be used for the solution (i), the solution t to the
constraint equation is written as

ψC(r, z; t) = r
∫ ∞

0
fC(q, k; t + t0)e−ν(q2+k2)(t+t0) J1(qr)eikzqdqdk.

The suffix C means that it is the solution to the constraint equation. The t-dependence of fc
reflects the t-dependences of the parameters A, B, and ∂rψ(r0), too.
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Figure 3. Upper panel: The numerical solution (i) in Figure 1 is shown by red circles and red thick
curve. Solid black curve is the result of fitting to the numerical solution (i) by Equation (A9) in
Appendix C. Lower panel: Hankel transform ṽ (red solid curve), Gaussian factor vexp(−γq2) with
v = 0.28 and γ = 0.048 (green broken line) and f = ṽ(q, 0)exp(γq2) (blue dotted curve).
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Figure 4. Temporal variation due to (15) with Fθ = 0 of the solution (i) for vθ in Figure 1. Integration
was performed up to the tenth zero of J1.

On the other hand, the solution to the evolution equation with the initial condition
chosen as, e.g., solution (i) in Figure 1, is given by (37):

ψD(r, z, t) = r
∫ ∞

0
fD(q, k)e−ν(q2+k2)(t+t0) J1(qr)eikzqdqdk + r

∫
G0(σ; σ′)Fθ(σ

′)dσ′,

where the suffix D stands for being the solution to the dynamical equation. The
above expression for ψD is obtained by the Green function method for the operator
∂t − ν(∂2

r − r−1∂r + ∂2
z) similar to the one described in Appendix B.

Now, identifying the labelling parameter t in ψC(r, z; t) with the physical time, we ask
a question: Under what condition does the ψC(r, z; t) coincide with the ψD(r, z; t)?
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This question seems reasonable because of the similarity of Figure 1 to Figure 4. If
ψC(r, z; t) = ψD(r, z; t), operating ∂t − ν∇2 to (ψC(r, z; t) − ψD(r, z; t))/r from the
left and using the identity (B3), we have

Fθ(r, z, t) =
∫ ∞

0
∂t fC(q, k; t + t0)e−ν(q2+k2)(t+t0) J1(qr)eikzqdqdk. (38)

This is the (necessary) condition for the Beltrami vortex to continuously exist. The procedure
of constructing ψC described above implies that fC(q, k; t + t0) is t-dependent and the r.h.s.
of (38) does not generally vanish, so that Fθ does not vanish either. The analysis that has
led to this consequence is based on the assumption (26) for c(ψ, t). Whether a sequence
whose fc does not depend on t exists for a more general form of c(ψ, t) is an open question.

In summary, an axially symmetric incompressible viscous swirling Beltrami vortex
with variable c is possible when an external force is present.

5. Conclusions and Discussion

In the axisymmetric viscous swirling Beltrami vortices, the proportionality coeffi-
cient c between the velocity and vorticity is constrained by the equation analogous to the
Bragg–Hawthorne equation for steady inviscid flow. Our consistency equation, applicable
also to unsteady flows, is nonlinear in the stream function except for the case of a constant
c. The exact solutions found for a constant c are of the type known up to now for inviscid
flow [22,49].

One of the main results for the case of a nonconstant c is that the spatial and temporal
dependence of c emerge through the stream function ψ = rvθ , i.e., c = c(ψ, t). The
physically meaningful numerical solution sought in the simplified form of c(ψ, t) exhibited
a cyclone-like behavior for radial motion and a gradual temporal decay. The velocity field
does not diverge at infinite distances, as has been shown analytically or numerically in the
present study, in which ln|c| is taken to be linear in ψ.

Breaking the scale invariance due to c of the dimension [length−1] generates a char-
acteristic length l = c−1 and a decay time τ = l2/ν for a single-mode flow. It should be
noted that the decay time does not depend on the wavenumber, k, appearing in (23). For
air at normal pressure and room temperature, τair ≈ 5× 104(l/m)2s. Similarly, for water,
we have an estimation τwater ≈ 106(l/m)2s. These periods shall be long enough for a
macroscopic Beltrami vortex to persist. We also saw that a nonconstant c will result in a
longevity of the vortex when the spectrum function obeys a power law.

The second important finding is that an axisymmetric Beltrami vortex with a noncon-
stant c continues to be Beltramian only when some special kind of external force depending
on the consistency equation must be at work. For example, the Fθ acts to directly grow the
azimuthal component of the flow and induce the meridional components of the motion via
the stream function. This is why the vortices undergoing such external forces as the Coriolis
force or the Lorentz force are worth studying. The vortex–boundary and vortex–vortex
interactions will also play the role. The numerical simulation method is expected to provide
powerful tools to elicit information on this issue [27,42–44].

