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Abstract: The global stability of continuous-time multi-input multi-output nonlinear feedback sys-
tems with different fractional orders and interval matrices of positive linear parts is investigated.
New sufficient conditions for the global stability of this class of positive nonlinear systems are estab-
lished. Sufficient conditions for the exponential decay of processes in fractional nonlinear systems
are given. Procedures for computation of a gain matrix characterizing the class of nonlinear elements
are proposed and illustrated by examples.

Keywords: global stability; exponential decay; fractional order; positive; nonlinear; feedback system

1. Introduction

In positive systems inputs, state variables and outputs take only nonnegative values
for any nonnegative inputs and nonnegative initial conditions [1–3]. Examples of positive
systems are industrial processes involving chemical reactors, heat exchangers and distilla-
tion columns, storage systems, compartmental systems, water and atmospheric pollutions
models. A variety of models having positive behavior can be found in engineering, man-
agement science, economics, social sciences, biology and medicine, etc. An overview of
state of the art positive systems theory is given in the monographs [1–5].

Mathematical fundamentals of the fractional calculus are given in the monographs [4–7].
The positive fractional linear systems have been investigated in [4,5,8–19]. Positive linear
systems with different fractional orders have been addressed in [11,12,19]. Descriptor
positive systems have been analyzed in [13,20] and their stabilization in [18,19]. Linear
positive electrical circuits with state feedbacks have been addressed in [20,21]. The super-
stabilization of positive linear electrical circuits by state feedbacks have been analyzed
in [22] and the stability of nonlinear systems in [21,23]. The global stability of nonlinear
systems with negative feedbacks and positive not necessary asymptotically stable linear
parts has been investigated in [9,24,25]. The global stability of nonlinear standard and
fractional positive feedback systems has been considered in [23].

In this paper the global stability of continuous-time multi-input multi-output nonlinear
feedback systems with different fractional orders and interval matrices of positive linear
parts will be addressed, and sufficient conditions for exponential decay of processes in
fractional nonlinear systems with different orders will be proposed.

The paper is organized as follows. In Section 2 the basic definitions and theorems
concerning the positive linear systems with different fractional orders are recalled. The
stability of fractional interval positive linear systems is analyzed in Section 3. New sufficient
conditions for the global stability of these feedback nonlinear systems with interval matrices
of positive linear parts are established in Section 4. In Section 5, a procedure for calculation
of a gain matrix characterizing the class of nonlinear elements is presented and illustrated
by numerical examples. Sufficient conditions for the exponential decay of processes in
fractional nonlinear systems with different orders are proposed in Section 6. Concluding
remarks are given in Section 7.
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The following notation will be used: <—the set of real numbers, <n×m—the set of
n×m real matrices, <n×m

+ —the set of n×m real matrices with nonnegative entries and
<n
+ = <n×1

+ , Mn—the set of n× n Metzler matrices (real matrices with nonnegative off-
diagonal entries), In— the n × n identity matrix, ∑ A(:, n)—the sum of all elements of
nth column.

2. Positive Different Fractional Orders Linear Systems

Consider the fractional continuous-time linear system

dαx(t)
dtα

= Ax(t) + Bu(t), 0 < α < 1 (1)

y(t) = Cx(t) + Du(t), (2)

where x(t) ∈ <n, u(t) ∈ <m, y(t) ∈ <p are the state, input and output vectors and
A ∈ <n×n, B ∈ <n×m, C ∈ <p×n, D ∈ <p×m,

dαx(t)
dtα

=
1

Γ(1− α)

t∫
0

.
x(τ)

(t− τ)α dτ,
.
x(τ) =

dx(τ)
dτ

(3)

is the Caputo fractional derivative and

Γ(z) =
∞∫

0

tz−1e−tdt, Re(z) > 0 (4)

is the gamma function [4,5].

Definition 1. [4,5] The fractional system (1), (2) is called (internally) positive if x(t) ∈ <n
+ and

y(t) ∈ <p
+ ,t ≥ 0 for any initial conditions x(0) ∈ <n

+ and all inputsu(t) ∈ <m
+ ,t ≥ 0.

