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Abstract: Normally, econometric models that forecast the Italian Industrial Production Index do
not exploit information already available at time t + 1 for their own main industry groupings.
The new strategy proposed here uses state–space models and aggregates the estimates to obtain
improved results. The performance of disaggregated models is compared at the same time with
a popular benchmark model, a univariate model tailored on the whole index, with persistent not
formally registered holidays, a vector autoregressive moving average model exploiting all information
published on the web for main industry groupings. Tests for superior predictive ability confirm the
supremacy of the aggregated forecasts over three steps horizon using absolute forecast error and
quadratic forecast error as a loss function. The datasets are available online.
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1. Introduction

Forecasting industrial production can be a difficult task, but forecasting the sub-components of
industrial production at a high disaggregation level can be even more challenging for researchers.
This happens because there is some information available at the disaggregated level, and unless it has
movements similar to the sub-components, there is the risk of worsening forecast results by simply
exploiting the past. Gross data on the Italian Industrial Production Index at a higher disaggregated
level are analyzed, exploiting the high correlation with other times series when they are available. Low
forecasting performance on average is found when poor or no information is available, consistent with
existing literature, but larger improvements were observed for the disaggregated components that face
a richer correlation with other variables on their past and on the one-step-ahead prediction.

The related literature (see Bulligan et al. [1]) shows two main sets of models. The first set exploits
quantitative data when they are available for the whole index or for its disaggregated components,
using regression methods (see, for instance, Marchetti et al. [2] and Bodo et al. [3]) or seemingly
unrelated equations methods as in the work of Bruno et al. [4]. The second set exploits so-called
common factors that summarize a big set of survey data about industrial production as predictors.

Costantini [5] showed how “The state-space model yields superior forecasts among the factor models” .
To the best of my knowledge, this is the only study that compared the short-term forecasting

performance of a naive autoregressive model applied to the Italian Industrial Production Index with a
set of state-space models applied to its own main industry groupings.

The effort is motivated to understand the short-term evolution of the Italian economy. It is
mandatory to continuously review the estimates to monitor the evolution of quarterly estimates
of gross domestic product. There is a trade-off between the need to provide industrial production
forecasts closely related with the future evolution of gross domestic product in a short time and doing
such a job by exploiting all the information available, as much as possible, with the most suitable
econometric tools.

J 2019, 2, 508–560; doi:10.3390/j2040033 www.mdpi.com/journal/j

http://www.mdpi.com/journal/j
http://www.mdpi.com
http://www.mdpi.com/2571-8800/2/4/33?type=check_update&version=1
http://dx.doi.org/10.3390/j2040033
http://www.mdpi.com/journal/j


J 2019, 2 509

Brunes-Lesage et al. [6] pointed out, when analyzing the French Industrial Production Index, that
"The IIP, however, is characterized by a significant publication delay, around 40 days after the end of the reference
month for the main European countries, and the first IIP estimations are often revised significantly. Thus, it is
less useful for short-term forecasting exercises.” Italian data are not so prone to high revisions, but they are
also characterized by the same delay (40 days). The aim of this paper is, therefore, to propose several
models designed to forecast the current-month Italian Industrial Production Index (nowcast) using the
data listed in Table 1 and to forecast the Italian Industrial Production Index for the next two months
after the present time month.

It is shown in further detail using a recursive forecast window starting from January 2001 and
moving from January 2008 up to December 2018 that a popular autoregressive of order three over the
log seasonal differences benchmark used by Bulligan et al. [1] can be beaten at any disaggregated level.
(The Destatis Truck Toll Mileage Index starts from January 2005 and the time series for natural gas
from January 2006. Nevertheless, for 2005, we use for natural gas the level given by Italian Ministry
of Economic Development. For 2004, we give data about natural gas transported the same monthly
percentage of industrial gas registered for the year 2005. For 2001–2004, a naive backcast is carried out
for the Destatis Truck Toll Mileage Index using seasonal growth rates of published German Industrial
Index of Intermediate Goods. The same strategy is used to backcast the level of production of cars
from 2001 to 2007 using consolidated published data from Destatis about production of cars.)

It is shown how aggregating the estimates can obtain more competitive results than the
above-mentioned autoregressive model over a three step horizon. We exploit state–space models,
focusing mainly on the Truck Toll Mileage Index in Germany (see Askita et al. [7] and Cox et al. [8])
to forecast the Industrial Index of Intermediate Goods and of Capital Goods. Non-durable goods
exploit the industrial gas data. Durable goods forecasts exploit the Destatis Truck Toll Mileage Index.
Conversely, for the production of electricity, gas, steam and air conditioning supply, due to abundance
of daily and monthly Italian data, a set of ad-hoc models at different frequencies is used.

The paper contributes to the research community for the following reasons:

• A workhouse is beaten by the aggregated model. However, it is still competitive at the third step.
• A model tailored on Italian holidays history is beaten by the aggregated model.
• All data are freely available on the web without any restrictions.
• It uses open source software matrix programming language GNU Octave (see https://www.gnu.

org/software/octave/) to enforce transparency of results and to elicit debate among researchers
all over the world.

• For the period before 2015, where it is impossible to use the same fixed weights, a solution
is proposed.

• Computational algorithms and state-space models have never been applied in such a
disaggregated context for the Italian Production Index and are not available in standard
commercial packages.

• It shows how it is possible to cast into a state-space model (without imposing restrictions) a vector
autoregressive moving average applied to the whole index that exploits as endogenous variables
all freely available data at t + 1 on the web concerning Main Industry Groupings disaggregation
from January 2001 to December 2018.

• For the first time, model confidence set procedure of Hansen et al. (see [9]) is applied to Italian
Industrial Production Index as well as its sub-components to check the superior predictive ability
of aggregated forecasts over a class of competing econometric models.

