Multidisciplinary
Scientific Journal

Article
Argumentation and Defeasible Reasoning in the Law

Marco Billi *{%, Roberta Calegari (7, Giuseppe Contissa
and Giovanni Sartor !

Galileo Sartor 2

check for

updates
Citation: Billi, M.; Calegari, R.;
Contissa, G.; Lagioia, F,; Pisano, G.;
Sartor, G.; Sartor, G. Argumentation
and Defeasible Reasoning in the Law.
] 2021, 4,897-914. https://doi.org/
10.3390/j4040061

Academic Editor: Larisa Ivascu

Received: 31 October 2021
Accepted: 9 December 2021
Published: 18 December 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 1 1

, Francesca Lagioia ", Giuseppe Pisano ",

Alma Al—Alma Mater Research Institute for Human-Centered Artificial Intelligence,

ALMA MATER STUDIORUM—Universita di Bologna, 40100 Bologna, Italy; roberta.calegari@unibo.it (R.C.);
giuseppe.contissa@unibo.it (G.C.); francesca.lagioia@unibo.it (F.L.); g.pisano@unibo.it (G.P.);
giovanni.sartor@unibo.it (G.S.)

Computer Science Department, University of Torino, 10124 Torino, Italy; galileo.sartor@unito.it
Correspondence: marco.billi3@unibo.it

Abstract: Different formalisms for defeasible reasoning have been used to represent knowledge and
reason in the legal field. In this work, we provide an overview of the following logic-based approaches
to defeasible reasoning: defeasible logic, Answer Set Programming, ABA+, ASPIC+, and DeLP. We
compare features of these approaches under three perspectives: the logical model (knowledge
representation), the method (computational mechanisms), and the technology (available software
resources). On top of that, two real examples in the legal domain are designed and implemented
in ASPIC+ to showcase the benefit of an argumentation approach in real-world domains. The
Cross]Justice and Interlex projects are taken as a testbed, and experiments are conducted with the
Arg?2P technology.

Keywords: argumentation; defeasible reasoning; tools and technologies; Arg2P

1. Introduction

In the last decades, much work has been done in Al and law research on computable
models of the law and the development of legal reasoning systems.

Starting from the assumptions that legal provisions can usually be represented as
rules and that legal reasoning is based on inferences based on the application of rules
to facts [1], many attempts have been made to develop rule-based systems for the law,
including seminal contributions such as [2]. In the course of the last 30 years, theoretical
issues concerning the representation of legal knowledge have been discussed, including
aspects such as isomorphism [3], deontic positions [4], temporal aspects [4], cased-based
reasoning [5], and how to deal with defeasibility in law [6], in particular by means of
argumentation-based approaches [7].

Despite the apparent limitations of symbolic approaches and the recent advent of data-
driven approaches, logic keeps playing an important role as a knowledge representation
scheme to capture both norms and facts. Logic is also useful to complement sub-symbolic
and data-driven models with reasoning capabilities [8-10].

Subsequent research adopted a broader perspective, based on argumentation, con-
sidering that defeasibility in legal reasoning reflects the dialectics of arguments in judicial
proceedings. Each party provides arguments supporting his or her position, and such
arguments may conflict with those made by the other party. The debate between parties is
usually transferred to the judicial opinion that takes into account the results of the dispute
and determines its output. To convincingly justify a judicial decision in a case, it is not
sufficient to state a single argument; it is instead necessary to establish that the winning
argument prevails over all the contrary arguments or that the latter has to be rejected on
other grounds. Indeed, it has been stated that the problem of defeasibility in the law results
from having arguments both for and against the application of a rule, which need to be
adjudicated between [7].

] 2021, 4, 897-914. https:/ /doi.org/10.3390/j4040061

https:/ /www.mdpi.com/journal/j

https://www.mdpi.com/journal/j
https://www.mdpi.com
https://orcid.org/0000-0002-6807-073X
https://orcid.org/0000-0003-3794-2942
https://orcid.org/0000-0002-8511-1505
https://orcid.org/0000-0001-7083-3487
https://orcid.org/0000-0003-0230-8212
https://orcid.org/0000-0001-6355-851X
https://orcid.org/0000-0003-2210-0398
https://doi.org/10.3390/j4040061
https://doi.org/10.3390/j4040061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/j4040061
https://www.mdpi.com/journal/j
https://www.mdpi.com/article/10.3390/j4040061?type=check_update&version=1

] 2021, 4

898

The legislator itself often suggests how to construct defeaters to certain arguments.
For example, to indicate that liability in tort can be excluded by appealing to self-defence
or a state of necessity, the legislator may use any of the following formulations:

¢ Unless clause. One is liable if one voluntarily causes damage, unless one acts in
self-defence or in a state of necessity.

¢ Explicit exception. One is liable if one voluntarily causes damage. One is not liable for
damages if one acts in self-defence or in a state of necessity.

e Presumption. One is liable if one voluntarily causes damage and one does not act out
of self-defence or a state of necessity. The absence of both is presumed.

All these aspects of the law, i.e., the tension between generic legal concepts and their
exceptions, between the general terms of the law and the particulars of a case and its
context, and the adversarial nature of legal procedures, make it so that legal reasoning
involves the construction of arguments to attack, defend, override, or undercut other
arguments [7].

Many frameworks have been developed to capture the dialectical relation between
arguments in legal contexts. Such frameworks typically enable the interaction between
arguments to be analysed, determining which arguments are justified, or rather over-
ruled, relative to a set of arguments that may attack one another. Among the frameworks
developed in Al and law, we can mention those developed by Prakken and Sartor [11],
Gordon [12], Hage [13], and Bench-Capon [14].

In recent years, the argument frameworks developed within Al and law have merged
with the growing research on computational argumentation [15]. In particular, the semantic
originally developed by Dung has been connected to the research by Prakken and Sar-
tor and Bench-Capon. This has led in particular to the development of frameworks for
structured argumentation such as ASPIC+ [16] and Carneades [17,18], which are partially
inspired by the features of legal reasoning. Recently, the interest in argumentation has also
been stimulated by the many attempts to use argumentation to generate an explanation for
the outcome of machine learning systems [19,20].

The vast extent of research on computable legal argumentation so far has not been
matched by corresponding number of deployed applications. We believe that this depends
on the fact that no open development environment suitable for legal applications is so
far available for argumentation systems. In the following section, we review some imple-
mented argumentation technologies, present their basic features, and discuss some related
issues. Finally, we exemplify the use of one of these technologies—Arg2P—by modelling
two application scenarios, concerning private international law and criminal procedure,
respectively.

2. Argumentation and Defeasible Reasoning Technologies: An Overview

In this section, after introducing a running example, we apply some existing imple-
mentations of computational argumentation to a legal example.

2.1. Running Example

Let us consider a hypothetical legal case concerning medical malpractice. John was a
patient of Doctor Mary and now seeks compensation against her, claiming that she caused
him considerable harm, and appeals to a legal rule stating that if a doctor causes harm to a
patient, then the doctor has the obligation to compensate the damage, unless it is proven
that the doctor was not negligent. We may also add that this rule establishes a presumption
of negligence against the doctor: The patient does not need to prove the doctor’s lack of
care to receive the compensation, but rather, it is the doctor who is tasked with proving
non-negligence. There is also a conditioned presumption of non-negligence favouring the
doctor: The doctor was careful (i.e., not negligent) in case he follows medical guidelines.
Let us assume that expert evidence is provided by the two parties and consider two possible
claims by the experts. Mark, the expert witness for John, may claim that there was harm
and may also claim that the doctor did not follow the applicable guidelines. Edward,

] 2021, 4

899

the expert witness for Mary, may claim that there was no harm and may also claim that
the guidelines were followed. In the following, we shall consider different combinations
of claims by the experts and see what conclusions they generate in the above-mentioned
different approaches.

Two main approaches have been adopted to deal with defeasibility and argumenta-
tion in the law: non-monotonic logics and argumentation systems. In the following, we
discuss implementations of non-monotonic logics (namely, defeasible logic and ASP) and
structured argumentation (namely, DeLP, ABA+, and ASPIC+).