Theorem 1. [4,5] The fractional system (1), (2) is positive if and only if

A ∈ Mn, B ∈ <n×m
+ , C ∈ <p×n

+ , D ∈ <p×m
+ . (5)

Definition 2. [4,5] The positive fractional system (1), (2) (for u(t) = 0) is called asymptotically
stable (the matrix A is Hurwitz) if

lim
t→∞

x(t) = 0 for any x(0) ∈ <n
+. (6)

Theorem 2. [4,5] The positive linear system (1), (2) is asymptotically stable if and only if one of
the following equivalent conditions is satisfied:

(1) All coefficient of the characteristic polynomial

pn(s) = det[Ins− A] = sn + an−1sn−1 + . . . + a1s + a0 (7)

are positive, i.e., ai > 0 for i = 0, 1, . . . , n− 1.
(2) There exists strictly positive vector λT = [ λ1 · · · λn]T , λk > 0, k = 1, . . . , n such that

Aλ < 0 or λT A < 0. (8)

Theorem 3. The positive system (1), (2) is asymptotically stable if the sum of entries of each column
(row) of the matrix A is negative.
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Proof. Using (8) we obtain

Aλ =

 a11 . . . a1n
... . . .

...
an1 . . . ann


 λ1

...
λn

 =

 a11
...

a1n

λ1 + . . . +

 an1
...

ann

λn <

 0
...
0

 (9)

and the sum of entries of each column of the matrix A is negative since λk > 0, k = 1, . . . , n.
The proof for rows is similar. �

Now consider the fractional linear system with two different fractional orders[ dαx1(t)
dtα

dβx2(t)
dtβ

]
=

[
A11 A12
A21 A22

][
x1(t)
x2(t)

]
+

[
B1
B2

]
u(t), (10)

y(t) = [ C1 C2 ]

[
x1(t)
x2(t)

]
, (11)

where 0 < α, β < 1, x1(t) ∈ <n1 and x2(t) ∈ <n2 are the state vectors, Aij ∈ <ni×nj ,
Bi ∈ <ni×m, Ci ∈ <p×ni ; i, j = 1,2; u(t) ∈ <m is the input vector and y(t) ∈ <p is the output
vector. Initial conditions for (10) have the form

x1(0) = x10, x2(0) = x20 and x0 =

[
x10
x20

]
. (12)

Remark 1. The state Equation (10) of fractional continuous-time linear systems with two different
fractional orders has a similar structure to the 2D Roeesser type models.

Definition 3. The fractional system (10), (11) is called positive if x1(t) ∈ <n1
+ , x2(t) ∈ <n2

+ and
y(t) ∈ <p

+, t ≥ 0 for any initial conditionsx10 ∈ <n1
+ , x20 ∈ <n2

+ and all input vectors u ∈ <m
+,

t ≥ 0.

Theorem 4. [11,12] The fractional system (10), (11) for 0 < α < 1; 0 < β < 1 is positive if and
only if

Ã =

[
A11 A12
A21 A22

]
∈ MN , B̃ =

[
B1
B2

]
∈ <N×m

+ , C̃ = [ C1 C2 ] ∈ <p×n
+ (N = n1 + n2). (13)

Theorem 5. [4] The positive fractional system (10), (11) is asymptotically stable if and only if one
of the following equivalent conditions is satisfied:

(1) All coefficients of the characteristic polynomial

det[Ins− Ã] = sn + ãn−1sn−1 + . . . + ã1s + ã0 (14)

are positive, i.e., ãi > 0 for i = 0, 1, . . . , n− 1
(2) There exists a strictly positive vector λ = [ λ1 · · · λn] , λk > 0, k = 1, . . . , n such that

Ãλ < 0orλT Ã < 0. (15)

Theorem 6. The positive system (10), (11) is asymptotically stable if the sum of entries of each
column (row) of the matrix Ã is negative.