The remainder of the paper is organized as follows. In Section 2, the data used are presented
with the weighted structure of the Italian Production Index. In Section 3, the barebone model and the
barebone model enhanced by stochastic regressors are presented. The last one is used for an ad-hoc
forecasting study concerning intermediate goods, capital goods and non-durable goods. In Section 4,
more recent models are upgraded inserting most of the data freely available on the web used in the
disaggregated models. In Section 5, the basic assumptions of the models are inspected. In Section 6,
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the Kalman filter and the smoothing algorithm are summarized. Section 7 points out the main results
using the predictive ability tests ( see Section 3.7). Finally, some conclusions peculiar to the Italian
Industrial Production Index are drawn.

2. Data

Figure 1 plots the first log seasonal difference of the following indexes: Industrial Production Index
for Intermediate Goods, Industrial Production Index for Capital goods and the German Truck Toll
Mileage Index. The last variable is always available at time t + 1. As shown in Figure 2, intermediate
goods and capital goods account for 61 per cent of the whole index. Ad-hoc bivariate seemingly
unrelated time series equations are used (see example about car drivers’ accidents in the work of
Durbin et al. [10] and Section 3.1). The assumption is that these goods are transported in these
countries (Italy and Germany) monthly and that there is a relationship among their seasonal growth
rates. A similar strategy is considered for the Industrial Production Index of Durable Goods. Bivariate
seemingly unrelated time series equations (see Section 3.1) are composed by the German Truck Toll
Mileage Index and the Industrial Production Index of Durable Goods. Similarly, for the Industrial
Production Index of Non-durable Goods, the seemingly unrelated time series equations are applied to
the cumulated monthly data about the industrial natural gas used. On the contrary, a lot of information
is ready at the time of the publication on ISTAT’s website concerning production electricity and other
sub-components (Figure 3 shows the weights of sub-components). The daily data about consumption
of electricity can be cumulated to obtain a preliminary estimate of the monthly data that will be
released roughly 15–20 days later. Data about compressed natural gas are less prone to revision and
do not differ too much from their preliminary value when cumulated to obtain their monthly value.
To obtain an estimate of main industry grouping in the Industrial Production Index of Electricity, gas,
steam and air conditioning supply, we must consider four sub-components:

• Extraction of crude petroleum and natural gas
• Manufacture of coke and refined petroleum products
• Electric power generation, transmission and distribution
• Manufacture of gas; distribution of gaseous fuels through mains.

Most of the time, extraction of crude petroleum happens together with natural gas. Unfortunately,
no information was available at time t + 1 for crude petroleum, but we do have daily data about the
extraction of natural gas from 2006 up to now. These data are cumulated and inserted into seemingly
unrelated time series equations (see, for instance, the example about car drivers killed or seriously
injured in Great Britain from January 1969 to December 1984 in [10] and Section 3.1). For t + 2, roughly
25 daily observations (at that time, all monthly data are ready; see Table 1) are always available and
are appended to daily time series about the production of compressed natural gas. Manufacture of
coke and refined petroleum products is estimated by an autoregressive moving average identification
procedure described in Gómez et al. [11] applied to ISTAT’s monthly data. Electric power generation,
transmission and distribution is somewhat more complicated.

At time t + 1, production of electricity data from Terna’s website and roughly 25 daily observations
of consumption are available because two endogenous variables are available at time t + 1:

• Consumption of electricity on monthly and daily basis
• Production of electricity

A conditional vector autoregressive moving average model is used to estimate the index of electric
power generation, transmission and distribution at time t + 1. For t + 2 and t + 3, a naive autoregressive
model of order three using first seasonal weekly differences applied to daily data about consumption
and thermoelectric, national natural gas production and transportation allows us to have more reliable
estimates for production of electricity, extraction of petroleum and natural gas and finally distribution of
gaseous fuels through mains at time t + 2 and t + 3 (see the Appendixes A and B for further details).
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Figure 1. This graph plots first log seasonal differences of Industrial Production Index of Intermediate
Goods, Capital Goods and Destatis Truck Toll Mileage Index from 2006:01 to 2018:12.

Table 1. Information sources of data.

Name Series Sources Freq. Time a

IPI 5 ISTAT Monthly -

IPI of Electricity, gas, steam and air conditioning supply 4 ISTAT Monthly -

GigaWatt Electricity net production 1 TERNA Monthly +20+25 days

GigaWatt Electricity Consumption 1 TERNA Monthly +35+40 days

GigaWatt Electricity Consumption 1 TERNA Daily Every Day

Total m3 of Compressed Natural Gas transported 1 SNAM Daily Every Day

Production of m3 of Compressed Natural Gas 1 SNAM Daily Every Day

M3 of Compressed Natural Gas for Thermoelectric use 1 SNAM Daily Every Day

M3 of Compressed Natural Gas for Industrial use 1 SNAM Daily Every Day

Registration of Light Commercial Vehicles in Italy 1 ACI Monthly +35+40 days

Registration of Light Commercial Vehicles in Spain 1 ANFAC Monthly +35+40 days

Registration of Light Commercial Vehicles in France 1 CCFA Monthly +35+40 days

Registration of Light Commercial Vehicles in Germany 1 KBA Monthly +35+40 days

Truck Toll Mileage Index in Germany 1 DESTATIS Monthly +35+40 days

IPI of Manufacture of motor vehicles, trailers and semi-trailers 1 ISTAT Monthly -

Production of passengers cars in Germany 1 VDA Monthly +35+40 days
a Publication corresponds to amounts of days before the official release on ISTAT website.
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Figure 2. This pie graph shows the weights of main industry groupings in the Italian Industrial
Production Index.

Figure 3. This pie graph shows the weights of every sub-component concerning the Italian Industrial
Production Index of Electricity, gas, steam and air conditioning supply.
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3. Models Used

3.1. Barebone Model

First, our model incorporates regression variables into structural models. Thus, it has the following
structure.

Yt = Xtβ + wt (1)

where wt takes the following general structure (as described by Gómez [12])

wt = pt + st + ut + vt + et (2)

where pt is the trend, st is the seasonal, ut is the cyclical, vt is the autoregressive and et is the irregular
component.

