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Abstract: Rheumatoid arthritis (RA) is a chronic inflammatory and destructive joint disease
characterized by overexpression of pro-inflammatory/pro-destructive mediators, whose regulation
has been the focus of our previous studies. Since the expression of these proteins commonly depends
on AP-1, the expression of the AP-1-forming subunits cJun, JunB, JunD, and cFos was assessed in
synovial membrane (SM) samples of RA, osteoarthritis (OA), joint trauma (JT), and normal controls
(NC) using ELISA and qRT-PCR. With respect to an observed discrepancy between mRNA and
protein levels, the expression of the mRNA stability-modifying factors AU-rich element RNA-binding
protein (AUF)-1, tristetraprolin (TTP), and human antigen R (HuR) was measured. JunB and JunD
protein expression was significantly higher in RA-SM compared to OA and/or NC. By contrast, jun/fos
mRNA expression was significantly (cjun) or numerically decreased (junB, junD, cfos) in RA and OA
compared to JT and/or NC. Remarkably, TTP and HuR were also affected by discrepancies between
their mRNA and protein levels, since they were significantly decreased at the mRNA level in RA
versus NC, but significantly or numerically increased at the protein level when compared to JT and
NC. Discrepancies between the mRNA and protein expression for Jun/Fos and TTP/HuR suggest
broad alterations of post-transcriptional processes in the RA-SM. In this context, increased levels of
mRNA-destabilizing TTP may contribute to the low levels of jun/fos and ttp/hur mRNA, whereas
abundant mRNA-stabilizing HuR may augment translation of the remaining mRNA into protein
with potential consequences for the composition of the resulting AP-1 complexes and the expression
of AP-1-dependent genes in RA.
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1. Introduction

Rheumatoid arthritis (RA) is characterized by chronic inflammation and destruction of multiple
joints, perpetuated by an invasive pannus tissue. Activated fibroblast-like synoviocytes (FLS) are a
major component of the pannus and contribute to joint destruction by secretion of pro-inflammatory
cytokines and tissue-degrading enzymes [1]. In former studies, our group analyzed the expression
and regulation of proteins involved in the inflammatory, destructive, and fibrotic processes observed
in RA, e.g., cytokines [2–4], proteases [2,5], or collagens [6]. A variety of these proteins is regulated by
the transcription factor activating protein (AP)-1, e.g., matrix metalloproteases 1, 3, and 13, interleukin
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(IL)-1β, IL-6, and tumor necrosis factor (TNF) [7]. Consistently, AP-1—classically a homo-/heterodimer
of proteins of the Jun and Fos proto-oncogene families [8]—appears strongly involved in the activation
of RA-FLS [9,10] and is considered as critically involved in RA pathogenesis [7,11]. Moreover, cJun and
cFos are regarded as activating AP-1 subunits, whereas JunD and JunB mediate predominantly
deactivating/inhibitory effects [12]. Genetic deletion of cjun, for instance, led to the amelioration of
arthritis in a murine arthritis model [13]. Therefore, and to expand a former study focusing on the junB
expression in the synovial membrane (SM) of patients with rheumatic diseases [14], the expression of
AP-1 subunits in the RA-SM was analyzed. As controls, samples from osteoarthritis (OA) and joint
trauma (JT) patients were used, as well as postmortem normal controls (NC).

In the course of our analyses, a remarkable discrepancy between the mRNA and protein levels
of certain jun and fos genes was detected, leading to the consideration of mRNA stability-regulating
proteins. In their 3′-untranslated regions (3′-UTR), jun and fos mRNA molecules contain U-/AU-rich
elements (ARE), which play an important role in the regulation of mRNA stability [15]. ARE-binding,
mRNA stability-modifying proteins such as mRNA-stabilizing human antigen R (HuR) or destabilizing
AU-rich element RNA-binding protein (AUF)-1 and tristetraprolin (TTP) influence the mRNA decay or
stabilize deadenylated mRNA intermediates [16]. HuR is known to inhibit cfos and (to a lesser extent)
cjun mRNA decay [17] and is expressed in elevated levels in RA synovium [18]. TTP shows distinct but
overlapping binding specificities with HuR [15]. Though generally regarded as an anti-inflammatory
regulator [19], TTP has also been detected in enhanced levels in RA [20], as observed in both the
synovial tissue [21,22] and specific synovial cell types (e.g., macrophages, FLS, and vascular endothelial
cells) [21]. Interestingly, among the mRNA stability-modifying proteins with mutual or autoregulatory
capacity [23], TTP and HuR were also characterized by discrepancies between their mRNA and protein
levels in the RA-SM, suggesting broader alterations of the mRNA metabolism in rheumatic diseases.