2.2. Defeasible Logic

Defeasible Logic (DL) is a well-known formalism for defeasible reasoning, originally
proposed by Nute [21], and later extended in various directions, including deontic logic
(see also [22,23]). In our analysis, we used d-Prolog [21] as a defeasible reasoner. Let us
assume that Mark claims that there was damage, while Edward claims that the knowledge
(the guidelines) was correctly used by doctor Mary. The use case may be encoded as shown
in Figure 1 in DL:

patient (’John’).
doctor (?Mary?).
expert (*Mark?).
expert (*Edward’) .

say (’Mark’,harmed (doctor (*Mary’), patient(’John’))).

say (’Edward’, careful (doctor (’Mary’))).

liable(doctor (D)) := harmed(doctor (D), patient(P)).

neg liable(doctor (D)) := used_correctly(knowledge, doctor(D)).

harmed (doctor (D), patient(P)) := say(X,harmed(doctor (D), patient(P))), expert(X).

used_correctly (knowledge, doctor (D)) := say(X,careful(doctor(D))), expert(X).

Figure 1. DL formalism.

Running the query @liable(doctor("Mary’) (@neg liable("Mary’)), we obtain a negative
response, since the inferences for liable and not liable defeat one another.

Adding a priority, as shown in Figure 2, for the rule against liability over the one for
liability, we obtain: yes for Mary’s non-liability.

sup_rule(neg liable(doctor(D)) := used_correctly(knowledge, doctor (D)),
liable(doctor (D)) := harmed(doctor (D), patient(P))).

Figure 2. DL priority.

Assume now that Mark also intervenes on the issue of compliance with the guide-
lines, claiming that Mary did not follow the guidelines. Surprisingly, running the query
@liable(doctor(‘Mary’) again, we obtain a positive result. In fact, the rule on the exclusion
of liability would not be triggered, given that the antecedent used_correctly(knowledge,
doctor("Mary’)) could not be established.

This aspect of the functioning of DL is called ambiguity blocking: when two con-
flicting inferences clash and there is no priority, the inferences cancel one another. Thus,
an unsolved conflict between two propositions, rather than producing uncertainty on
such propositions and on what follows from them makes both propositions (and their
consequences) irrelevant to the reasoning of the system.

We may wonder to what extent this behaviour is appropriate in modelling laws.
To this end, let us first introduce the concept of burden of proof. Generally speaking, we
can say that burdens of proof distribute dialectical responsibilities between the parties
in a dialogue. In other words, when a party has a burden of proof relative to a claim ¢,
then, unless the party provides the kinds of arguments or evidence that is required by that
type of burden, the party will lose on the claim ¢. Losing on the burdened claim means
that, for the purpose of the dialectic interaction at stake, it will be assumed that ¢ has not
been established, not even as a relevant possibility. So, as regards ambiguity blocking,

] 2021, 4

900

on the one hand, it may correspond to an aspect of the burden of proof: If an operative
fact that conditions a legal effect is not proved, the effect does not follow. On the other
hand, this principle only applies to factual information; it does not apply to conflicts based
on competing legal norms (resulting from alternative interpretations or indeterminate
priorities). Moreover, when facing alternative factual reconstruction, it may be useful for
legal reasoners to know what alternative legal conclusions would be obtained in case one
reconstruction would prevail over the other.

Defeasible logic theories that include ambiguity propagation (uncertain inferences
may still attack other inferences) have been defined, but we could not find any available
applications.

2.3. ASP for Non-Monotonic Reasoning

Answer set programming (ASP) is an approach to logic programming oriented to-
wards difficult (primarily NP-hard) search problems. It is based on the stable model
(answer set) semantics and allows for extensions (possible answers) to be computed in
a very efficient way. We used Clingo (https://potassco.org/clingo/run/, last access 15
October 2021 with its online ASP implementations. We have run the example with the
source code, as shown in Figure 3. This input yields no results (no stable models) because
of the unsolved contradiction caused by rules one and two.

liable(doctor (D)) :- harmed(doctor (D), patient(P)).

not liable(doctor(D)) :- used_correctly(knowledge, doctor(D)).

harmed (doctor (D), patient(P)) :- say(X,harmed(doctor (D), patient(P))), expert(X).
used_correctly (knowledge, doctor (D)) :- say(X,careful(doctor(D))), expert (X).

patient (john).

doctor (mary) .

expert (mark) .

expert (edward) .

say (mark ,harmed (doctor (mary), patient(john))).
say (edward , careful (doctor (mary))).

Figure 3. ASP formalism.

Note that the standard ASP format (ASP-Core-2), used by systems such as Clingo,
does not support the use of preferences over rules. To express that the rule with conclusion
harmed(doctor(D), patient(P)) applies unless the doctor uses correctly the knowledge, we
have to introduce a negation by failure not used_correctly(knowledge, doctor(D)) in the body
of that rule. With this addition, Clingo provides an answer according to which there is no
liability. Extensions of ASP are being provided that include preferences over rules, but we
have not yet tested them.

2.4. Implementation Based on Structured Argumentation

In the following, the running example is discussed in three well-known frameworks
for structured argumentation: DeLP, ABA+, and ASPIC+.

2.4.1. DeLP

DeLP is a formalisation of defeasible reasoning in which the results of Defeasible
Logic and Argumentation are combined. The formalism is fully introduced in [24].

We used TweetyProject@Web (http://tweetyproject.org/w/delp/index.html, last
access 15 October 2021), an online DeLP implementation. The use case is encoded using
Delp’s syntax, as shown in Figure 4:

https://potassco.org/clingo/run/
http://tweetyproject.org/w/delp/index.html

]2021, 4 901

Patient (john).

Doctor (mary) .

Expert (mark) .

Expert (edward) .

Say_harmed (mark, mary, john).
Say_careful (edward, mary).

Liable (D) -< Harmed(D, P).
~“Liable(D) -< Used_correctly(knowledge, D).

Harmed (D,P) -< Say_harmed(X,D, P), Doctor(D), Patient(P), Expert(X).
Used_correctly (knowledge, D) -< Say_careful(X,D), Doctor (D), Expert(X).

Figure 4. DeLP formalism.

The answers are the same as those given by the DL implementation, though DeLP
allows for ambiguity propagation, i.e., it may develop inferences based on conflicted
propositions (this corresponds, as we shall see, to the complete semantics in ASPIC). Note
the loss of expressiveness in terms of syntax with respect to DL as captured by d-Prolog;:
DeLP does not allow for function symbols inside predicates.

2.4.2. ASPIC+

ASPIC+ is a popular framework for structured argumentation, exploiting Dung’s
abstract semantics [25]. ASPIC allows users to choose from different semantics: grounded,
preferred, semi-stable, and stable. The preferred semantic is particularly significant for the
law, since it shows alternative extensions for unsolved conflicts.

We selected Arg2P [26,27] as our reference implementation. The use case is encoded as
shown in Figure 5 with its corresponding generated arguments (Figure 6 and argumentation
graph (Figure 7) evaluated under grounded semantics:

Premises:

pl :=> patient (john).

p2 :=> doctor (mary).

p3 :=> expert (mark).

p4 :=> expert(edward).

p5 :=> say(mark,harmed(doctor (mary), patient(john))).
p6 :=> say(edward,careful (doctor (mary))).

Rules:

rl : harmed(doctor (D), patient(P)) => liable(doctor(D)).

r2 : used_correctly(knowledge , doctor(D)) => -liable(doctor(D)).

r3 : say(X,harmed(doctor (D), patient(P))), expert(X) => harmed(doctor (D), patient(P)).
r4 : say(X,careful (doctor(D))), expert(X) => used_correctly(knowledge , doctor(D)).

S /)

Figure 5. ASPIC+ formalism.