The trend component can be summarized in the following way:

pt+1 = pt + bt + ct (3)

bt+1 = bt + dt (4)

where pt is the level and bt is the slope of the trend, and ct and dt are two mutually and serially
uncorrelated sequences of random variables with zero mean and variances σ2

c and σ2
d , respectively.

The component st follows trigonometric seasonality

st = Σ[ f /2]
i=1 si,t (5)

where f is amounts of observations per year. In our case, f = 12. Each component follows the model[
si,t+1
s∗i,t+1

]
=

[
cosωi sinωi
−sinωi cosωi

]
·
[

si,t
s∗i,t

]
+

[
ji,t
j∗i,t

]
(6)

It is assumed that all seasonal components have a common variance, σ2
i = σ2

s , i = 1, 2, . . . , [ f /2].
To simplify things, the cyclical and autoregressive components are not present. It is straightforward to
extend Model 1 into a multivariate one using the Kronecker product.

Thus,
Yt = Xtβ + Wt (7)

where Xt is a regression matrix and Wt is a multivariate structural model. These last models can
be obtained easily from univariate structural models using the Kronecker product (see Chapter 8 of
Harvey [13]).

Now let us think for a while Xt follows a stochastic process. More accurately, following
Gómez [12],

xt+1 = Fxt + Gut (8)

Yt = Xtβ + Hxt + Jut, t = 1, 2, . . . , n (9)

where Xt is the regression matrix. Since Xt follows a stochastic process, the term Xtβ can be partitioned
into two terms.

Xtβ = Mtγ + Ntδ = Mtγ + (δ
′ ⊗ I)vec(Nt) (10)

It is possible to rewrite the last equation in the following way

Xtβ = Mtγ + Rut (11)
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where Mt is a matrix containing the non-stochastic inputs, while ut is the matrix containing the
stochastic inputs. Finally, γ and R are the exogenous inputs regressors coefficients and the stochastic
input regressors coefficients, respectively.

If we consider the transition equation and the measurement equation for the stochastic inputs ut,

xu
t+1 = Fuxu

t + Guvt (12)

ut = Xu
t βu + Huxt

u + Juvt, t = 1, 2, . . . , n (13)

With a little bit of algebra combining the model for input with the general model, we obtain the
following transition equation and measurement equation[

xt+1

xu
t+1

]
=

[
Ft 0
0 Fu

t

] [
xt

xu
t

]
+

[
Gt 0
0 Gt

u

] [
ut

vt

]
(14)

[
Yt

ut
=

]
=

[
Mt RXt

u

0 Xt
u

] [
γ

βu

]
+

[
Ht RHt

u

0 Ht
u

] [
xt

xu
t

]
+

[
Jt RJt

u

0 Jt
u

] [
ut

vt

]
(15)

The initial conditions for this combined model depend on the initial states x1 and xu
1 . Since x1

is known, we have to compute xu
1 . This can be done solving the Lyapunov equation using as input

the matrices Fu and Gu. Further details are indicated in the work by Gómez [12]. To obtain initial
conditions for the Kalman filter, the mean and the covariance matrix of the initial state vector xu

1 are
needed. If the series is stationary, the mean is obviously zero. As for the covariance matrix, letting
Var(xu1) = V, the matrix V satisfies the Lyapunov equation

V = Fu ·V · Fu ′ + Gu · Gu ′ ; (16)

A more detailed explanation was given by Gómez [14] (Paragraph 4.14.2 about initial conditions
in the time invariant case).

3.2. Stochastic Regressors Inside the Barebone Model

The transition and measurement equations shown in Section 3.1 take as given state–space
system matrices Ft

u, Gt
u, Xt

u, Ht
u, and Jt

u. At time t + 1, the German Truck Toll Index is
available. Unfortunately, no information is available for the Italian Industrial Production Index
for the manufacture of motor vehicles, trailers and semi-trailers.

Nevertheless, we assume there is a feasible autoregressive moving average seasonally integrated
model that could be estimated recursively over time by the automatic identification procedure
described by Gómez et al. [11]. For production of cars in Germany, the same procedure is applied. For
the sake of interest, we call this system “star system”, where the respective state–space system matrices
are cast on the main diagonal to give final results of the aforementioned Ft

u, Gt
u, Xt

u, Ht
u, and Jt

u.
Figure 4 shows the flowchart of the computer source code used to obtain the in-sample state–space
stochastic input system.

Once the Italian and German data are loaded in memory, the automatic identification procedure
stores the results about their respective state–space forms. If the algorithms crashes, it is mandatory
to use the logarithmic transformation (see Gómez [15]) and the property of log normal distribution
to bring those data on the original level if it is desirable. Finally, the matrices are cast on the main
diagonal of Ft

u, Gt
u, Xt

u, Ht
u, and Jt

u.
Figure 5 shows how the computer code mentioned above is cast into the bivariate SUTSE with

Italian Industrial Production Index for Capital Goods and the German Truck Toll Index.
The same system may be applied to Italian Industrial Production Index of Intermediate Goods

and the Truck Toll Index. As stochastic regressors, we use the commercial vehicle registration in



J 2019, 2 515

Germany and the commercial vehicle registration in Italy. In this last case, both regressors are available
at time t + 1, while in the case for capital goods only the level of production of cars in Germany is
present. The same gearings are applied for the system about non-durable goods and natural gas for
industrial use. We use as stochastic regressors consumption of electricity and commercial vehicle
registration in Italy always available at time t + 1. The Kalman filter log likelihood estimation does not
force us to estimate the whole concatenated system. Once the bivariate SUTSE is estimated, we only
have to combine this system with the star system and finally apply the Kalman Filter’s smoothing
recursion (see Gómez [14]) to obtain the new forecasts with stochastic exogenous regressors for Italy
and Germany.

Start

Input

Process 1

Process 2

Not OK?