2. Materials and Methods

2.1. Tissue Collection and Preparation

The SM samples used in this study were obtained during joint replacement/synovectomy from
RA and OA patients (n = 24 each, Clinic of Orthopedics, Eisenberg). Tissue samples from JT surgery
(Department of Traumatology, University Jena; n = 9) were used as disease controls, and samples
from postmortem biopsy (Humboldt University Berlin, n = 5) were used as normal controls (Table S1).
After removal, tissue samples were frozen and stored at −70 ◦C. RA and OA patients were classified
according to the respective criteria of the American College of Rheumatology [24,25] valid in the period
of sample collection. Written informed patient consent was obtained from all participating patients or
(in the case of postmortem samples) relatives. The study was approved by the ethics committees of the
Friedrich Schiller University Jena ((i) code: 0256-5/99, date: 15.05.1999 and (ii) code: 1154/-07/03, date:
30.06.2004) and the Humboldt University Berlin (code: EA1/193/10, date: 26.04.2012) in accordance
with the declaration of Helsinki.

2.2. Purification of Total RNA and cDNA Synthesis

Tissue homogenization, total RNA isolation, treatment with RNase-free DNase I (Qiagen, Hilden,
Germany), and cDNA synthesis were performed in accordance with [14]. mRNA integrity was
confirmed using an Agilent 2100 Bioanalyzer (Agilent Technologies Deutschland GmbH, Waldbronn,
Germany). DNA concentrations were determined using a Nanodrop ND-1000 system (PeqLab,
Erlangen, Germany).

2.3. Real-Time RT-PCR

For real-time RT-PCR, a LightCycler 2.0 was used (Roche Diagnostics, Mannheim, Germany).
PCR reactions were performed as previously described [14]. In order to normalize the amount of cDNA
in each sample and to guarantee comparability of the calculated proto-oncogene mRNA expression in
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all analyzed samples, the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
was amplified, and the samples were diluted for quantitation using the respective dilution factors [14].
The general amplification protocol (50 cycles) was set as follows (for details, see Table S2): initial
denaturation: 3 min, 95 ◦C; gene-specific settings for denaturation, primer annealing, amplification,
and additional heating step (heating/cooling speed 20 ◦C/s). The general settings for the melting curve
protocol (1 cycle) were as follows: denaturation: 0 s, 95 ◦C; gene-specific settings for cooling; heating:
0 s, 95 ◦C (speed 0.1 ◦C/s); final cooling: 5 min, 40 ◦C; speed: 0.1 ◦C/s.

The fluorescence emitted by dsDNA-bound SYBR-Green was measured once at the end of each
additional heating step and continuously during the melting curve program. The concentrations of
cDNA present in each sample were calculated by the LightCycler software using external standard
curves (generated using 10-fold dilutions of plasmids containing the respective target sequence).
Quality controls containing only water were consistently negative.

2.4. Preparation of Nuclear Extracts and Whole-Cell Extracts from Tissue Samples

Nuclear extracts (for Jun and Fos protein expression analyses) and whole-cell extracts (for AUF-1,
TTP, and HuR protein expression analyses) were prepared from RA-SM samples (n = 13 for Jun/Fos
proteins; n = 6 for AUF-1, TTP, and HuR), OA-SM samples (n = 13 and n = 6, respectively), JT samples
(n = 6 and n = 3, respectively), and postmortem NC (n = 5 and n = 2, respectively) as previously
described [26].