Proof. Proof is similar to the proof of Theorem 3. �
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Theorem 7. The solution of the Equation (10) for 0 < α < 1; 0 < β < 1 with initial conditions
(12) has the form

x(t) =
[

x1(t)
x2(t)

]
= Φ0(t)x0 +

t∫
0

M(t− τ)u(τ)dτ, (16)

where

M(t) = Φ1(t)B10 + Φ2(t)B01 =

[
Φ1

11(t) Φ1
12(t)

Φ1
21(t) Φ1

22(t)

][
B1
0

]
+

[
Φ2

11(t) Φ2
12(t)

Φ2
21(t) Φ2

22(t)

][
0
B2

]
=

[
Φ1

11(t)B1 + Φ2
12(t)B2

Φ1
21(t)B1 + Φ2

22(t)B2

]
=

[
Φ1

11(t) Φ2
12(t)

Φ1
21(t) Φ2

22(t)

][
B1
B2

]
(17)

and

Φ0(t) =
∞

∑
k=0

∞

∑
l=0

Tkl
tkα+lβ

Γ(kα + lβ + 1)
, (18)

Φ1(t) =
∞

∑
k=0

∞

∑
l=0

Tkl
t(k+1)α+lβ−1

Γ[(k + 1)α + lβ]
, (19)

Φ2(t) =
∞

∑
k=0

∞

∑
l=0

Tkl
tkα+(l+1)β−1

Γ[kα + (l + 1)β]
, (20)

Tkl =



In for k = l = 0[
A11 A12
0 0

]
for k = 1, l = 0[

0 0
A21 A22

]
for k = 0, l = 1

T10Tk−1,l + T01Tk,l−1 for k + l > 1

(21)

Proof. Proof is given in [12]. �

Note that if α = β then from (18) we have

Φ0|α=β(t) =
∞

∑
k=0

Aktkα

Γ(kα + 1)
. (22)

3. Stability of Fractional Interval Positive Linear Systems

Consider the fractional interval positive linear continuous-time system

dαx
dtα

= Ax, 0 < α < 1, (23)

where x = x(t) ∈ <n is the state vector and the interval matrix A ∈ Mn is defined by

A ≤ A ≤ A or equivalently A ∈ [A, A]. (24)

Definition 4. The fractional interval positive system (23) is called asymptotically stable if the
system is asymptotically stable for all matrices A ∈ Mn satisfying the condition (24).

By condition (8) of Theorem 2, the positive system (23) is asymptotically stable if there
exists a strictly positive vector λ > 0 such that the condition (8) is satisfied.
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For two fractional positive linear systems

dαx
dtα

= Ax, A ∈ Mn (25)

and
dαx
dtα

= Ax, A ∈ Mn (26)

there exists a strictly positive vector λ ∈ <n
+ such that

Aλ < 0 and Aλ < 0 (27)

if and only if the systems (25), (26) are asymptotically stable.

Theorem 8. If the matrices A and A of fractional positive systems (25), (26) are asymptotically
stable then their convex linear combination

A = (1− k)A + kA for 0 ≤ k ≤ 1 (28)

is also asymptotically stable.

Proof. By condition (8) of Theorem 2, if the fractional positive linear systems (25), (26) are
asymptotically stable then there exists a strictly positive vector λ ∈ <n

+ such that (27) holds.
Using (8) and (27) we obtain

Aλ = [(1− k)A + kA]λ = (1− k)Aλ + kAλ < 0 (29)

for 0 ≤ k ≤ 1. Therefore, if the positive linear systems (25), (26) are asymptotically stable
then their convex linear combination (28) is also asymptotically stable. �

Theorem 8. The interval positive systems (23) are asymptotically stable if and only if the positive
linear systems (25), (26) are asymptotically stable.

Proof. By condition (8) of Theorem 2 if the matrices A ∈ Mn, A ∈ Mn are asymptotically

stable, then there exists a strictly positive vector λ ∈ <n
+ such that (8) holds. The convex

linear combination (28) satisfies the condition Aλ < 0 if and only if (29) holds. Therefore,
the interval system (23) is asymptotically stable if and only if the positive linear system is
asymptotically stable. �

Example 1. Consider the fractional interval positive linear continuous-time system (23) with
the matrices

A =

[
−3 2
2 −4

]
, A =

[
−2 1
1 −3

]
. (30)

Using the condition (8) of Theorem 2, we choose λ = [11]T and we obtain

Aλ =

[
−3 2
2 −4

][
1
1

]
=

[
−1
−2

]
< 0 (31)

and

Aλ =

[
−2 1
1 −3

][
1
1

]
=

[
−1
−2

]
< 0. (32)