Process 2a

Process 2b

Concatenate two state space forms

End of Star System

yes

no

Arima forecast IPICL29 from t+1 up to t+3

Arima forecast CarsVDA from t+2 up to t+3

Arima to forecast IPICL29 from t+1 up to t+3

Save state space

Figure 4. Star System.
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Start

Input LCV IPIK sample

Bivariate State Space

Compute KF LogLikehood

Concatenate this system with Star System

Forecast with KF on this final model

Save forecasts IPIK

End of Loop? Process 2a

End of Loop

no

yes

Enlarge Sample

Figure 5. Concatenate Seemingly Unrelated Time Series Equations with star system.

3.3. Mixing Stochastic Regressors with Barebone Model due to Failure in Convergence

Sometimes it happens that the star system (see Figure 4) fails to converge due divergence between
the two series. For instance, production of cars and trucks in Italy during the month of August is
less labor-intensive than in Germany. Consequently, in certain months, such as August 2009, in a
period of crisis, the divergence between German production of cars and the Italian twin is even more
marked and the Kalman filter algorithm fails to converge in the star system. During the recursive
estimation in the case of failure of convergence, a rollback strategy to the barebone model has been
implemented. The same strategy applies to the enhanced barebone model for intermediate goods and
for non-durable goods.
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3.4. Long Weekends

During some months, there are fixed holidays on Tuesdays or Thursdays. A typical example is
the Immaculate Conception holiday on the 8th of December. Many workers requested to go on holiday
on the 7th of December 2015. In this way, they used four days (Saturday, the 5th of December; Sunday,
the 6th of December; Monday, the 7th of December; and the day of the Immaculate Conception). The
raw data about the Industrial Production Index are affected by such a slowdown on Monday, the 7th
of December. Nevertheless, ISTAT does not consider the group of people who do not work during
that day. The calendar and seasonal adjustment is strict. Alternatively, most of the times, the calendar
adjusted time series are more predictable than gross ones.

Time series not affected by strikes or unexpected holidays could be predicted more easily than
gross ones. To tackle this problem, on the calendar from the 1st of January of 2001 for the following
days are traced:

• New Year’s Day
• Epiphany: the 6th of January
• Italian Republic day: the 2nd of June
• Immaculate Conception: the 8th of December
• International Workers’ Day: the 1st of May

To trace the long weekends, the following strategy is proposed:

• For New Year’s Day, Epiphany, Italian Republic day, and Immaculate Conception, find the years
when they happen on Tuesdays and Thursday.

• Create a binary dummy variable to inform the model there will be a discrepancy between what it
expects and what happens in the real world and place it on Mondays or Fridays for daily data.

• For the 1st of May, let the computer decide if the month of April is affected when Labour Day
happens on Tuesday or Thursday. The same algorithm is applied to New Year’s Day.

• Compute dummy variables for the months over the years detected from the procedure mentioned
above.

3.5. Long Weekends and Airline Model with No Logarithmic Transformation

To exploit the aforementioned dummies (see Section 3.4), I inserted them into a popular airline
model with no logarithmic transformation.

(1− B)(1− B12)yt = (1− θB)(1−ΘB12)εt + βXt (17)

where B is the backshift operator and Xt contains number of workings days in Italy on monthly basis
and the whole set of long weekend dummies. Table A19 shows the final results at the end of the
sample. This naive model is inserted into the forecasting competition (see Section 7).

3.6. Benchmark Model, MAE and RMSE over Seasonal Differences

∆12log(yt) =
3

∑
j=1

∆12γjlog(yt−j) + εt (18)

Equation (18) describes the autoregressive benchmark used by Bulligan et al. [1]. The Mean
Absolute Error (MAE) is computed over ∆12log(yt). It is given by the following formula:

MAE =
1
n

n

∑
j=1
|∆12log(yt)− ∆12log ˆ(yt)| (19)

where ŷ is the forecast by the model chosen and n is given by the end of the sample. To ease the
comparison, the following ratio is used during the recursive experiment:



J 2019, 2 518

IMAE =
MAEDIS
MAEBEN

(20)

where MAEBEN is approximately Equation (18) and MAEDIS is given by the model chosen for the
disaggregated component. Unless specified, MAEDIS uses the barebone model shown in Section 3.1.

On the same path, the Root Mean Squared Error (RMSE) is again computed over ∆12log(yt) and
is given by the following formula:

RMSE =

√√√√ 1
n

n

∑
j=1

[∆12log(yt)− ∆12log ˆ(yt)]2 (21)

The ratio between the disaggregated model forecast and the benchmark model is used:

IRMSE =
RMSEDIS
RMSEBEN

(22)

3.7. Tests of Predictive Accuracy

As Bruno et al. [4] for h-step ahead forecasts, we use the modified Diebold–Mariano statistic:

DM∗ =
(

n + 1− 2h + n−1h(h− 1)
n

) 1
2 d√

n−12π ̂fd(0)
(23)

where n = 36, d = n−1 ∑n
t=1 dt, dt = g(e1t)− g(e2t) is an arbitrary function of the forecasting errors

from model i{∈ 1, 2}, and ̂fd(0) is a consistent estimate of the zero-frequency spectral density of dt.
When performing tests of forecast encompassing, dt becomes dt = e1t(e1t − e2t) (see [16]) under

the alternative, Forecast 1 could be improved by incorporating some of the features present in Forecast
2. When comparing forecasting accuracy, in this paper, we use dt = |e1t| − |e2t| and dt = e2

1t − e2
2t.