2.5. ELISA-Based Jun/Fos Protein Quantitation

For cJun protein detection, the ELISA-based BD Mercury TransFactor cJun Kit (Clontech
laboratories, Palo Alto, CA, USA) with AP-1 consensus sequence-coated wells was used in accordance
with the manufacturer´s instructions (double determinations), including the following deviations from
the manual: The primary cJun antibody (mouse mAb, 0.5 µg/µL) was diluted 1:50 in 1 × TransFactor
buffer/blocking reagent. The secondary Ab (goat anti-mouse IgG-HRP, 1 µg/µL) was diluted 1:100
in 1 × TransFactor buffer/blocking reagent. Subsequently, tetramethyl-benzidine (TMB) substrate
(Clontech) was added, and the samples were incubated for 2 h at room temperature.

For JunB, JunD, and cFos protein detection, the TransAM AP-1 Family Kit (ELISA-based, AP-1
consensus sequence-coated wells; Active Motif, Rixensart, Belgium) was used in accordance with the
manufacturer´s instructions (single determinations). Each sample was incubated with TMB substrate
(Active Motif) for 20 min. In all cases, nuclear extract of phorbol 12-myristate 13-acetate-stimulated
K4IM cells [27] served as a positive control.

After stopping the color development reaction by adding 1 M H2SO4 (cJun) or stop solution (JunB,
JunD, and cFos; Active Motif), the absorbance of each sample was measured at 450 nm using a Fluostar
Optima (BMG Labtechnologies GmbH, Offenburg, Germany). Quantitation analyses were performed
using mathematical correction factors for the protein content as determined by the bicinchoninic acid
assay (Pierce, Rockford, IL, USA).

2.6. Antibodies, SDS-PAGE, and Western Blot Analyses

For Western blot analyses of HuR, AUF-1, and TTP, the following antibodies were used: a mouse
monoclonal anti-HuR-antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA), a rabbit polyclonal
anti-AUF-1-antibody (Upstate, Lake Placid, NY, USA), and a rabbit polyclonal anti-TTP-antibody
(Dartmouth Hitchcock Medical Center, Lebanon, NH, USA). All horseradish peroxidase conjugated
secondary antibodies were purchased from Santa Cruz Biotechnology.

The protein content in nuclear or whole-cell extracts was determined using the bicinchoninic acid
assay (Pierce). Subsequently, protein samples were adjusted to equal protein concentrations. For HuR,
AUF-1, and TTP protein detection, SDS-PAGE (10%) with 10 µL of each adjusted cell extract sample
was performed, followed by Western blot analysis. HuR was detected by anti-HuR antibody, diluted
1/250. Anti-AUF-1 and anti-TTP antibodies were diluted 1/4000 and 1/2500, respectively. All antibodies
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were diluted in Tris buffered saline with Tween 20 (TBS-T)/5% milk (Carl Roth GmbH, Karlsruhe,
Germany). Integrated density of protein bands was analyzed using the Scion Image 4.0.2 software
(Scion Corporation, Frederick, MD, USA) and corrected for background intensity.

2.7. Immunohistology/In Situ Hybridization

For immunohistochemical studies, polyclonal antibodies against cFos were raised, prepared, and
purified as described in [14]. Immunohistochemical detection of cFos protein in cryostat sections,
nuclear counterstaining by hematoxylin, and in situ hybridization using specific RNA probes for cfos
were performed as previously described [14].

2.8. Statistical Analysis

Data were represented as box plots with median, confidence intervals (25% and 75%), and
whiskers (min to max) using GraphPad Prism 5 (GraphPad Software Inc., San Diego, CA, USA).
The Mann–Whitney U-test was applied to analyze differences among mRNA and protein levels in RA,
OA, JT, and postmortem NC samples. Significant differences were accepted for p-values ≤ 0.05.