Therefore, the matrices (30) are Hurwitz.
These considerations can be easily extended to positive different fractional orders

linear systems (10), (11).
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4. Global Stability of Fractional Nonlinear Positive Feedback Systems

Consider the m-input p-output (MIMO) nonlinear feedback system shown in Figure 1
which consists of the positive fractional linear part, the nonlinear element with the matrix
characteristic u = f (e) and the feedback with positive gain matrix H. The positive fractional
linear part is described by the equations (25), (26) with the interval matrices

Ã ∈ [A, A] ∈ Mn,B̃ ∈ [B, B] ∈ <n×m
+ ,C̃ ∈ [C, C] ∈ <p×n

+ . (33)

It is assumed that the interval matrix Ã ∈ Mn is Hurwitz.

Figure 1. The nonlinear feedback system.

The characteristic f (e) of the nonlinear element satisfies the condition

0 ≤ f (e) ≤ Ke or 0 ≤ u ≤ Ke, (34)

where

u =

 u1
...

um

,K =

 k11 · · · k1p
...

. . .
...

km1 · · · kmp

,e =

 e1
...

ep

 (35)

and
f (0) = 0, ui = f (e1, . . . , ep) ≤ ki1e1 + . . . + kipep,i = 1, . . . , m. (36)

Remark 2. The matrix K forms m, p-dimensional convex surfaces which constricts possible
dynamics of nonlinear elements, i.e., for m = p = 1 the nonlinear characteristic f(e) is presented in
Figure 2.

Figure 2. Characteristic of single-input single-output nonlinear element.

Definition 5. The fractional nonlinear positive system is called globally stable if it is asymptotically
stable for all nonnegative initial conditions x(0) ∈ <n

+.

The following theorem gives sufficient conditions for the global stability of the positive
nonlinear system.

Theorem 9. The fractional nonlinear system consisting of the positive asymptotically stable
linear part described by (25), (26) with interval matrices (33), the nonlinear element satisfying the
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condition (34) and the feedback with positive gain matrix H ∈ <m×p
+ is globally stable if the sum of

entries of each column (row) of the matrix

(1− q)A + qA + B̃KHC̃ =

{
A + BKHC ∈ Mn for q = 0
A + BKHC ∈ Mn for q = 1 (37)

is negative.

Proof. The proof will be accomplished by the use of the Lyapunov method [26,27]. As the
Lyapunov function V(x) we choose

V1(x1) + V2(x2) = λT
1 x1 + λT

2 x2 ≥ 0 for x =

[
x1
x2

]
∈ <n

+,λ =

[
λ1
λ2

]
∈ <n

+, (38)

where λ is a strictly positive vector, i.e., λij > 0, i = 1, 2; j = 1, . . . , n.
Using (37) and (25) we obtain

dαV1(x1)
dtα + dβV2(x2)

dtβ = [ λT
1 λT

2 ]

[
dαx1
dtα

dβx2
dtβ

]
= λT(Ãx + B̃u) = λT(Ãx + B̃ f (e)) ≤ λT(Ã + B̃KHC̃)x

(39)

since u = f (e) ≤ Ke = KHC̃x.

From (39) it follows that dαV1(x1)
dtα + dβV2(x2)

dtβ < 0 if the sum of entries of each column
(row) of the matrix (37) is negative (Theorem 3) and the nonlinear positive system is
globally stable. �

5. Procedure and Example

To find the K ∈ <m×p
+ satisfying the condition (37) for the nonlinear positive system,

the following procedure can be used.
Procedure 1.

Step 1. Using the matrices A, B, C of the positive linear system and the matrix H compute
the maximum value of the matrix K such that the sum of all entries of each column
(row) of the matrix

A = A + BKHC (40)

is negative. Entries of the matrix K can be computed as the solution of the linear
matrix equation

Gk = h, (41)

where the matrix G and the column vector h are defined by the sum of entries
of each column (row) of the matrix (40) and vector k contains components of
matrix K. If m p > n or/and rank G 6= n, then we choose arbitrarily m p− rank G
nonnegative entries of the matrix K.