A0 : p2 : doctor (mary)

Al : p4 : expert(edward)

A2 : p3 : expert (mark)

A3 : pl : patient(john)

A4 : p6 : say(edvard, careful(doctor (mary)))

A5 : p5 : say(mark, harmed(doctor(mary), patient(john)))
A6 : A5,A2,r3 : harmed(doctor(mary), patient(john))

A7 : A4,A1,74 : used_correctly(knowledge, doctor (mary))
A8 : A6,r1 : liable(doctor (mary))

A9 : A7,r2 : -liable(doctor(mary))

Figure 6. ASPIC+ arguments.

] 2021, 4

902

Figure 7. ASPIC+ argumentation graph.

Note that both arguments A8 and A9 are undecided since they defeat one another. This
is the right outcome according to the grounded semantics. The results also do not change
if we add -used_correctly(knowledge , doctor(mary)) to our facts. This shows an interesting
difference between DL and ASPIC. In DL, an unsolved conflict between two inferences
results in such inferences (and the inferences expanding them) becoming irrelevant. In AS-
PIC, the conflicting arguments can still prevent the other arguments from being included
in the final extension.

At the moment, Arg2P allows users to choose between two different semantics:
grounded and complete. The complete semantic is particularly significant for the law
since it presents users with alternative extensions for unsolved argument conflicts. In other
terms, it enables the identification of incompatible arguments that are all legally defensible
(not worse than the competing arguments) though not being justified (better than their
competitors). This may enable legal analysts to identify uncertainties and consider what
would happen if the uncertainties were decided one way rather than the other. For in-
stance, selecting the complete semantics, we obtain the two additional extensions showed
in Figure 8.

Figure 8. ASPIC+ argumentation graph evaluation under complete semantics. According to the
solution on the left, argument A9—the one for Marys’s innocence—is accepted. Conversely, according
to to solution on the right, Mary should be considered liable (A8).

] 2021, 4

903

The assessment changes if we add priorities between rules. In this regard, Arg2P
allows users to choose between multiple principles. Let us consider the last link principle
according to which an argument prevails if its top rule is stronger than the top rule of
the opposing argument. In our example, if we add a preference for rule 72 over rule r1
(sup(r2,r1)), we obtain that A9 is now accepted (justified), while A8 is rejected.

24.3. ABA+

In ABA+, arguments are sets of assumptions used to infer a conclusion. We used
the online implementation ABAPlus http:/ /www-abaplus.doc.ic.ac.uk, last access on 17
October 2021. The example case is encoded as shown in Figure 9, while Figure 10 shows
the resulting assumption graph:

Assumptions:
myAsm(liable).
myAsm(neg_liable).

contrary(liable , neg_liable_mary).
contrary (neg_liable , liable_mary).

Facts:

myRule (patient_john , [1).

myRule (doctor_mary , [1).

myRule (expert_mark , [1).

myRule (expert_edward , [1).

myRule (say_harmed_mark_mary_john , []).
myRule (say_careful_edward_mary , [1).

Rules:

myRule (harmed_mary_john , [say_harmed_mark_mary_john , doctor_mary , patient_john , expert_mark]).
myRule (used_correctly_manual_mary , [say_careful_edward_mary , doctor_mary , expert_edward]).
myRule (liable_mary , [harmed_mary_john , doctor_mary , liable 1).

myRule (neg_liable_mary , [doctor_mary , used_correctly_manual_mary, neg_liablel).

Figure 9. ABAplus formalism.

dashed arrow: normal attack

@:ne_iiabie) @izoie;

Figure 10. ABAplus assumption graph.

In ABAplus, each rule has to be ground: General rules containing variables cannot
be expressed. This is due to the fact that ABAplus uses a semantics-preserving map-
ping from ABAplus to AA and employs ASPARTIX https://www.dbai.tuwien.ac.at/proj/
argumentation/systempage/, last access on 19 October 2021 for determining extensions.
Moreover, ABA+ does not deal with preferences over rules; it only has preferences over
assumptions. Preferences over rules can be simulated by, e.g., adding dummy assumptions
to the rules and expressing (contraries and) preferences accordingly. An additional burden
to the notation is represented by the fact that assumptions need to have contraries declared.

3. Arg2P: An Inclusive Approach to Model Diversity

The examples above have shown that there is a fundamental overlap between all the
presented implementations. All of them enable the use of defeasible inference. This is
obtained by providing for defeasible rules (or through the use of assumption predicates as
in ABA). Preferences among rules are also supported by all the considered approaches (in
ABA, preferences concern assumptions).

Some other features are only present in certain implementations or are provided with
different functionalities.

http://www-abaplus.doc.ic.ac.uk
https://www.dbai.tuwien.ac.at/proj/argumentation/systempage/
https://www.dbai.tuwien.ac.at/proj/argumentation/systempage/

] 2021, 4

904

Only some implementations allow for combinations of strict and defeasible inference,
through defeasible rules (as in ASPIC+ and DL) or through other mechanisms (by using
or not using assumptions in ABA). This feature may be useful when legal knowledge,
typically based on defeasible rules, has to be combined with other kinds of knowledge
(e.g., non-defesible laws from mathematics or empirical sciences).

Defeasible inferences take place in two different models to which we refer to as am-
biguity propagation and ambiguity blocking. In the first model (used in ABA, ASPIC+,
and ASP), uncertainty on an argument does not prevent that argument from successfully
challenging other arguments. In the second model (natively used in DL and DeLP), uncer-
tain arguments are completely ineffective. Both modes of inference may be meaningful in
legal reasoning, e.g., ambiguity blocking may be needed when dealing with burdens of
proof (burdens of persuasion), while ambiguity propagation may be appropriate when no
such burden is at stake.

Some approaches (such as DL) provide features for representing deontic concepts and
reasoning with them, but we cannot find such features in the available implementations.
Similarly, some approaches, such as DL and ASPIC+, provide features for capturing
reasoning schemes, but this aspect, too, was not reflected in the available implementations.
Deontic reasoning may be useful when violations of mandatory norms have to be taken
into account, but may not be needed when constitutive norms establishing requirements
and entitlements are being processed.

Contrarily to other approaches, defeaters in DL and DeLP can be expressed via
explicit rules. In DL and in argumentation-based approaches, different types of attacks
are distinguished (e.g., undercutting, rebutting, or undermining), while DeLP defines a
single general notion of attack, which accounts for all the possible situations in which two
arguments are considered to be conflicting.

If an application has to use the same general rules for multiple cases, the possibility of
using open (non-grounded) rules in the knowledge base, and of using different instances
of the same predicates in different rules is a key advantage. This is a feature that we could
find in all of the described systems, except for ABA+.

When a system has to deal with a high number of uncertain conflicts, which it is
not possible to decide in advance, we think that the ability to rely not only on skeptical
but also on credulous reasoning may be important. This is a feature that we could find in the
argumentation-based approaches, such as DeLP, ASPIC+, and ABA+. The ability of ASPIC+
to switch between grounded and preferred semantics was particularly user friendly.

When a system has to address complex issues of legal reasoning, and full explicability
is required (which also include explanations of what are the alternatives at stake and why
one was chosen over the other), we think that the ability to provide a picture of existing
arguments and of the relations between them and a semantic explaining what arguments
should or could be finally endorsed may become a decisive feature. This is a feature we
could find in ASPIC+ and ABA+, though we found that the ABA+ way of modelling
knowledge and arguments much less intuitive for a legal user. An explicit representation of
the dialectics of competing arguments, however, may not be so relevant when a system has
to apply a piece of legislation, with regard to which relevant priorities could be decided in
advance. In such cases, the efficiency of a reasoning tool such as DL or ASP (or just Prolog)
can be the decisive factor.

All different features and functionalities just presented may be useful or not, depend-
ing on the legal domain being addressed and on the purposes of the project at issue. This
consideration has led to the development of Arg2P, an integrated framework for modelling
legal knowledge which can be parameterised to provide knowledge representation and
inference features that are appropriate to specific application domains. In the following,
we demonstrate how it can be used in different application contexts, to capture legal
knowledge and reasoning in a way that fits lawyers’ intuitions and expectations.