As the mRNA expression in JT and postmortem NC did not significantly differ, these groups
were pooled for the purpose of correlation analyses. Correlation analyses among experimental results
and between the results and the clinical features of the patients were performed using the Spearman
rank test. In the latter case, only differences with a lower significance level (p ≤ 0.01) were regarded as
statistically significant, in order to correct for multiple comparisons. The analyses were performed
using the SPSS 12.0 software (SPSS Inc., Chicago, IL, USA).

Power analyses (G*power [28]) for significant differences among RA, OA, JT, and postmortem NC
confirmed that: (i) For cjun mRNA the significant differences (alpha error probability of 0.05; power
(1-β error probability) of 0.8) reached effect sizes of 0.72 and 0.82 (medium to large effect; as defined
according to [29]); (ii) for JunB and JunD protein, the significant differences reached effect sizes of 1.07,
1.07, and 0.89, respectively (large effect); (iii) for ttp and hur mRNA, the significant differences reached
effect sizes between 0.72 and 1.79 (medium to large effect; except for one case with 0.28; small); and (iv)
for TTP protein, the significant differences reached effect sizes of 2.21 and 3.37 (huge effect; as defined
according to [30]).

3. Results

3.1. Quantitation of Jun and Fos mRNA Expression in the SM

The median mRNA expression levels of cjun mRNA were elevated in NC-SM samples in
comparison to all other groups, though without significant differences. JT samples showed significantly
higher cjun amounts than in OA (6-fold) and RA (2-fold; Figure 1A). The junB levels were roughly
comparable in RA-, OA-, and NC-SM, but numerically increased in JT (2.5-3-fold; Figure 1B).
Comparable junD mRNA amounts were detected in OA and RA. While both groups had higher junD
mRNA levels than in NC (approx. 2-fold), the amounts were numerically lower when compared to
JT (0.5-0.6-fold; Figure 1C). Levels of cfos were roughly comparable in NC, OA, and RA, whereas JT
showed a numerically higher expression (3-fold; Figure 1D). Power analysis revealed that for cjun RNA,
the significant differences reached effect sizes representing medium to large effects (see Section 2.8).
Artificially low mRNA expression levels due to degradation or RNase contamination were excluded
by RNA quality analysis.

3.2. Quantitation of Jun and Fos Protein Expression

Median cJun levels were comparable in NC, JT, and RA, but numerically lower in OA (approx.
0.15-fold; Figure 1E). JunB protein amounts were comparable in NC and OA, numerically increased
in JT versus both NC and OA, and significantly elevated in RA when compared to OA (due to the
median values of 0 in NC, OA, and RA, no fold changes are provided; Figure 1F). Comparable median
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JunD levels were observed in JT and OA samples. In RA, JunD levels were significantly higher than in
OA (5-fold) and NC, which were characterized by very low protein values (median optical density
(OD) 0.1 and 0, respectively; Figure 1G). For cFos, higher amounts were measured in NC and OA in
comparison to both JT- and RA-SM samples, which in turn showed comparable median expression
levels of 0 (Figure 1H). Power analysis revealed that the significant differences all reached effect sizes
representing large effects (see Section 2.8).
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Figure 1. Quantitation of Jun/Fos mRNA and protein expression in the synovial membrane (SM). (A–D)
The graph shows the median relative units (as detected by pPCR) for (A) cjun, (B) junB, (C) junD, and
(D) cfos in rheumatoid arthritis (RA)- and osteoarthritis (OA)-SM (n = 24 each), joint trauma (JT)-SM
(n = 9), and postmortem normal controls (NC)-SM (n = 5). All SM samples were positive for mRNA
expression except for 1 RA and 1 OA sample (cjun), 2 OA samples (junB), 2 RA samples (junD), and
2 RA and 2 OA samples (cfos). (E–H) The median optical density (OD) at 450 nm (as detected by
ELISA-based methods) for (E) cJun, (F) JunB, (G) JunD, and (H) cFos in RA-SM, OA-SM (n = 13 each),
JT-SM (n = 6), and postmortem NC-SM (n = 5) are given. In all groups, the samples were a subgroup
of the individuals used for mRNA analysis. SM samples were positive for protein expression except
for 3 RA, 6 OA, and 3 JT samples (cJun), 7 RA, 11 OA, 3 JT, and 3 NC samples (JunB), 1 RA, 3 OA,
and 2 NC samples (JunD), as well as 8 RA, 4 OA, and 4 JT, and 2 NC samples (cFos). Box plots are
shown with horizontal lines for the respective median, boxes represent the 25th–75th percentiles, and
whiskers indicate the extremes (min to max). Statistical analyses: Mann–Whitney U-test, * p ≤ 0.05.
(conc.: concentration).
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3.3. Analysis of cfos mRNA and cFos Protein Expression by In Situ Hybridization and Immunohistology