Albuquerque [17] showed that: “The Hansen’s Test of Superior Predictive Ability can be addressed by
testing the null hypothesis that the benchmark is not inferior to any alternative forecast. We seek a test of the
null hypothesis that the benchmark is not inferior to any of the alternatives.” In other words,

dk,t = (d1t . . . dmt) (24)

where the vector dk,t is the vector of stacked relative alternatives.
Hansen test works under the assumption that model k is better than the benchmark if and only if

equation E(dk,t) > 0.
The Hansen [18] superior predictive ability test assumes that dt is (strictly) stationary and second

finite moment (to be possible to apply the Central Limit Theorem).
In this case, the asymptotic null distribution is:

n
1
2 d̂ ∼ Nk,t(0, Ω̂)

At this point, all essential aspects of our framework are identical to those of [19] Reality Check
(RC). White, H. [19] proceeded by constructing the RC from the test statistic:

Tn
RC = max(n

1
2 )d̂1, . . . , d̂m

where d̂k is the sample mean associated with the kth model and Ω is a consistent estimator of the
variance and covariance matrix.
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Berardi et al. ([20]) summarized the model confidence set procedure (see Hansen et al. [9]):
The procedure starts from an initial set of models M0 of dimension m encompassing all the model
specifications M̂0 . . . and delivers for a given confidence level 1− α, a smaller set, the superior set of
models, SSM, M̂∗1−α of dimension m∗ ≤ m. The best scenario is when the final set consists of a single
model, i.e., m∗ = 1. Formally, let dij,t denote the loss differential between models i and j:

dij,t = li,t − lj,t, i, j = 1 . . . m, t = 1, . . . , n (25)

and let
di·,t = (m− 1) ∑

j∈M
dij,t, i = . . . , m (26)

be the simple loss of model i relative to any other model j at time t. The EPA hypothesis for a given set
of models M can be formulated in two alternative ways:

H0,M : ci,j = 0, forall i, j = 1, 2, . . . , m HA,M : ci,j 6= 0, for some i, j = 1, 2, . . . , m (27)

or

H0,M : ci,j 6= 0, forall i = 1, 2, . . . , m HA,M : ci,j = 0, for some i = 1, 2, . . . , m (28)

where cij = E(dij) and ci = E(di) are assumed to be finite and not time dependent. According to
Hansen et al. ([9]), to test the two hypotheses above, the following two statistics are constructed:

tij =
dij√

v̂ar(dij)
and ti· =

di√
v̂ar(di)

i, j ∈ M (29)

where di = (m− 1)−1 ∑j∈M dij is the simple loss of the ith model relative to the average losses across
models in the set M, and dij = (m)−1 ∑m

t=1 dij,t, t measures the relative sample loss between the ith and

jth models, while ̂var(di,·) and ̂var(dij) are bootstrapped estimates of var(di,· and var(dij), respectively.
As discussed by Hansen et al. (see [9]), the two EPA null hypotheses presented in Equation (28) map
naturally into the two test statistics:

TR,M = maxi,j∈M|ti,j| and Tmax,M = maxi∈Mti·, (30)

where ti,j and ti· are defined in Equation (29). The test statistics defined in Equation (30) can be used to
test the two hypotheses in Equation (28), respectively. Since the asymptotic distribution of the two
tests statistic is nonstandard, the relevant distribution under the null hypothesis is estimated using a
bootstrap procedure similar to that used to estimate var(di,·) and var(dij). The MCS procedure consists
of a sequential testing procedure that eliminates the worst model at each step, until the hypothesis
of equal predictive ability (EPA) is accepted for all the models belonging to the SSM. The choice to
eliminate the worst model was carried using an elimination rule that is coherent with the statistic test
defined in Equation (29):

emax,M = argmaxi∈M
di,·

v̂ar(di,·)
and eR,M = argmaxi∈M{supj∈M

dij√
v̂ar(dij)

} (31)

respectively.
In summary, the MCS procedure to obtain the SSM consists of the following step:

Step 1. Set M = M0.
Step 2. Test for EPA hypothesis: if EPA is accepted, terminate the algorithm and set M∗1−α = M,

otherwise use the elimination rules defined in Equation (31) to determine the worst model.
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Step 3. Remove the worst model, and go to Step 2.

This paper uses the MCS procedure (see Hansen et al. [9]) and test for superior predictive accuracy
of Hansen (see [18]) implemented by Sheppard (see [21]) available for MATLAB.

4. VARMA Applied to the Whole Index

This section describes the model applied to the whole index in VARMA state–space form. The
German Truck Toll Index is backcast using a naive reconstruction from 2001:01 to 2004:12. To this
series is assigned the same seasonal growth rate of the consolidated published time series of Industrial
Production Index for Intermediate Goods in Germany. In this way, endogenous variables can be
employed in the following time series:

1. Industrial Production Index in Italy
2. Consumption of electricity in Italy
3. Truck Toll Index in Germany

Unfortunately, the time series data on natural gas for industrial use are not available before
2005:01. It is not possible to compute a naive backcast due to lack of information up to 2001:01. Since
the last two variables have always been available at time t + 1, they are inserted in state–space form of
the Kalman filter. The following general procedure is employed with an expanding window starting
from 2001:01 to 2008:01. The last one is expanded at every step of the recursive estimation up to 2018:12.
The mandatory steps to estimate this type of VARMA model are given below:

1. Identify the VARMA model with an iterative likelihood-ratio test procedure (see Gómez [12] for
an analytical description).

2. Carry out a preliminary estimation of the parameters by the Hannan–Rissanen method (see
Gómez [12] and Hannan et al. [22]).

3. Refine the estimation using the conditional method described by Lütkepohl ( see [23]), Reinsel [24])
and Gómez (see [12,14] for the implementation).

4. Cast the new parameters into state–space form.
5. Use the Kalman filter for maximum likelihood estimation.
6. Perform diagnostic testing.
7. Estimate forecast using the information about other endogenous variables available at time t+1.