] 2021, 4

905

3.1. The Technology: Arg2P

Arg?2P (We remind the reader to visit the Arg2P homepage: http://arg2p.apice.unibo.it
for a complete overview of the tool, last access on 15 October 2021) [26,27] is a lightweight
Prolog-based implementation for structured modular argumentation [28,29] that combines
modular logic programming and legal reasoning. It allows also for some patterns of
legal reasoning to be captured—such as the burden of persuasion [30,31] and deontic
concepts [32] (with an explicit formalisation of permissions and obligations).

Modular argumentation enables reasoning with rules and interpretations of multiple
domains (e.g., different legal systems) and enables the design of knowledge organised
in distinct and separate modules that can “call” one another. In particular, a knowledge
module—which may represent a legal system or parts of it—can refer to another module
for specific issues by querying it directly.

Modules in Arg2P are identified by distinct theories (Prolog files) and can be called
and executed exploiting the predicate module_call (+Modules, :Query), where Modules
is a list of theories (Prolog modules) that need to be loaded to answer the query, and
Query is the query that must be evaluated. In particular, the predicate: (i) creates a new
environment that contains only the required modules’ data, (ii), executes the query in the
newly created environment, (iii) and feeds the result to the caller—note that the original
caller environment is not altered by the procedure.

Both strict and defeasible rules can be defined according to two equivalent syntaxes:
a Prolog-like syntax, where conclusions precede premises, or an ASPIC*-like syntax [16],
where premises precede conclusions in the rule syntax.

Accordingly, strict rules can be represented both in the Prolog-like syntax form as
c: —p1,...,pn or in the equivalent ASPIC-like syntax as label : py,...,ps— > c where
label is the identifier of a rule and conclusion ¢, and premises pj, ..., p, are Prolog terms.
Defeasible rules can be represented by using the operator => (defeasibly entails) instead of
— > (strict entails).

Two distinct negations can be used in rules: strong negation available via the —
operator—which captures the notion of definite false—and weak negation, i.e., negation
as failure in rule premises through the /+ operator (Prolog-like syntax) or ~operator
(ASPIC-like syntax).

Different semantics can be computed in the framework specifying the value of the ar-
gumentLabellingMode: The currently available semantics are grounded, complete, bp_grounded
_partial, and bp_grounded_complete (details in [33]).

3.2. Case Studies in the Legal Domain: ASPIC+ Approach via Arg2P

To demonstrate how Arg2Pcan be used in different legal contexts, we describe two
case studies focused on private international law (PIL) and criminal justice, respectively.

The first one, focused on PIL, has been developed in the context of the InterLex project
(Further project information is available at https://interlex-portal.eu/, last access on 15
October 2021), aimed at assisting legal professionals in the identification of competent
courts and applicable laws in disputes regarding Internet-related PIL. A structured model
of this legal domain can help to ensure that different national legal frameworks and
regulations are in line with the EU acquis and legislation. As the resulting system is
a multilevel one, a careful analysis is needed to solve possible conflicts between legal
sources, e.g., by granting priority to higher-ranking norms (principle of lex superior), as well
as by considering their temporal effect and territorial scope. In particular, the Interlex
knowledge base includes a logic translation of the Brussels Regulation, the Rome I and
Rome II Regulations, the GDPR, and a set of relevant national laws.

In this context, argumentation can be used to provide users with:

e information on jurisdiction and applicable law;
* avisual representation of conflicts between different legal systems;

http://arg2p.apice.unibo.it
https://interlex-portal.eu/

] 2021, 4

906

* afeature supporting personal preferences, e.g., whenever multiple courts are compe-
tent to judge a case, users can express a preference either for their place of residence
or their place of business.

The second case study focuses on criminal justice. It has been developed in the context
of the CrossJustice project (The webpage is available at https://www.crossjustice.eu/,
last access on 15 October 2021), dealing with defendants’ rights in criminal matters. In
particular, we developed a decision support system, freely accessible by legal professionals
and citizens, to assess (a) criminal procedural rights granted to accused and suspects, as
well as (b) the level of harmonisation between national rules and relevant EU Directives.
Indeed, such Directives are not directly applicable by Member States, since they need to
be transposed in national criminal laws. This may lead to discrepancies, often originating
from (a) differences in the used terminology, possibly referring to diverse legal concepts,
and (b) the omission or addition of certain legal requirements by national laws. For instance,
under the EU Directive 2013/48, any accused has the right to consult a lawyer, while under
the Dutch transposition, the accused must also be deprived of liberty.

3.3. Application in the Private International Law Domain

As an example in the PIL domain, let us consider the following hypothetical case. Mr.
Nauru bought some furniture for his apartment in Milan from a website owned by Mr.
Milieu. They are both French nationals. However, while Mr. Nauru resides in Paris, Mr.
Milieu is domiciled in Rome. After receiving the expected payment, Mr. Milieu did not
ship the furniture. As a consequence, Mr. Nauru decided to sue the seller.

In the following, we present how the relevant EU and national laws have been mod-
elled to determine the competent court.

Figure 11 illustrates the applicable articles of the Brussels Regulation (Regulation (EU)
No 1215/2012 of the European Parliament and of the Council of 12 December 2012 on
jurisdiction and the recognition and enforcement of judgments in civil and commercial
matters (recast)). The first is article 4, which states that persons domiciled in a Member State
shall, whatever their nationality, be sued in the courts of that Member State. The second is article
7, paragraph 1, letter a, which states that a person domiciled in a Member State may be sued in
another Member State in the courts for the place of performance of the obligation in question.

% Subject to this Regulation, persons domiciled in a Member
% State shall, whatever their nationality, be sued in the courts of
% that Member State.

hasJurisdiction(art4, Country, Court, ClaimId, brusselsRegulation):-
user_fact (personRole (PersonId, ClaimId, defendant)),
user_fact (personDomicile (PersonId, Country, Court)),
user_fact (memberState (Country)).

% A person domiciled in a Member State may be sued in another Member State:
% (1) (a) in matters relating to a contract, in the courts for the place of
% performance of the obligation in question;

hasJurisdiction(art7_1, Country, Court, ClaimId, brusselsRegulation) :-
user_fact (claimObject (ClaimId, contract, ContractId)),
user_fact (placeOfPerformance (Country, Court)).

\S

Figure 11. Brussels Regulation Prolog transposition.

Figure 12 illustrates article 14 of the French Civil Code, which states that even if not
residing in France, a person may be cited before French courts for the performance of obligations
contracted by him in a foreign country towards French persons.

% An alien, even if not residing in France, may be cited before French courts for the performance of obligations
% contracted by him in France with a French person; he may be called before the courts of France for obligations
% contracted by him in a foreign country towards French persons.

hasJurisdiction(art14, france, Court, ClaimId, frenchCivilCode) :-
user_fact (claimObject (ClaimId, contract, ContractId)),
user_fact (personRole (PersonId, plaintiff)),
user_fact (personNationality (PersonId, french, Court)).

Figure 12. French Civil Code Prolog transposition.

https://www.crossjustice.eu/

] 2021, 4

907

Figure 13 shows the list of facts to be added as input for the evaluation of the specific
case. The object of the claim is a matter of contract, which we have indicated with the
identification of ‘contract_1". The place of performance of the obligation in question is Italy,
Milan. The parties, i.e., Mr. Nauru (the plaintiff) and Mr. Milieu (the defendant) are both
French nationals, and the latter is domiciled in Italy.

% Facts

user_fact(claimObject(claim_1, contract, contract_1)).
user_fact (placeOfPerformance (italy, milan)).

user_fact (personRole (nauru, plaintiff)).

user_fact (personNationality (nauru, french, paris)).
user_fact (personRole(milieu, claim_1, defendant)).
user_fact (personDomicile (milieu, italy, rome)).

Figure 13. Facts Prolog transposition.