In RA-SM, a high number of cells in the lining layer (Figure 2(II in A)) and diffuse infiltrates in
the sublining area (d in A) were positive for cFos protein (Figure 2A) and cfos mRNA (Figure 2B).
Double-staining experiments revealed that these cells were CD14- and CD3-negative (Figure 2E,F),
but collagen III-positive (data not shown), thereby assigning the signal mainly to FLS. cFos was
also expressed in nonlymphoid cells close to vessels penetrating stromal lymphoid follicles (I in 2C).
By contrast, cfos mRNA was only detected in a few cells in stromal lymphoid follicles containing
predominantly T- and B-lymphocytes (Figure 2D). In OA- and JT-SM, the expression of cFos protein
was detected in a lower number of cells (Figure 2G,H) due to the presence of large fibrous areas
(Figure 2G(f in H)). For immunohistochemistry of Jun proteins, see [12,27].
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Figure 2. Detection of cFos mRNA and protein in SM cryostat sections by immunohistochemistry and 
in situ hybridization. (A,C) Immunohistochemical detection of cFos protein in RA-SM samples. 
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Figure 2. Detection of cFos mRNA and protein in SM cryostat sections by immunohistochemistry and in
situ hybridization. (A,C) Immunohistochemical detection of cFos protein in RA-SM samples. Staining
for cFos was observed in numerous cell nuclei in the lining layer (II in A), diffuse infiltrates (d in A),
and in individual cell nuclei in lymphoid follicles (I in C, nuclear counterstaining by hematoxylin).
(B,D) In situ hybridization using specific RNA probes for cfos in RA-SM samples. The distribution pattern
of cfos mRNA was similar to that of cFos protein. (E,F) Double-staining for cFos protein (peroxidase;
brown) and the macrophage marker CD14 (APAAP; blue; E) or the T-cell marker CD3 (APAAP; blue;
F) in RA-SM, showing a positive signal for cFos (examples indicated by arrows in E/F) mainly in
CD14-negative (E), CD3-negative (F) cells, identifying these cells as non-macrophages/non-T-cells.
(G) Immunohistochemical detection of cFos protein in OA-SM samples. Staining for cFos in cells of
the lining layer, diffuse infiltrates, fibrous areas, and endothelia was observed in a lower number of
positive cells as compared to RA (A). (H) Immunohistochemical detection of cFos protein in JT-SM
samples. Staining for cFos was observed in a lower number of positive cells as compared to RA (A) in
stromal fibrous areas (f in H; arrows indicate positive nuclei), interrupting small areas of infiltrating
cells. Original magnification for A–H 184 ×.