The aforementioned procedure can be applied to any VARMA process of any given dimension.
This simplified VARMA model is used to compare the forecast with the aggregated model by means of
the model confidence set (see Hansen et al. [9]). The Supplementary Materials presents two videos
(see Supplementary Video S1 and Supplementary Video S2) that show the evolution of the p-values of
the multivariate Q-statistic (see Gómez [12]) applied to vectorized residuals and squared vectorized
residuals over 36 lags applied to the basic model. A similar model that does not exploit public available
data (i.e., railway transportation data provided by Trenitalia Cargo and monthly level of temperatures)
was described by Ventura et al. (see [25]) and does not exploit Kalman filtering. Their model is
summarized by the following nested models:

yt =
p

∑
i=1

φiyt−1 +
q

∑
j=0

γ
′
jzt−j + εt (32)

yt =
p

∑
i=1

φiyt−1 +
q

∑
j=0

γ
′
jzt−j + ζ

′
jFt + ηt (33)

where Ft represents R × 1 vectors of factors obtained via cross-validation, and ζ is a conformable
coefficient vector. Since the block intermediate plus capital and electricity account roughly for seventy
per cent in terms of weights about the whole index (see Figure 2), this study focuses only on the survey
data concerning non-durable goods. In this way, it focuses on ninety per cent of all the information
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available on the web for the whole index from January 2001 up to now. The factors are not extracted
and all the raw data on surveys are inserted as they are published (not seasonally adjusted, as by
Costantini [5] or log-linearised as by Bruno et al. [4] and, again, by Ventura et al. [25]). The Italian
Industrial Production Index, the Truck Toll Index and the consumption of electricity are expressed as
logarithms. Preliminary analyses show that the presence of unit roots at some seasonal frequencies
cannot be excluded. Accordingly, all variables are transformed through seasonal differencing. Finally,
the first difference filter is applied to seasonal differenced variables to achieve stationarity for energy
and Truck Toll Index and Italian Industrial Production Index. Table 2 presents the survey data list as
in the work of Costantini ([5]) concerning non-durable goods. These data are used in first difference
according to the well-known general representation of the VARMA model:

Φ(B)Yt = Θ(B)At + βXt, (34)

Y =

[
Y1
Y2

]
(35)

where Y1 = ∆∆12log(yt) is the vector containing the variables listed in Table 2 for the hard data and
Y1 = ∆yt for the survey data about non-durable goods. Finally, Xt contains ∆∆12log(wdt), where
wdt is the number of workings days in Italy and a couple of level shifts detected by SSSMATLAB for
Italian Industrial Production Index. These thirteen endogenous variables are estimated recursively
over the three-step horizon. Step 1 includes studying all the information already available for the
other twelve variables. For the other two steps, the forecast is unconditioned. Figures 6–8 show the
results of the Durbin–Watson test on autocorrelation, the Harvey test on heteroskedasticity and the
Bowman–Shenton test for normality testing. It can be seen that the Durbin–Watson is largely above
five per cent for the whole sample, and the heteroskedasticity test rejects the null hypothesis of no
heteroskedasticity of the residuals at the five per cent level of significance for the whole of 2013 and
the result of the Bowman–Shenton test on normality testing is negative, rejecting the null hypothesis
at five per cent level of significance starting from the beginning of 2013 up to the end of the sample.
Likewise, global crisis is hardly detected around August 2009 and, again, the test has roughly one year
of rejection between the second half of 2011 and the first half of 2012.

Table 2. Information sources of data for VARMA using survey data.

Name Series Sources Freq. Time a

IPI 1 ISTAT Monthly -

GigaWatt Electricity Consumption 1 TERNA Monthly +35+40 days

Truck Toll Mileage Index in Germany 1 DESTATIS Monthly +35+40 days

Climate Index (non-durable goods) 1 ISTAT Monthly +35+40 days

General economy expectations (non-durable goods) 1 ISTAT Monthly +35+40 days

Assessment of orders (non-durable goods) 1 ISTAT Monthly +35+40 days

Assessment of domestic orders (non-durable goods) 1 ISTAT Monthly +35+40 days

Assessment of export orders (non-durable goods) 1 ISTAT Monthly +35+40 days

Production growth (non-durable goods) 1 ISTAT Monthly +35+40 days

Assessment of stocks of finished products (non-durable goods) 1 ISTAT Monthly +35+40 days

Orders expectations (non-durable goods) 1 ISTAT Monthly +35+40 days

Production expectations (non-durable goods) 1 ISTAT Monthly +35+40 days

Price expectations (non-durable goods) 1 ISTAT Monthly +35+40 days
a Publication corresponds to amounts of days before the official release on ISTAT website.
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Figure 6. Graph showing the p-values of the Durbin–Watson test for the VARMA model using the hard
data only. The null hypothesis states that residuals are not autocorrelated.
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Figure 7. Graph showing the p-values of the Harvey heteroskedasticity test for the VARMA model
using the hard data only. The null hypothesis states that the residuals are not heteroskedastic.
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Figure 8. Graph showing the p-values of the Bowman–Shenton test for the VARMA model using the
hard data only. The null hypothesis states that errors are normally distributed.

Adding the whole set of endogenous variables for non-durable goods (soft data) from the ISTAT
survey apparently does not improve the overall picture (see Table 3). In fact, Table 4 shows that the
modified Diebold–Mariano test (see Harvey et al. [16]) strongly rejects the null hypothesis of equal
forecast accuracy compared to the benchmark of Bulligan et al. ([1]) on the first and third steps. In
addition, at the second step, the p-value of the encompassing test strongly rejects the null hypothesis
in August 2009, a peak of absolute error of the benchmark is observed. The diagnostic does not show
an improvement with respect of the basic VARMA model using the hard data. Figure 9 shows the
DW test for this VARMA using both hard and soft data for non-durable goods. Figure 10 shows the
results of Normality testing. Figure 11 shows the Harvey test using both hard data and soft data for
non-durable goods.

Table 3. Comparison of mean absolute error and root mean squared error with expanding window
applied to the VARMA using only hard data and both hard data and soft data, respectively (i.e., ISTAT
survey), about the non-durable goods. The forecast windows expands itself from 2008:01 to 2018:12.
The ratio between MAEs and RMSEs with respect to the benchmark are shown. A value less than one
indicates an improvement over the benchmark.