Figure 14 illustrates the two possible conflicts that have been highlighted for this
example. The first states that whenever the system finds two alternative jurisdictions
in analysing the same case, and they are obtained from different legal sources, it shall
provide a preferred solution based on the hierarchy of the legal source of origin. In this
example, we have the Brussels Regulation and the French Civil Code. Since the former
has direct effect in the Member State’s legal systems, it defeats the latter. This has been
made explicit by giving priority to all rules found in the Brussels module over those found
in the French one. As for the second conflict, it is used to show the user the different
available jurisdictions (if they are all applicable). The user can then decide which solution
is best according to his knowledge of the case. Since one of the characteristics of private
international law consists in the parties having several possible jurisdictions to choose
from the so called ‘forum shopping’, this conflict helps parties realise where the choice of
jurisdiction comes from and enables the use of priorities to select preferred rules over others.

To reach this goal, rules al and a2 have been added to set a preferred jurisdiction
based on certain facts, i.e., the domicile of the subject, and the place of performance. In a
general case, these preferences could be added by the user.

For this focus case, let us imagine that the user has decided that all articles concerning
the place of performance of the obligation shall be preferred over the ones that relate to
the domicile of the defendant, as it is in his interest to have the location of the court as
close to his new house as possible. This is displayed in our system through the following
rule sup(a2, a1). As EU Regulations become part of a member state’s national law
without the need for any domestically implemented legislation, most conflicts are always
solved in favour of the supranational source (This is declared in the code as the second
preference, stating that all rules originating from the Brussels Regulation shall be preferred
over the ones in the French Civil Code). As preferences are easily modifiable and can be
rearranged based on the circumstances of the case, such a method is optimal to give the
user more information regarding the system'’s result and the different choices which are
presented. Legal professionals, who might have a deeper understanding of the national
legal systems, may lack knowledge of the intricacies of private internal law. This feature
may be particularly useful to create arguments advantageous to their preferred jurisdiction,
which applies the more favourable laws.

]2021, 4 908

modulesPath(’path/to/the/modules/folder’).

generate :
module (Module),
prolog(call_module ([Module, ’facts’],
with_facts_and_length(hasJurisdiction(Art, Country, Court, ClaimId, Code), Facts, _)))
-> jurisdiction(Art, Country, Court, ClaimId, Code, Facts).

modulel : [l => module(’brussels’).
module2 : [] => module(’frenchCivilCode’).

al : jurisdiction(Art, Country, Court, ClaimId, Code, Facts), prolog(member (personDomicile(_, _, _), Facts)) =>
preferred_jurisdiction(domicile, Art, Country, Court, ClaimId, Code).
a2 : jurisdiction(Art, Country, Court, ClaimId, Code, Facts), prolog(member (placeOfPerformance(_, _), Facts)) =>

preferred_jurisdiction(place_of_performance, Art, Country, Court, ClaimId, Code).

conflict(
[jurisdiction(Artl, Countryl, Courtl, ClaimId, Codel, Facts1)],
[jurisdiction(Art2, Country2, Court2, ClaimId, Code2, Facts2)]
) :- Countryl \= Country2.

conflict (
[preferred_jurisdiction(Objectl, Arti, Countryl, Courtl, ClaimId, Code1)],
[preferred_jurisdiction(Object2, Art2, Country2, Court2, ClaimId, Code2)]
) :- Objectl \= Object2.

sup(a2, al).
sup (modulel, module2).

Figure 14. Conflict Prolog transposition.

3.4. Discussion
Figure 15 shows the generated arguments on the left and the visualisation of the

results of the framework evaluation according to grounded semantic on the right, on the
basis of the facts added as input.

A0 : modulel = module(brussels)

A1l : module2 = module(frenchCivilCode) A0

A2 : Al,generate —> jurisdiction(arti4, france, paris, claim_1, o A
frenchCivilCode, [personNationality(nauru, french, paris), personRole ([5)
nauru, plaintiff), claimObject(claim_1, contract, contract_1)])

A3 : AO,generate = jurisdiction(art4, italy, rome, claim_1, A5
brusselsRegulation, [memberState(italy), personDomicile(milieu, italy,
rome), personRole(milieu, claim_1, defendant)])

A4 : AO,generate = jurisdiction(art7_1, italy, milan, claim_1, A0
brusselsRegulation, [placeOfPerformance(italy, milan), claimObject (a

claim_1, contract, contract_1)])

A5 : A3,al = preferred_jurisdiction(domicile, art4, italy, rome, claim_1,
brusselsRegulation)

A6 : A4,a2 — preferred_jurisdiction(place_of_performance, art7_1, italy, T
milan, claim_1, brusselsRegulation)

Figure 15. PIL example.

First of all, the solution presented gives a choice between the jurisdiction of France,
according to article 14 of the French Civil Code (Argument A2), as well Italy, Rome, accord-
ing to article 4 of the Brussels Regulation (Argument A3) and Italy, Milan, according to
article 7(1) of the same (Argument A4). Furthermore, article 4 is based on the domicile of
the person (Argument A5), while article 7(1) is based on the place of performance of the
obligation (Argument A6)

Confronting these results with the graph on the right, it is shown that the article of
the French Civil Code is defeated by the articles originating from the Brussels Regulation,
giving priority to the European legal source over the national one. Furthermore, the user
can visualise how the preference he has added to the system results in article 7(1) defeating
article 4, showing the jurisdiction based on the place of performance is preferred over that
based on the domicile of the defendant.

This feature may assist the user in interacting with the rule base and in visualising a
structure of arguments that explains and describes the situation, even working outside of
the strict legal terms. Depending on the specific goal the user is trying to solve, this aspect
of argumentation allows for the creation of personal relations between arguments, and it
can be changed to include different elements, such as the Country of Jurisdiction or the
number of conditions involved.

] 2021, 4

909

3.5. Application in Criminal Justice

Let us consider Nino, an Italian citizen who has been placed into temporary detention,
being formally accused of a crime committed in Holland, and is about to be questioned by
the judicial authority. The reasoning system may be used to assess which rights are granted
to Nino. The example will only take into account the right to access and communicate
with a lawyer and the right not to incriminate oneself. The role of argumentation in this
case is not only to provide an answer concerning the subject’s rights but also to verify the
conformity between the rights granted by national law and those granted by the European
Directives, as well as between the respective reasons for granting such rights.

conflict (
[right_with_facts (X, Article, Personld, Right, Matter, F)J,
[right_with_facts (X1, Articlel, PersonId, Right, Matter, F1)]
) :- X \= X1, sort(F, SF), sort(F1, SFF), SFF \= SF.

conflict (
[right_with_facts(X, Article, PersonId, Right, Matter, F)J,
[right_with_facts (X1, Articlel, Personld, Right, Matterl, F1)
) :- X \= X1, Matter \= Matterdl.

% rl
right_with_facts(X, Y, PersonId, Z, U, Facts) :-
has_right (X, Y, Personld, Z, U),
fetch_argument_facts (has_right(X, Y, Personld, Z, U), Facts).

h r2
right_with_facts(X, Y, Personld, Z, U, Facts) :-
auxiliary_right (X, Y, Personld, Z, U),
fetch_argument_facts (auxiliary_right (X, Y, PersonId, Z, U), Facts).

Figure 16. Conflicts added to the Prolog source.

The example highlights a specific type of conflict, namely, the attack—defeat relation
between articles of the European law and articles of national legislation. This example deals
in particular with European Directives, where there is more possibility for conflicts with
national legal systems, given the freedom granted to Member States in form and methods
for transposing directives in national law. The first conflict modelled in the example, as
shown in Figure 16, states that whenever the same right and matter (In modelling the rules,
the word “matter” has been used to identify the object to which a right applies, e.g., the
specific phase of the proceedings) is returned but the considered facts (the requisites) are
different, a conflict shall arise. Another conflict may also arise whenever the system returns
two results granting the same right, albeit with a different matter. The system then selects
the set of relevant facts used in evaluating the result under national law, through the custom
predicate right_with_facts. The selected facts are then compared to those used for the
evaluation under the European Directive. Thus, under national and European law, the sets
of facts may either be different or, even if identical, be phrased in such way as to lead to
different interpretations. Even though interpretative issues are a matter for judicial rulings,
it is interesting to highlight such discrepancies and the potential differing legal effects.