Step 2. Using the matrices A, B, C of the positive linear system and the matrix H compute
the maximum value of the matrix K such that the sum of all entries of each column
(row) of the matrix

A = A + BKHC (42)

is negative.
Step 3. Taking into consideration K computed in Step 1 and K from Step 2, find the desired

K ∈ <m×p
+ for which the matrices A and A are Hurwitz, i.e., the characteristic f (e)

satisfy the condition (34).
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Remark 3. The conditions of Theorem 2 can be also used to compute the entries of the matrixK.
Usually in this case the computations are more complicated.

Example 2. Consider the nonlinear feedback system shown in Figure 1 with the interval matrices
of the positive linear part

A =

 −15.8 0.2 0.9
0.4 −14.1 0.5
0.5 0.4 −20.1

, A =

 −7.9 0.1 0.7
0.2 −7.9 0.3
0.1 0.2 −12.1

,

B =

 0.5 0.4
0.3 0.5
0.8 0.6

, B =

 0.4 0.3
0.2 0.4
0.6 0.5

,

C =

[
0.4 0.6 0.8
0.6 0.4 0.6

]
, C =

[
0.3 0.5 0.6
0.4 0.3 0.5

]
(43)

and the gain matrix

H =

[
2 1
1 5

]
. (44)

From (43) it follows that m = p = 2 and u1 = f (e1, e2) ≤ k11e1 + k12e2, u2 = f (e1, e2) ≤
k21e1 + k22e2, then we are looking for

K =

[
k11 k12
k21 k22

]
∈ <2×2

+ , (45)

for which the nonlinear feedback system is globally stable.
Using Procedure 1 we obtain:

Step 1. Using (40), (43) and (44) we determined that the sum of columns are the following:

∑ A(:, 1) = 2.24k11 + 5.44k12 + 2.1k21 + 5.1k22 − 14.9,

∑ A(:, 2) = 2.56k11 + 4.16k12 + 2.4k21 + 3.9k22 − 13.5,

∑ A(:, 3) = 3.52k11 + 6.08k12 + 3.3k21 + 5.7k22 − 18.7

(46)

and taking into consideration (5.2), we have

G =

 2.24 5.44 2.1 5.1
2.56 4.15 2.4 3.9
3.52 6.08 3.3 5.7

, k =


k11
k12
k21
k22

, h =

 14.9
13.5
18.7

. (47)

Since rank G = 2, then we choose mp − rank G = 2 elements of the vector k
(entries of the matrix K) as k21 = 1, k22 = 1. The solution for (41) with (47) is the
following 

k11
k12
k21
k22

 =


1.309
0.869

1
1

 (48)

and for

K <=

[
1.309 0.869

1 1

]
(49)

the system with A, B, C is stable.
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Step 2. Similar to Step 1, using (42), (43) and (44) we can write the linear matrix Equation
(41) in the form

 1.1 2.53 1.2 2.76
1.43 2.2 1.56 2.4
1.87 3.41 2.04 3.72




k11
k12
k21
k22

 =

 7.6
7.6
11.1

. (50)

Since rank

 1.1 2.53 1.2 2.76
1.43 2.2 1.56 2.4
1.87 3.41 2.04 3.72

 = 2, then we choose two elements of the

vector k as k11 = 1, k12 = 1. The solution for (50) is
k11
k12
k21
k22

 =


1
1

1.013
1.002

, (51)

and

K <=

[
1 1

1.013 1.002

]
(52)

Therefore, the system with A, B, C is stable.
Step 3. Taking into consideration (49) and (52), we have that for

K =

[
1 1
1 1

]
(53)

the matrices A and A are Hurwitz since

∑ A(:, 1) = −0.01,

∑ A(:, 2) = −0.01,

∑ A(:, 3) = −0.06,

∑ A(:, 1) = −0.02,

∑ A(:, 2) = −0.48,

∑ A(:, 3) = −0.1.

(54)

Therefore, for nonlinear elements satisfying the condition[
0
0

]
≤ f (e1, e2) ≤

[
1 1
1 1

][
e1
e2

]
, (55)

the nonlinear feedback system with interval matrices (43) of positive linear parts
and for the gain matrix (53), the nonlinear system is globally stable.