3.4. Quantitation of auf-1, ttp, and hur mRNA Expression

The median auf-1 mRNA expression was comparable in NC, JT, and RA samples and lower in OA
(0.5-fold; Figure 3A). Median levels of ttp were comparable in JT and NC and significantly increased
when compared between NC or JT and OA (approx. 8.5-fold) and between NC and RA (2.5-fold).
Significantly higher ttp levels were also observed in RA versus OA (3-fold; Figure 3B). The hur mRNA
expression in JT, OA, and RA was roughly comparable. NC samples, however, showed significantly
elevated hur mRNA levels in comparison to all other groups (2.5- to 3.5-fold, Figure 3C). Power analysis
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revealed that the significant differences all reached effect sizes representing medium to large effects
(see Section 2.8).J 2020, 3 8 
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Figure 3. Quantitation of AU-rich element RNA-binding protein (AUF-1), tristetraprolin (TTP),
and human antigen R (HuR) mRNA and protein expression in the SM. (A–C) The median relative
units (as detected by pPCR) for (A) auf-1, (B) ttp, and (C) hur mRNA in RA- and OA-SM (n = 15 each),
JT-SM (n = 3), and postmortem NC-SM (n = 4) are given. All SM samples were positive for mRNA
expression except for 1 OA sample (auf -1), 1 RA sample (ttp), and 1 JT sample (hur). (D–F) The graph
shows the Western blot analysis and the median integrated density of protein bands (as determined by
densitometry) for (D) AUF-1, (E) TTP, and (F) HuR in RA-, OA- (n = 6 each), JT- (n = 3), and postmortem
NC-SM (n = 2). In all groups, the samples were a subgroup of the individuals used for mRNA analysis.
All SM samples were positive for AUF-1 and TTP protein expression. The number of HuR protein
positive samples was 5/6 for RA-SM and 4/6 for OA-SM. In NC and JT, no HuR protein was detected.
Box plots are shown with horizontal lines for the respective median, boxes represent the 25th–75th
percentiles, and whiskers indicate the extremes (min to max). Statistical analyses: Mann–Whitney
U-test, * p ≤ 0.05, ** p ≤ 0.01.

3.5. Quantitation of AUF-1, TTP, and HuR Protein Expression

The median expression level of AUF-1 was roughly comparable in all groups (Figure 3D). Median
levels of TTP were comparable in RA and OA, but significantly increased in RA compared to both
JT (1.5-fold) and NC (1.7-fold; Figure 3E). HuR protein was not detectable in NC and JT, but RA-
and OA-SM samples showed detectable and comparable HuR protein amounts (Figure 3F). Power
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analysis revealed that significant the differences for TTP reached effect sizes representing huge effects
(see Section 2.8).

3.6. Correlation Analyses

To identify potential co-expression patterns, correlation analyses were performed. In the SM of
both OA and NC/JT, significant correlations were observed between the levels of cfos and cjun, cfos and
junD, as well as cjun and junD mRNA (Table S3A/B). By contrast, levels in the RA-SM showed significant
correlations of cfos with junB, cfos with junD, and junB with junD mRNA(Table S3C), indicating that in
RA a shift in the normally observed co-expression patterns occurs.

Correlation analyses among protein expression levels revealed a significant correlation between
JunB and JunD protein expression when analyzing SM samples of all groups together (r = 0.788,
p < 0.001, n = 17). In RA-SM samples, a significant correlation was observed between cJun and cFos
(r = 0.857, p < 0.05, n = 6). Moreover, RA-SM samples showed significant correlations of both JunB
and JunD proteins with the age of the respective patients (both: r = 1.0, p < 0.001, n = 6). Significant
negative correlations were observed in RA between JunB/JunD proteins and C-reactive protein (CRP;
r = −1.0, p < 0.001, n = 6 each), as well as between JunB/JunD proteins and rheumatoid factor positivity
(RF; r = −1.0, p < 0.001, n = 6 each).

4. Discussion

Using real-time RT-PCR, decreased cjun, junB, junD, and cfos mRNA expression in comparison to
JT was observed in the RA-SM (see also [14]). In acute JT, the enhanced mRNA expression of all AP-1
components is compatible with the occurrence of joint bleeding [31] or mechanical stress [32]. On the
other hand, the RA-SM showed roughly equal levels of jun/fos mRNA in comparison to SM from OA
and postmortem NC. Though a number of studies have reported an elevated expression level of jun/fos
mRNA in synovial tissue [33,34], other studies [14,35,36] have shown no increased jun/fos expression
in RA. Moreover, equal levels of cfos and cjun have been observed in OA-SM [37], in good agreement
with the present data.