Figure 17 is the representation of Article 3(2) of Directive 2013/48 (Rule r3), which
states that suspects or accused persons shall have access to a lawyer without undue delay
before they are questioned by the police or by another law enforcement or judicial authority.
We have represented this right as ‘right_to_access_lawyer’, with the matter beginning
‘before_questioning’. The only requirement is for the person to be officially accused.

Furthermore, Article 3(3) of the same Directive (Rule r5) grants the accused the right
to meet in private and communicate with the lawyer representing them. In the system, this
rule is defined as an “auxiliary right”, since it is dependent on the granting of a main right
The link between a main right and an auxiliary right can either be a temporal one, so that a
right exists only after the main one has been applied (for example, the right to remedy to
a previous decision), or a subjective one, which implies that the defendant has particular
needs, must explicitly submit a request or must act in order to have a right recognised (for
example, the right to have the costs of the interpreter be paid by the state). In our system, is
linked to the “main right” by an additional predicate (Rule r4). This right is always granted
to the person unless there is an urgent need to avert serious adverse consequences for the

] 2021, 4

910

life, liberty, or physical integrity of a person. Article 3(6) (Rule r6) is thus represented as an
auxiliary right and is considered an exception to Article 3(3).

% Directive 2013/48

% T3
has_right (dir, art3_2_a, Personld, right_to_access_lawyer, before_questioning) :-
user_fact (person_status (PersonId, accused)).

% ra
auxiliary_right_scope(art3_3_a, [art3, art3_2_a, art3_2_b, art3_2_cl).

% 5
auxiliary_right (dir, art3_3_a, Personld, right_to_communicate, private_communication) :-
auxiliary_right_scope(art3_3_a, X),
member (Y, X),
has_right (dir, Y, PersonId, Right, Matter),
\+ exception(auxiliary_right(dir, art3_3_a, Personld, right_to_communicate, private_communication), _).

% 6
exception(auxiliary_right (dir, art3_3_a, Personld, right_to_communicate, private_communication), art3_6_a) :-
user_fact (person_danger (PersonId, life)).

% Directive 2016/343

% T
has_right (dir, art7_2, Personld, right_to_not_incriminate_themselves, proceeding) :-
user_fact (person_status (Personld, accused)),
\+ exception(has_right(art7_2, Personld, right_to_not_incriminate_themselves, proceeding), _).

S J

Figure 17. Directive transposition in Prolog.

Finally, the representation of Article 7(2) of Directive 2016/343 (Rule r7) expresses the
fact that Member States shall ensure that suspects and accused persons have the right not to
incriminate themselves. This has been modelled as ‘right_to_not_incriminate_themselves’,
while the matter is “proceedings’ as it is not limited to a single phase of the trial. The only
condition for the recognition of such a right is the fact that the person has been officially
accused.

Figure 18 shows the representation of the articles in the Dutch code of criminal
procedure (hereinafter CCP), starting from Article 28b (Rule r8) which gives the accused
the right to be assisted by a lawyer only after he has been deprived of liberty. Under Dutch
law, the authorities are required to take active steps to make it possible for the suspect to
have access to a lawyer only following their arrest. While the Dutch legislator recognises
that the right of access to a lawyer in criminal proceedings also applies to the suspect not
deprived of their liberty, it did not consider it necessary to expressly provide for this right
in the CCP. Thus, while the Code of Criminal Procedure expressly provides for the right
of the suspect already deprived of their liberty to consult a lawyer prior to questioning,
it does not do so for the suspect whose liberty was not affected, since they are still in a
position to autonomously arrange a consultation with a lawyer.

Article 45(1) of the Dutch CCP, represented in Rule r10, also grants the accused the
right to meet in private and communicate with a lawyer. While Rule r10 would be by
itself a perfect transposition of the corresponding provision in the directive, since it is
an auxiliary right linked to the main article of the Dutch CCP (represented in Rule £8) it
suffers from the same issue described previously.

The Dutch legislator has implemented this part of the Directive in different legal
sources, such as the Custodial Institutions (Framework) Act. Article 36 (Rule r11) of
such Act recognises the prisoner the right to send and receive letters by post, including
correspondence with his lawyer, while Article 41 (Rule r12) recognises the same right to
the accused. Although the right is the same as the one in Article 3(3) of the Directive, its
matter is different (letter vs. private communication).

Rule r13 is the representation of Article 29(1) of the Dutch CCP, which states that,
in all cases where a person is being questioned as a suspect or defendant, the judge or
officer conducting the questioning shall refrain from any act aimed at obtaining a statement
which cannot be said to have been freely given. This is the transposition of Article 7(2) of
the Directive. However, while the directive provides a broader scope, i.e., the right to not
incriminate oneself in the proceedings, the Dutch implementation limits the applicability
of the right to the questioning of the person.

]2021, 4 911
% Dutch Code of Criminal Procedure
% 8
has_right (dutch, art28b, Personld, right_to_access_lawyer, trial) :=
user_fact (person_status (PersonId, accused)),
user_fact (person_status (Personld, deprived_of_liberty)).
% 9
auxiliary_right_scope(art45_1, [art28bl).
% r10
auxiliary_right (dutch, art45_1, PersonId, right_to_communicate, private_communication) :=
auxiliary_right_scope (artd5_1, X),
member (Y, X),
has_right (dutch, Y, PersonId, Right, Matter).
% Custodial Institutions (Framework) Act
% rit
has_right (dutch, art36, Personld, right_to_communicate, letters) :=
user_fact (person_status (PersonId, prisoner)).
% r12
has_right (dutch, art4il, Personld, right_to_communicate, letters):=
user_fact (person_status (PersonId, accused)),
\+ exception(has_right (dutch, art4l, Personld, right_to_communicate, letters), art41_4).
% Dutch Code of Criminal Procedure
% r13
has_right (dutch, art29_1, Personld, right_to_not_incriminate_themselves, questioning) :=
user_fact (person_status (Personld, accused)).
S J

Figure 18. Dutch law transposition in Prolog.

The system is built to highlight the possible inconsistencies between legal sources
and to give an account via argumentation. In the example above, those rules that represent
national laws are set as defeasible, while those from EU Directives are strict, thus having a
precedence over national law. Therefore, when a rule representing a Dutch norm is attacked
by a rule representing a European norm, the latter shall defeat the former. Our functions
expressing conflicts only compare rules from different sources, thus the European norms
shall always prevail over national ones. European rules can only be defeated by exceptions
found in other EU rules, as we will observe in the following example.

Figure 19 shows the facts used to evaluate this example case, in particular the fact
that Nino has been accused and that he is a prisoner and has thus been deprived of liberty.
Furthermore, we state that there is an urgent danger of serious adverse consequences for
the life Nino.

% Dutch Code of Criminal Procedure

% r8

has_right (dutch, art28b, Personld, right_to_access_lawyer, trial) :=
user_fact (person_status (Personld, accused)),
user_fact (person_status (PersonId, deprived_of_liberty)).

% r9
auxiliary_right_scope(art45_1, [art28bl).

% ri0

auxiliary_right (dutch, art45_1, Personld, right_to_communicate, private_communication) :=
auxiliary_right_scope(art45_1, X),
member (Y, X),
has_right (dutch, Y, Personld, Right, Matter).

% Custodial Institutions (Framework) Act

% rit
has_right (dutch, art36, Personld, right_to_communicate, letters) :=
user_fact (person_status (PersonId, prisoner)).

% r12
has_right (dutch, art4l, Personld, right_to_communicate, letters):=
user_fact (person_status (PersonId, accused)),
\+ exception(has_right (dutch, art4l, PersonId, right_to_communicate, letters), art41l_4).