6. Exponential Decay of Processes in Nonlinear Feedbacks Systems

Consider the nonlinear feedback system shown in Figure 3 which consists of the
positive linear part, the nonlinear element with characteristic u = f (e) and positive
dynamical feedback. The linear part is described by the equations

.
x = Ax + Bu,
y = Cx,

(56)

with interval matrices

A ≤ A ≤ A, B ≤ B ≤ B, C ≤ C ≤ C, (57)
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where x = x(t) ∈ <n1
+ , u = u(t) ∈ <+, y = y(t) ∈ <+ is the state, input and output vectors

of the system (56) and A ∈ Mn1 , B ∈ <n1×1
+ , C ∈ <1×n1

+ . It is assumed that the matrix A of
(56) has all eigenvalues sk with real parts smaller than

Resk < −γ, i.e., γ > 0,k = 1, . . . , n. (58)

Figure 3. The nonlinear feedback system.

The characteristic of the nonlinear element is shown in Figure 2 and it satisfies the con-
dition

0 ≤ f (e)
e
≤ k < ∞. (59)

The positive feedback system is described by the equations

.
z = Fz + Gy,
e = Hz,

(60)

with interval matrices

F ≤ F ≤ F, G ≤ G ≤ G, H ≤ H ≤ H, (61)

where z = z(t) ∈ <n2
+ , e = e(t) ∈ <+ are the state vector and output vectors. It is assumed

that the matrix F + Inγ ∈ Mn2 is also asymptotically stable. From (56) and (60) we have[ .
x
.
z

]
= Â

[
x
z

]
+ B̂u, (62)

where

Â =

[
A 0

GC F

]
∈ Mn, B̂ =

[
B
0

]
∈ <n×1

+ , n = n1 + n2. (63)

The following theorem gives sufficient conditions for the exponential decay of tran-
sient values in the positive feedback nonlinear system faster than e−γ t.

Theorem 10. The state variables of the nonlinear system consisting of the positive linear part (56),
the nonlinear element satisfying the condition (34), (35), (36) and positive asymptotically stable
dynamical feedback system (60) are decaying exponentially faster than e−γ t if the matrix[

A + In1 γ kBH
GC F + In2 γ

]
∈ Mn (64)

is asymptotically stable.

Proof. The proof will be accomplished by the use of the Lyapunov method [26,27]. As the
Lyapunov function V(x, z) we choose

V(x, z) = λT
[

x
z

]
≥ 0 for x ∈ <n1

+ , z ∈ <n2
+ , (65)

where λ ∈ <n
+ is a strictly positive vector, i.e., λk > 0, k = 1, . . . , n.
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It is well-known that if the matrix A ∈ Mn is asymptotically stable, then the state
variables of the system

.
x = (A + Inγ)x are decaying exponentially faster than e−γ t.

Using (56), (60) and (65) we obtain

.
V(x, z) = λT

[ .
x
.
z

]
= λT

{[
A 0

GC F

][
x
z

]
+

[
B
0

]
u
}

= λT
{[

A 0
GC F

][
x
z

]
+

[
B
0

]
kHz

}
= λT

[
A kBH

GC F

][
x
z

]
≤ 0

(66)

since Bu = B f (e) ≤ kBHz by the condition (6.2).
From (66) it follows that

.
V(x, z) ≤ 0 if the matrix (64) is asymptotically stable, and

therefore the state variables decay exponentially faster than e−γ t. �
Theorem 6.1 can be applied to solve the following two problems.

Problem 1. Given matrices A, B, C and F, G, H of the positive systems (56), (60) and
the nonlinear characteristic u = f (e) of the nonlinear element. Knowing the value of k
satisfying the condition (59), check if the transient processes in the nonlinear system decay
faster than e−γ t.

Problem 2. Given matrices A, B, C and F, G, H of the positive systems (56), (60) and the
nonlinear characteristic u = f (e) of the nonlinear element. Find the maximal value of k for
which the characteristic u = f (e) of the nonlinear element satisfies the condition (59) and
the transient values of the nonlinear system decay faster than e−γ t.

The Problem 1 can be solved by the use of the following:
Procedure 2.

Step 1. Knowing the characteristic u = f (e), find the minimal value of k satisfying the
condition (59).