In contrast to the mRNA levels, interestingly, RA-SM showed significantly/numerically increased
Jun and Fos protein expression compared to OA, JT, and NC samples, thus matching reports on the
enhanced protein expression of Jun proto-oncogenes in RA [38]. Elevated cFos protein expression in
correspondence to local cfos mRNA expression was confirmed by immunohistochemical analyses/in
situ hybridization in the lining layer and diffuse infiltrates of the RA-SM, reflecting previous reports
on synovial Fos protein expression [33,38].

As cFos and cJun protein expression levels are numerically increased in RA, these activating AP-1
components could contribute to the aggressive development of RA by: (i) elevation of AP-1 levels
and transcriptional activity in general; (ii) enhancement of the binding activity of the resulting AP-1
complexes [39], possibly in cooperation and/or competition with JunB and JunD; and (iii) stabilization
of the AP-1 formation through Jun/Fos heterodimerization [40]. This could be mediated by altered
mRNA expression levels of the jun and fos proto-oncogenes in general, as well as by a different pattern
of jun/fos mRNA co-expression, specifically observed for RA in the present study (Table S3). Enhanced
transactivation activity of the resulting AP-1 complexes via post-translational phosphorylation, e.g.,
by Jun N-terminal kinase 2, which is more active in RA synovial tissue and FLS than in OA [34,41],
may also play a role in this assumption.

The significant overexpression of JunB and JunD proteins in RA reported in this study is in conflict
with their known deactivating influence on cellular functions [12]. However, increased expression
of other transcription factors and the dependence of the functional effects of AP-1 complexes on
their composition [40] may modify the effects of JunB and JunD in RA-SM. For instance, JunB- and
Fos-related antigen 1-containing AP-1 complexes have been shown to promote collagen-induced
arthritis [42]. Nevertheless, a deactivating influence of JunB and JunD is supported by the present
negative correlation between their expression and the inflammatory clinical status of the respective RA
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patients (as represented by RF and CRP), whereas AP-1 activity in general shows a positive correlation
with the CRP level in RA [39].

The discrepancy between proto-oncogene protein and mRNA expression observed in RA in this
study fits other results indicating that protein synthesis of certain cytokines also does not adequately
reflect changes in mRNA transcription in rat antigen-induced arthritis [3], suggesting a broader
occurrence of these discrepancies in different arthritides. However, discrepancies between Jun/Fos
mRNA and protein were almost exclusively observed in RA, indicating a disease-specific alteration.
In the case of JunB, strikingly, JT also shared such discrepancy, although in an inverted fashion (mRNA
>> protein).

For all samples examined in this study, artificially low mRNA expression levels due to postmortem
RNA degradation or RNase contamination can be excluded by RNA quality analysis. A direct
mechanistic link between mRNA transcription and protein translation was excluded as an underlying
reason since there was no correlation between mRNA and protein data. Thus, uncoupling of
transcriptional and translational activity in RA appears plausible.

The mRNA stability-modifying proteins TTP and HuR are known to play an important role in
the post-transcriptional regulation of proto-oncogene and cytokine mRNA half-life [43], including
TNF [44] and IL-6 [45]. On the other hand, cytokines such as TNF themselves may contribute to the
dynamic regulation of the mRNA stabilome [46]. Both TTP and HuR have been reported to be present
in elevated levels in the inflamed RA-SM [18,21,22] and increased levels of TTP protein in both RA and
OA may contribute to the low levels of jun/fos mRNA in the respective synovial tissues. By contrast,
significantly increased levels of the mRNA-stabilizing protein HuR in RA are paralleled by increased
levels of Jun/Fos protein in the RA-SM. This indicates post-transcriptional alterations (including the
competition of TTP and HuR for mRNA binding [15,23]) with a previously unreported specificity for
RA. Remarkably, TTP and HuR also showed discrepancies between mRNA and protein levels in both
OA and RA, i.e., increased protein amounts despite decreased mRNA levels in comparison to the
control groups JT and/or NC. This may be due to the known mutual and autoregulatory influence
of these mRNA stability-modifying proteins on their mRNA species [23]. For instance, TTP is able
to target hur mRNA [47] but also its own mRNA [48]. HuR, in turn, may auto-stabilize hur mRNA
strands [47]. As a consequence, the deregulation of one player may unsettle the system of mRNA
stability-modifying proteins, as described for TTP deficiency-associated HuR overexpression [49].
The broad occurrence of uncoupled mRNA and protein levels for different gene groups in RA suggests
specific alterations of key processes regulating the mRNA metabolism.