Step 1 Step 2 Step 3

TYPE OF RATIO VARMA VARMAPLUSND VARMA VARMAPLUSND VARMA VARMAPLUSND

IMAE 0.2749 0.6361 0.3142 0.9186 0.3089 0.8245
IMAE-2015 0.5316 1.0636 0.5356 1.5651 0.6034 1.4227

IRMSE 0.2370 0.6228 0.2765 0.9792 0.2670 0.7521
IRMSE-2015 0.4268 1.0627 0.5110 1.6598 0.5447 1.4713
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Figure 9. Graph showing the p-values of the Durbin–Watson test for the VARMA model using
both hard and soft data for non-durable goods. The null hypothesis states that residuals are not
autocorrelated.
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Figure 10. Graph showing the p-values of the Bowman–Shenton test for the VARMA model using
both hard and soft data for non-durable goods. The null hypothesis states that errors are normally
distributed.
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Figure 11. Graph showing the p-values of the Harvey heteroskedasticity test for the VARMA model
using both hard and soft data for non-durable goods. The null hypothesis states that the residuals are
not heteroskedastic.

Table 4. Tests of equal predictive accuracy and test of forecast encompassing of VARMA using only
hard data and both hard data and soft data, respectively (i.e., ISTAT survey), for non-durable goods.
The forecast window expands itself from 2008:01 to 2018:12. The three tests are considered at the end
of the sample and at the maximum value of forecast benchmark, i.e., August 2009. The p-values near
to one show that the null hypothesis of equal predictive accuracy have been accepted with respect
to the benchmark of Bulligan et al. For encompass test, the null hypothesis is that the forecast of the
benchmark encompasses the forecast of the VARMA.

Step 1 Step 2 Step 3

MMDTEST-SUBSAMPLE-LOSS-FUNCTION VARMA VARMAPLUSND VARMA VARMAPLUSND VARMA VARMAPLUSND

MMD-0801-1812-ABSERR 0.9250 0.0037 0.7183 0.1788 0.5040 0.0621
MMD-0801-1812-ERR2 0.5850 0.0000 0.4887 0.2381 0.7913 0.0205

MMD-0801-0908-ABSERR 0.7730 0.0149 0.3122 0.2703 0.6828 0.0795
MMD-0801-0908-ERR2 0.6770 0.0301 0.1723 0.7801 0.5070 0.0368
MMD-0801-0908-ENC 0.4300 0.0017 0.4224 0.0258 0.0258 0.0082
MMD-0801-1812-ENC 0.0000 0.0000 0.8011 0.3929 0.0021 0.0000

Table 5 shows how the second VARMA greatly benefits from the information already available at
time t + 1 for hard and soft data (i.e., all the p-values are below the five per cent significance). At time t
+ 2, this gap is evident to strongly accept the null hypothesis that VARMA using just the hard data
encompasses the model that uses both hard and soft data for non-durable goods. At time t + 3, the gap
between the huge VARMA and hard data VARMA shrinks again. Again, at t + 1, the null hypothesis
of encompassing both the peak of the crisis (i.e., August 2009 under two per cent significance) and the
end of the sample (below one per cent significance) are rejected.
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Table 5. Tests of equal predictive accuracy and test of forecast encompassing of VARMA using only
hard data and both hard data and soft data, respectively, (i.e., ISTAT survey) for non-durable goods. The
forecast windows expands itself from 2008:01 to 2018:12. The three tests are considered at the end of the
sample and at the maximum value of forecast benchmark, i.e., August 2009. The p-values near one show
that null hypothesis of equal predictive accuracy between the VARMA that uses only hard data and the
VARMA that uses hard data plus soft data for non-durable goods has been accepted. For encompass
test, the null hypothesis is that the forecast of the VARMA using only hard data encompasses the
forecast of the VARMA using only hard data and soft data for non-durable goods.

Step 1 Step 2 Step 3

MMDTEST-SUBSAMPLE-LOSS-FUNCTION VARMA vs. VARMAPLUSND VARMA vs. VARMAPLUSND VARMA vs. VARMAPLUSND

MMD-0801-1812-ABSERR 0.0013 0.27661 0.1283
MMD-0801-1812-ERR2 0.0046 0.2889 0.0281

MMD-0801-0908-ABSERR 0.0238 0.1981 0.0800
MMD-0801-0908-ERR2 0.0349 0.4956 0.0548
MMD-0801-0908-ENC 0.0018 0.0173 0.0120
MMD-0801-1812-ENC 0.0000 0.8061 0.0000

5. Recursive Diagnostics of Disaggregated Models

This section presents the results of diagnostics related to the distinct disaggregated model used.
For intermediate goods, we consider the regressors for following time series: (1) working days in Italy
and Germany; (2) a linear trend; (3) a series of outliers and the level shift identified on the overall
sample before the computer started the recursion by SSMMATLAB plus a level shift to inform the
computer about our naive backcast for the period 2001:01–2004:12; (4) the level of registration of
commercial vehicles in Italy; and (5) the level of of registration of commercial vehicles in Germany.

Figure 12 plots the difference between the recursive Bayesian information criterion (see Gómez [12]
for a description of the diagnostics and Schwarz [26]) of the barebone model for intermediate goods
and the enhanced model for intermediate goods. The Bayesian information criterion of the enhanced
model is always inferior.