Step 2. Using Theorem 10, find the sum of entries of each column (row) of the matrix (64).
If all these sums are negative, then the transient processes in the nonlinear system
decay faster than e−γ t.

The Problem 2 can be solved by the use of the following:
Procedure 2.

Step 1. Using Theorem 10, find the sum of entries of each column (row) of the matrix (64).
Step 2. Find the maximal value of kc(kr) for which the sums of entries of all columns (rows)

of (64) are negative.
Step 3. Find kmax = min(kc, kr).

In this case, the transient process in the nonlinear system decrease faster than e−γ t for
all nonlinear characteristics u = f (e) satisfying the condition

0 < f (e) < kmaxe. (67)

Remark 4. The value of kmax depends only on the first n1 rows and of the last n2 columns of the
matrix (64).

Example 3. Consider the nonlinear system shown in Figure 3 with linear positive parts described
by (56) and (60) with

A =

[
−6.5 1

2 −6.2

]
, A =

[
−7 1.5
2.3 −6.5

]
, B =

[
0.5
0.7

]
, B =

[
0.5
0.7

]
,

C = [ 0.4 0.5 ], C = [ 0.5 0.6 ]

(68)
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and

F =

[
−6 2
1.6 −7

]
, F =

[
−6.2 2.2
1.8 −7.3

]
, G =

[
0.8
0.6

]
, G =

[
1

0.8

]
, (6.10)

H = [ 0.4 0.2 ], H = [ 0.5 0.4 ]

(69)

respectively, and the nonlinear element with characteristics satisfying the condition (59).

Case 1. Using k = 1, check the global stability of the nonlinear system for γ = −2. In this case,
using (6.5), (6.9) and (6.10) we obtain

[
A + In1 γ kBH

GC F + In2 γ

]
=


−4.5 1 0.3 0.24

2 −4.2 0.4 0.32
0.5 0.6 −4 2
0.4 0.48 1.6 −5

 (70)

The sums of the entries of columns of the matrix (6.11) are: column 1:= −1.6, column
2:= −2.12, column 3:= −1.7, column 4:= −2.44. Therefore, by Theorem 6.1, the nonlinear system
is globally stable.

Case 2. Find the maximal value of kmax satisfying the condition (4.2) for which the transient process
in the nonlinear system decreases faster than e−γ t. Using Procedure 2 we obtain the following:

Step 1. The sums of entries of each column (row) of the matrix

[
A + In1 γ kBH

GC F + In2 γ

]
=


−4.5 1 0.3k 0.24k

2 −4.2 0.4k 0.32k
0.5 0.6 −4 2
0.4 0.48 1.6 −5

 (71)

are: column 1: = −1.6, column 2: = −2.12, column 3: = 0.7k − 2.4, column 4: =
0.56k− 3, row 1: = −2.96, row 2: = −1.48, row 3: = 0.54k− 3.5, row 4: = 0.72k− 2.2.

Step 2. From Theorem 10 we have: for column 3: k < 3.428 and for column 4: k < 5.357 and for
row 1: k < 6.482, row 2: k < 3.0555.

Step 3. The desired value of k is kmax = min(kc, kr) = 3.0555. Therefore, the transient process
in the nonlinear system with characteristics satisfying the condition (34), (35), (36) for
k < 3.0555 decreases faster than e−γ t.

Remark 3. From matrix (6.5) and the computation procedure, it follows that the k depends only on
the matrices F, G, H and is independent of the matrices A, C, G.

7. Concluding Remarks

The global stability of continuous-time nonlinear feedback systems with different
fractional orders and interval matrices of positive linear parts has been investigated. New
sufficient conditions for the global stability of this class of positive nonlinear systems are
established (Theorem 9). The procedure for the calculation of a gain matrix characterizing
the class of nonlinear elements is presented and illustrated by numerical example. Sufficient
conditions for the exponential decay of processes in nonlinear systems have been proposed
(Theorem 10) and illustrated by numerical example. The considerations can be extended to
the discrete-time nonlinear systems with different fractional orders and interval matrices of
positive linear parts. Further investigation could address the extension of the considerations
to nonlinear different fractional order systems with e time-varying linear parts.
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