Without the first principle to determine the functional form of c(ψ, t) or C, in the
present paper, we have examined only the simplest form of the consistency condition for
the viscous vortices. Numerous types of consistency conditions remain to be explored.
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Appendix A. Consistency of Constraints with the Navier–Stokes Equations (1) and (3)

Since c depends on r and z through ψ only, one can write

∂αψ/c = ∂αχ, α = r or z (A1)

where χ ≡
∫ ψ

0 c−1dψ. Since c = c(ψ(r, z, t), t) is a function of ψ and t, so is χ. Due to the
Beltrami condition (4), this implies vr = −∂zχ/r, vz = ∂rχ/r and ∇ · v = 0. c is constant if
χ is proportional to ψ. Since the advection term in the Navier–Stokes equations is written
as (ω× v)α + ∂αv2/2, the Navier–Stokes Equations (1) and (3) with the relation (4) are
rewritten for the Beltrami flow as

∂t
∂zχ

r
= ν

(
∇2 − 1

r2

)
∂zχ

r
+ ∂r H − Fr, (A2)

∂t
∂rχ

r
= νr∇2 ∂rχ

r
− ∂z H + Fz, (A3)

respectively. Here, H is the head. Equations (A2) and (A3) are employed to determine
Fr − ∂r H and Fz − ∂z H, respectively, when χ is known. This is possible only when these
equations are compatible with each other as the differential equations of χ. To examine the
compatibility, noting that ∇2 = r−1∂r(r∂r) + ∂2

z and ∇2 − r−2 = ∂r(r−1∂rr) + ∂2
z , operate

∂r to (A2) and ∂z to (A3) from the left. Subtracting each side of the resultant equations, one
obtains the consistency condition (20) in the text.

Suppose that c is constant so that χ = ψ/c. Divide both sides of (17) by c and
subsequently operate ∂z from the left. The resultant equation and (A2) are employed to
eliminate the time-derivative term to obtain (21) in the text. Similarly, operating ∂r from
the left of (17) and employing (A3) to eliminate the time-derivative term, we have (22) in
the text.

Appendix B. Variable c Generally Implies Time-Dependent External Force

When the condition (18) is fulfilled, (A2) and (A3) are equivalent so that χ is obtained
by solving either (A2) for ∂zχ/r or (A3) for ∂rχ/r. Here, we take (A3). Then ∂rχ/r is
expressed as a sum of homogeneous and inhomogeneous terms as

∂rχ

r
= Re

∫
π0(q, k)e−ν(q2+k2)t J0(qr)eikzqdqdk +

∫
G0(σ; σ′)Sr(σ

′)dσ′, (A4)

where σ = (r, z, t) and
∫

dσ′ =
∫ ∞

0 r′dr′
∫ ∞
−∞ dz′

∫ ∞
−∞ dt′. J0 is the Bessel function, and

π0(q, k) is an arbitrary function of q and k to be determined by boundary condition. Sr(σ)
is defined by

Sr(σ) ≡ ∂r H(σ)− Fr(σ), (A5)

G0(σ; σ′) is the retarded Green’s function that satisfies

(∂t − ν∇2)G0(σ; σ′) =
1
r

δ(r− r′)δ(z− z′)δ(t− t′), (A6)

and is given for the present problem by

G0(σ; σ′) =
θ(t− t′)

4
√

πν3(t− t′)3
exp

(
− r2 + r′2 + (z− z′)2

4ν(t− t′)

)
I0

(
rr′

2ν(t− t′)

)
, (A7)

Here, θ(t) is the Heaviside step function and I0 the modified Bessel function of the first
kind. Equations (A6) and (A7) are verified by using the formulae∫ ∞

0 J1(qr)J1(qr′)qdq = 1
r δ(r− r′),∫ ∞

0 J1(qr)J1(qr′)e−τq2
qdq = 1

2τ e−(r
2+r′2)/4τ I0

(
rr′
2τ

)
.
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The Fourier–Hankel transform of G0 given by∫
G0(σ; σ′)eikz′ J0(qr′)r′dr′dz′ =

1
2

θ(t− t′)e−ν(q2+k2)(t−t′)+ikz J0(qr)

can be used to obtain an explicit relation among χ, π0, and Sr. Equating ∂rχ/r given by
(A4) with ∂rψ/rc and operating ∂t − ν∇2 from the left, we have

Sr(σ) =
(

∂t − ν∇2
)∂rψ

cr
, (A8)

Therefore, in case ψ and c are not spatially constant, Sr(σ) given by (A5), in particular Fr
when H is spatially constant, is required to be nonzero. Since ψ depends on time, so does
Fr. In this case, Fz is determined from the constraint (18).

Appendix C. Extracting the Gaussian Factor and the Spectrum Function from the
Solution (i) in Figure 1

As an illustration of the calculational procedure, we assume that there is no
z-dependence. This amounts to adopting the zeroth order term in the expansion (30) in
terms of e−|A|z. Considering that vθ is linear in r near r = 0 and behaves as lnr/r at large
distances, we fit the solution (i) in Figure 1 by

vθ, fit(r) = b0
1− e−b1r2

r
+ b2

ln(1 + b3r2)

r
. (A9)

The first term on the r.h.s. is borrowed from [1] for the familiar exact solution. Choosing
the parameters as b0 = −0.2563, b1 = 3.736, b2 = 0.9403, b3 = 26.93, (A9) reproduces the
data quite well, as is shown in the upper panel of Figure 3 in the text.

The Hankel transform ṽ of vθ approximated by the analytic expression (A9) is numer-
ically calculated and is shown by a red solid curve in the lower panel of Figure 3. The
Gaussian factor exp(−γq2) is read off from large q behavior of ṽ. The spectrum function f (q)
at a fixed time is obtained by multiplying exp(γq2) to ṽ. Time-dependent vθ is constructed
through the inverse Hankel transform of f (q) exp(−νq2t) with the result shown in Figure 4.
If z-dependence is also known, the corresponding Fourier transform is also employed to
obtain the full time dependence.
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