One obvious mechanism may involve the destabilization of jun/fos and ttp/hur mRNA strands by
TTP, whereas the stabilization of the remaining mRNA strands by HuR (including the stabilization of
its own mRNA [23]) potentially contributes to the increased translation into Jun/Fos and TTP/HuR
proteins. The potential participation of further RNA-binding proteins [23], their post-transcriptional
modification [20], and other regulatory factors, e.g., miRNAs [49,50] or long noncoding RNAs such as
H19 [51] will have to be elucidated in future studies. Interestingly, in IL-1β-stimulated RA-FLS, increased
TTP mRNA and protein levels were also associated with the enhanced expression of pro-inflammatory
cytokines and chemokines (such as IL-6 and IL-8) [52]. Additionally, monocyte-derived dendritic
cells differentiated in the presence of CXC-motif ligand 4 showed combined induction of TTP, IL-6,
and TNF in response to polyI:C-stimulation [53]. In other inflammatory diseases such as periodontal or
kidney disease, HuR appears to modulate the inflammatory response by stabilizing pro-inflammatory
mRNAs [54]. Moreover, it has been proposed that the HuR-TTP-axis may have a balancing influence
on pro-inflammatory cytokine expression in endometriosis patients [55], reflecting well the assumed
competition between HuR and TTP in the present study. Abundant but comparable expression of AUF-1
in NC and different joint diseases presently excludes a link between the mRNA/protein discrepancy
in RA and the level of this mRNA-destabilizing protein. In addition to the alterations of the mRNA
metabolism, broad intragroup and interindividual expression variances have been observed in RA in a
number of disease-relevant or even disease-specific pathways/complexes. Thus, RA pathogenesis in
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different individuals may be less dependent on common alterations of the expression of specific key
genes, but rather on individual-specific alterations of gene expression and mRNA stability, resulting in
common disturbances of key pathways [56].

Beyond the mechanisms suggested in this study, further processes may exert a decisive influence
on the observed discrepancies. For instance, it is conceivable that an increase in protein stability
or translation efficiency contributes to the elevated protein levels observed in arthritides. In other
biological settings, e.g., monocytic differentiation, accumulation of transcriptions factors due to
increased protein production and stability has already been demonstrated [57]. Moreover, stabilized
pro-inflammatory transcripts such as IL-6 and IL-8 are efficiently translated into proteins in RA-FLS
following TNF stimulation [46]. Thus, a variety of potential regulators of mRNA and protein levels
and their specific role in diseases such as RA will have to be assessed (also including a deeper analysis
of mRNA stability-modifying proteins). Finally, a comprehensive mechanistic model of the complex
regulatory network steering mRNA and protein levels remains to be established.

5. Conclusions

The striking discrepancy between Jun and Fos mRNA and protein expression in the RA-SM
(potentially created by a competing influence of mRNA-stabilizing and -destabilizing proteins such
as HuR and TTP) may contribute to inflammation and joint destruction. Further studies will have to
address the mechanistic links between the mRNA/protein discrepancy in RA and the levels and/or
functionality of mRNA stability-modifying proteins, including a detailed analysis of the composition
of the AP-1 complexes and their resulting functional activity in different synovial cell populations
(both spontaneously and following antirheumatic treatment).
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Abbreviations

AP activator protein
ARE AU-rich elements
AUF AU-rich element RNA-binding protein
CRP C-reactive protein
FLS fibroblast-like synoviocytes
GAPDH glyceraldehyde 3-phosphate dehydrogenase
HuR human antigen R
IL interleukin
JT joint trauma
NC normal controls
OA osteoarthritis
RA rheumatoid arthritis
RF rheumatoid factor
SM synovial membrane
TNF tumor necrosis factor
TTP tristetraprolin
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