% Dutch Code of Criminal Procedure

% ri3
has_right (dutch, art29_1, Personld, right_to_not_incriminate_themselves, questioning) :=
user_fact (person_status (Personld, accused)).

S J

Figure 19. Facts in Prolog.

3.6. Discussion

Figure 20 shows the arguments generated by Arg2P while Figure 21 shows the result
of the framework evaluation. Since the Dutch legislator only grants the right during the
questioning (Argument A14), instead of the entire proceedings as stated by the European

] 2021, 4

912

Directive (Argument A13), the latter defeats the former, indicating that the matter (i.e., the
temporal validity) of the right is different.

Looking at the relation between arguments A12 and A17 the graph in Figure ?? shows
also that the right to have access to a lawyer is granted. However, while the Directive
dictates the right to be granted at the earliest possible time, the Dutch legislator has only
recognised the right to those deprived of liberty. In this example, our system still displays
the discrepancy that rises from the different conditions used to reach the same conclusion.

A0 : r4 = auxiliary_right_scope(art3_3_a, [art3, art3_2_a, art3_2_b, art3_2_c])
A1l : r9 =—> auxiliary_right_scope(art45_1, [art28bl)

A2 : f1 = user_fact(person_danger(nino, life))

A3 : f3 —> user_fact(person_status(nino, accused))

A4 : f4 —> user_fact(person_status(nino, deprived_of_liberty))

A5 : f2 —> user_fact(person_status(nino, prisoner))

A6 : A2,r6 — exception(auxiliary_right(dir, art3_3_a, nino, right_to_communicate, private_communication), art3_6_a)

A7 : A3,r3 = has_right(dir, art3_2_a, nino, right_to_access_lawyer, before_questioning)

A8 : A3,r7 = has_right(dir, art7_2, nino, right_to_not_incriminate_themselves, proceeding)

A9 : A3,r13 = has_right(dutch, art29_1, nino, right_to_not_incriminate_themselves, questioning)

A10 : A5,r11 = has_right(dutch, art36, nino, right_to_communicate, letters)

A11 : A3,r12 = has_right(dutch, art4l, nino, right_to_communicate, letters)

A12 : A7,r1 = right_with_facts(dir, art3_2_a, nino, right_to_access_lawyer, before_questioning, [user_fact(
person_status (nino, accused))])

A13 : A8,r1 = right_with_facts(dir, art7_2, nino, right_to_not_incriminate_themselves, proceeding, [user_fact(
person_status (nino, accused))])

A14 : A9,r1 = right_with_facts(dutch, art29_1, nino, right_to_not_incriminate_themselves, questioning, [user_fact(
person_status (nino, accused))])

A15 : A10,r1 —> right_with_facts(dutch, art36, nino, right_to_communicate, letters, [user_fact(person_status(nino,
prisoner))])

A16 : Al11,r1 = right_with_facts(dutch, art4l, nino, right_to_communicate, letters, [user_fact(person_status(nino,
accused))])

A17 : A20,r1 == right_with_facts(dutch, art28b, nino, right_to_access_lawyer, trial, [user_fact(person_status(nino,
accused)), user_fact(person_status(nino, deprived_of_liberty))])

A18 : A21,r2 == right_with_facts(dir, art3_3_a, nino, right_to_communicate, private_communication, [])

A19 : A22,r2 = right_with_facts(dutch, art45_1, nino, right_to_communicate, private_communication, [])

A20 : A3,A4,r8 —> has_right(dutch, art28b, nino, right_to_access_lawyer, trial)

A21 : AO,A7,r5 = auxiliary_right(dir, art3_3_a, nino, right_to_communicate, private_communication)

A22 : A1,A20,r10 = auxiliary_right(dutch, art45_1, nino, right_to_communicate, private_communication)

Figure 20. Arguments of the CrossJustice example.

A13 A5
a4 © G © ()_/.

AT AB Al8 Al
o © °©
AD
e © ©
A20 22 e
A7
@ e 0 @
A10 A2 Mg Al A21 Al2

Figure 21. Graphical result of the CrossJustice example.

Lastly, we shall describe the relation that, starting from Argument A6 leads to argu-
ments A21, A18, A15, and A16. The exception in article 3(6) attacks and defeats the right to
communicate in private with the lawyer. In this case, a European norm has been defeated,
and its attacks towards the relevant Dutch transpositions will not result in the same priori-
ty/hierarchy described above. Arguments A15 and A16 are being successfully applied even
though neither is a direct transposition of the Directive due to the fact that the attacking
article has already been defeated by another rule.

4. Conclusions and Way Forward

Our analysis has shown a strong convergence between the different systems for
defeasible reasoning, while they also offer different solutions that may cater for the needs
of different legal applications. We think that the times are mature for developing an
integrated and modular approach, such as Arg2P, which implements different approaches
and semantics in a single working environment.

However, in the future development of argumentation tools for the law, considerations
pertaining to the soundness and scope of the underlying logic and reasoning models are
not sufficient; they have to be combined with considerations pertaining to the robustness

] 2021, 4 913

and usability of argumentation tools . Many improvements are indeed needed to make
existing tools really user-friendly and effective (including when deployed in a distributed
environment) [34], as well as documented and easily downloadable/deployable. In our
future work on Arg2P, we intend to pay due attention to the latter aspects as well, so
that our system may support effective applications of defeasible argumentation in legal
domains [35].

Author Contributions: This paper reflects ideas the authors have worked out in common, to present
and expand the results of previous research projects where all authors contributed, deploying their
expertise from different areas. For this reason, all sections in the paper shall be attributed as a joint
work to all authors, with their contributions merged into a unitary whole. All authors have read and
agreed to the published version of the manuscript.

Funding: This work has been supported by the H2020 ERC Project “CompuLaw” (G.A. 833647),
by the European Union’s Justice Programme (G.A. 847346) for the project “Knowledge, Advisory
and Capacity Building Information Tool for Criminal Procedural Rights in Judicial Cooperation”,
and by the European Union’s Justice Programme (G.A. 800839) for the project “InterLex: Advisory
and Training System for Internet-related private International Law”.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Allen, C.C. State of Mind in Civil Cases. In Washington University Law Review; Washington University School of Law: St. Louis,
MO, USA, 1957.

2. Sergot, M.].; Sadri, F.; Kowalski, R.A.; Kriwaczek, F.; Hammond, P.; Cory, H.T. The British Nationality Act as a logic program.
Commun. ACM 1986, 29, 370-386. [CrossRef]

3. Bench-Capon, T].; Coenen, EP. Isomorphism and legal knowledge based systems. Artif. Intell. Law 1992, 1, 65-86. [CrossRef]

4. Governatori, G.; Rotolo, A.; Sartor, G. Temporalised normative positions in defeasible logic. In Proceedings of the Conference
10th International Conference on Artificial Intelligence and Law, Bologna, Italy, 6-11 June 2005; pp. 25-34.

5. Ashley, K.D. Reasoning with cases and hypotheticals in HYPO. Int. . Man-Mach. Stud. 1991, 34, 753-796. [CrossRef]

6. Hage,]J. Law and defeasibility. In Studies in Legal Logic; Springer: Cham, Switzerland, 2005; pp. 7-32.

7. Prakken, H.; Sartor, G. Law and logic: A review from an argumentation perspective. Artif. Intell. 2015, 227, 214-245. [CrossRef]

8. Calegari, R.; Ciatto, G.; Omicini, A. On the integration of symbolic and sub-symbolic techniques for XAI: A survey. Intell. Artif.
2020, 14, 7-32. [CrossRef]

9. Zhang, J.; Chen, B.; Zhang, L.; Ke, X,; Ding, H. Neural, symbolic and neural-symbolic reasoning on knowledge graphs. AI Open
2021, 2, 14-35. [CrossRef]

10. Bianchi, F; Palmonari, M.; Hitzler, P; Serafini, L. Complementing logical reasoning with sub-symbolic commonsense. In
Proceedings of the International Joint Conference on Rules and Reasoning, Bolzano, Italy, 16-19 September 2019; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 161-170.

11. Prakken, H.; Sartor, G. Argument-based extended logic programming with defeasible priorities. J. Appl. Non-Class. Logics 1997,
7,25-75. [CrossRef]

12. Gordon, T.F,; Walton, D. Legal Reasoning with Argumentation Schemes. In Proceedings of the Conference Conference: The
12th International Conference on Artificial Intelligence and Law, Barcelona, Spain, 8-12 June 2009; Association for Computing
Machinery: New York, NY, USA, 2009; pp. 137-146. [CrossRef]

13. Hage,].C. Reasoning with Rules; Springer: Berlin/Heidelberg, Germany, 1997; pp. 78-129.

14. Bench-Capon, TJ.M.; Dunne, PE. Argumentation in artificial intelligence. Artif. Intell. 2007, 171, 619-641. [CrossRef]

15. Brannstrom, A.; Castagna, F.; Duchatelle, T.; Foulis, M.; Kampik, T.; Kuhlmann, I.; Malmqvist, L.; Morveli-Espinoza, M.; Mumford,
J.; Pandzic, S.; et al. Online Handbook of Argumentation for Al: Volume 2. arXiv 2021, arXiv:2106.10832.

16. Modgil, S.; Prakken, H. The ASPICt Framew. Struct. Argum. A Tutorial. Argum. Comput. 2014, 5, 31-62. [CrossRef]

17. Gordon, T.E; Prakken, H.; Walton, D. The Carneades model of argument and burden of proof. Artif. Intell. 2007, 171, 875-896.
[CrossRef]

18. van Gijzel, B.; Prakken, H. Relating Carneades with abstract argumentation via the ASPIC* framework for structured argumen-

tation. Argum. Comput. 2012, 3, 21-47. [CrossRef]

http://doi.org/10.1145/5689.5920
http://dx.doi.org/10.1007/BF00118479
http://dx.doi.org/10.1016/0020-7373(91)90011-U
http://dx.doi.org/10.1016/j.artint.2015.06.005
http://dx.doi.org/10.3233/IA-190036
http://dx.doi.org/10.1016/j.aiopen.2021.03.001
http://dx.doi.org/10.1080/11663081.1997.10510900
http://dx.doi.org/10.1145/1568234.1568250
http://dx.doi.org/10.1016/j.artint.2007.05.001
http://dx.doi.org/10.1080/19462166.2013.869766
http://dx.doi.org/10.1016/j.artint.2007.04.010
http://dx.doi.org/10.1080/19462166.2012.661766

] 2021, 4 914

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Vassiliades, A.; Bassiliades, N.; Patkos, T. Argumentation and explainable artificial intelligence: A survey. Knowl. Eng. Rev. 2021.
[CrossRef]

Cyras, K.; Letsios, D.; Misener, R.; Toni, F. Argumentation for explainable scheduling. In Proceedings of the Conference AAAI
Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January-1 February 2019; Volume 33; pp. 2752-2759.

Nute, D. Defeasible Reasoning: A Philosophical Analysis in Prolog. In Aspects of Artificial Intelligence; Springer: Dordrecht,
The Netherlands, 1988; pp. 251-288.

Governatori, G.; Rotolo, A.; Calardo, E. Possible World Semantics for Defeasible Deontic Logic. In Deontic Logic in Computer
Science; Agotnes, T., Broersen, J., Elgesem, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 46—-60.

Lam, H.P; Governatori, G. The Making of SPINdle. In Rule Interchange and Applications; Governatori, G., Hall, J., Paschke, A.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 315-322.

Garcia, A.; Simari, G. Defeasible logic programming: An argumentative approach. Theory Pract. Log. Program. 2004, 4, 95-138.
[CrossRef]

Dung, PM. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and
n-Person Games. Artif. Intell. 1995, 77, 321-358. [CrossRef]

Pisano, G.; Calegari, R.; Omicini, A.; Sartor, G. Arg-tuProlog: A tuProlog-based Argumentation Framework. In Proceedings of
the Conference 35th Italian Conference on Computational Logic—CILC 2020, Rende, Italy, 13—-15 October 2020; Volume 2710,
pp- 51-66.

Calegari, R.; Contissa, G.; Pisano, G.; Sartor, G.; Sartor, G. Arg-tuProlog: A modular logic argumentation tool for PIL. In Frontiers
in Artificial Intelligence and Applications, Proceedings of the Legal Knowledge and Information Systems. J[URIX 2020: The Thirty-Third
Annual Conference, Brno, Czech Republic, 9-11 December 2020; Villata, S., Harasta, J., Kfemen, P., Eds.; IOS Press: Amsterdam, The
Netherlands, 2020; Volume 334, pp. 265-268. [CrossRef]

Besnard, P.; Garcia, A.J.; Hunter, A.; Modgil, S.; Prakken, H.; Simari, G.R.; Toni, F. Introduction to structured argumentation.
Argum. Comput. 2014, 5, 1-4. [CrossRef]

Dung, PM.; Sartor, G. The modular logic of private international law. Artif. Intell. Law 2011, 19, 233-261. [CrossRef]

Calegari, R.; Riveret, R.; Sartor, G. The Burden of Persuasion in Structured Argumentation. In Proceedings of the Conference
Seventeenth International Conference on Artificial Intelligence and Law, Sao Paulo Brazil, 21-25 June 2020; Maranhdo, J., Wyner,
A.Z., Eds.; ACM: New York, NY, USA, 2021; pp. 180-184. [CrossRef]

Kampik, T.; Gabbay, D.; Sartor, G. The Burden of Persuasion in Abstract Argumentation. In Proceedings of the International
Conference on Logic and Argumentation, Hangzhou, China, 20-22 October 2021; Springer: Berlin/Heidelberg, Germany, 2021;
pp- 224-243.

Riveret, R.; Rotolo, A.; Sartor, G. A Deontic Argumentation Framework Towards Doctrine Reification. J. Appl. Logics-]. Logicst5
Their Appl. 2019, 6, 903-940.

Calegari, R.; Sartor, G. Burden of Persuasion in Argumentation. In Proceedings of the 36th International Conference on Logic
Programming (Technical Communications), ICLP 2020, Rende, Italy, 18-24 September 2020.

Pisano, G.; Calegari, R.; Omicini, A. Towards cooperative argumentation for MAS: An actor-based approach. In CEUR Workshop
Proceedings, Proceedings of the WOA 2021-22nd Workshop “From Objects to Agents”, Bologna, Italy, 1-3 September 2021; Calegari, R.,
Ciatto, G., Denti, E., Omicini, A., Sartor, G., Eds.; Sun SITE Central Europe, RWTH Aachen University: Aachen, Germany, 2021;
Volume 2963, pp. 162-177.

Gordon, T.E; Governatori, G.; Rotolo, A. Rules and norms: Requirements for rule interchange languages in the legal domain. In
Proceedings of the International Workshop on Rules and Rule Markup Languages for the Semantic Web, Las Vegas, NV, USA, 5-7
November 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 282-296.

http://dx.doi.org/10.1017/S0269888921000011
http://dx.doi.org/10.1017/S1471068403001674
http://dx.doi.org/10.1016/0004-3702(94)00041-X
http://dx.doi.org/10.3233/FAIA200880
http://dx.doi.org/10.1080/19462166.2013.869764
http://dx.doi.org/10.1007/s10506-011-9112-5
http://dx.doi.org/10.1145/3462757.3466078

	Introduction
	Argumentation and Defeasible Reasoning Technologies: An Overview
	Running Example
	Defeasible Logic
	ASP for Non-Monotonic Reasoning
	Implementation Based on Structured Argumentation
	DeLP
	ASPIC+
	ABA+

	Arg2P: An Inclusive Approach to Model Diversity
	The Technology: Arg2P
	Case Studies in the Legal Domain: ASPIC+ Approach via Arg2P
	Application in the Private International Law Domain
	Discussion
	Application in Criminal Justice
	Discussion

	Conclusions and Way Forward
	References