At the beginning of the recursive experiment, between January 2008 and January 2009, the
enhanced model did not show its own supremacy. From the beginning of 2009, the situation constantly
improved in favour of the enhanced model. In other words, starting from 2009, the new regressors had
an upward contribution waving around a linear trend. This hints the use of the enhanced model as a
long-run solution due to the growing importance of commercial vehicles registration in both countries
to understand the long-run evolution of industrial production. On the basis of this evidence, we now
focus on the diagnostics of this enhanced model for intermediate goods. Table A8 shows the final
results at the end of the sample (December 2018). We see that the regressor coefficients of the stochastic
regressors are statistically significant, and we strongly reject the null hypothesis on the basis of the
t-values over time. The Supplementary Materials present a video (Supplementary Video S3) showing
how the aforementioned p-values of the stochastic coefficients are constant and stable. Surprisingly,
the impact of working days in Germany is superior to the impact of working days in Italy on the
Italian Industrial Production Index of Intermediate Goods. For the Truck Toll Index, the difference
is less outstanding. The coefficient of the linear trend shows a negative impact over the Italian data
while its twin for the Truck Index shows a positive impact. This again does not come as a surprise
given the persistent upward trend of the German data. Similar conclusions might be drawn from the
coefficients of commercial vehicles registrations for both the countries. The Bowman–Shenton test (see
Bowman et al. [27] and Figure 13), with unique exceptions towards the end of 2008 and the end of
2017, is always above the five per cent rejection area of the null hypothesis.
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Figure 12. Graph showing the difference between the Bayesian information criterion of the barebone
model and the enhanced model for intermediate goods. A negative value means that BB model prevails.
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Figure 13. Graph showing the p-values of the Bowman–Shenton test for the enhanced model for
intermediate goods. The null hypothesis states that errors are normally distributed.
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Figure 14 shows the p-values of the Durbin–Watson statistics (see Durbin et al. [28,29]) for the
enhanced barebone model of intermediate goods. At the bottom of the graph, the straight red line
denotes 0.05 line significance. The null hypothesis of no autocorrelation of the residual was strongly
accepted during the whole experiment. The results of heteroskedasticity test of Harvey are more
unstable at the beginning of the experiment (see Figure 15) (see Harvey [13], p. 259).
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Figure 14. Graph showing the p-values of the Durbin–Watson test for the enhanced model for
intermediate goods. The null hypothesis states that residuals are not autocorrelated.
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Figure 15. Graph showing the p-values of the Harvey heteroskedasticity test for the enhanced model
for intermediate goods. The null hypothesis states that the residuals are not heteroskedastic.
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Due to global economic crisis, the test is rejected at five per cent significance level for the years
between 2009 and 2011. Nevertheless, the model began recovering from 2012 with an upward trend
and then waved roughly from 2016 below the 0.2 line. Using the sample autocorrelations of the
residuals and squared residuals, it is possible to show the evolution of Q-statistics for over 36 lags. The
Supplementary Materials present two videos (Supplementary Video S4 and Supplementary Video S5)
to show the movements of the p-values for both the tests over the 0.05 significance. It is possible to
ensure that both the tests are hardly rejected over 36 lags and over time after the global crisis.

Again, the enhanced model shows its own supremacy in terms of the Bayesian information
criterion for capital goods.

A direct comparison of Figures 12 and 16 shows how the difference in terms of the Bayesian
information criterion is even more marked for capital goods than for intermediate goods. Even in this
case, the enhanced model is the focus of this study. Harvey’s test for heteroskedasticity has hardly
been rejected from January 2008 up to the second half of 2016 (see Figure 17). The p-value of this test
still waves around the significance red line for the remainder of the sample. Even more satisfying
are the results of Bowman–Shenton statistics (see Bowman et al. [27] and Gómez [12]) over the whole
experiment (see Figure 18). On the same line, the lack of autocorrelation between the residuals on the
basis of the Durbin–Watson’s p-value is depicted in Figure 19. In the Supplementary Materials, the
flow of the Q-statistics over the three dimensions applied to the residual and the squared residuals
can be seen (i.e., Supplementary Video S6, Supplementary Video S7). Even in this case, we can see
that, in most instances, the p-values waved far from the bottom. Table A10 shows the values of the
parameters estimated by the Kalman filter by maximum likelihood at the end of the sample. Both
endogenous variables are more significantly affected by the level shift detected from 2009:02 than the
other ones previously detected by SSSMATLAB. The coefficient about working days can almost be
swapped in terms of value between the level for Italy and Germany. The working days in Germany
have a positive effect over the Italian data while the working days in Italy have a slight negative effect
over the German data. This can be explained by geographical reasons. Many firms concerning capital
goods located in the north of Italy may be connected with German firms in the south of Germany.
Thus, when Italians work more because they have more working days in a month, they may influence
German workers. In addition, the linear trend has a stronger effect in Germany than in Italy. The
contribution of commercial vehicle registration in Italy is more marked for German data than for Italian
data. The picture is reversed for German data. The Supplementary Materials provide the evolution of
p-values and t-statistics over time to check the parameters’ stability (i.e., Supplementary Video S8). It
can be seen that the overall picture of the parameters is stable over time.

Table A14 displays the results of maximum likelihood estimation at the end of the sample for
the barebone model for durable goods. The level shifts from 2008:1 are in the group of the most
significant coefficients among the selected variables. Figures 20–22 summarize the results of the
recursive Durbin–Watson test for autocorrelation, Bowman–Shenton test for normality and Harvey
test for heteroskedasticity. Once again, the null hypothesis is not rejected. In term of weights (see
Figure 2), the results concerning the Italian Industrial Production Index of Non-Durable Goods are
more relevant. Figure 23 shows the difference between the Bayesian information criterion of the
barebone model and the enhanced model for non-durable goods. The difference between the other
aforementioned figures (see Figures 12 and 16) about the intermediate and capital is more evident.
Nevertheless, even for non-durable goods, the enhanced model shows a better BIC for the major part
of the experiment. Two of the three usual tests for normality (see Figures 24–26) do not show a unique
convincing picture for the last three years. Table A15 shows the results at the end of the sample for the
enhanced model for non-durable goods. It can be seen that the impact and the statistical significance
of consumption of electricity is higher for Industrial Production Index of Non-durable Goods than
for natural gas for industrial use. Conversely, the impact of commercial vehicle registration in Italy
is higher in natural gas for industrial use. The video in the Supplementary Materials concerning the
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p-values and t-statistics’ evolution over time (see Supplementary Video S9) shows more movements
than the enhanced model for intermediate goods and than the model for capital goods.
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Figure 16. Graph showing the difference between the Bayesian information criterion of the barebone
model and the enhanced model for capital goods.
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Figure 17. Graph showing the p-values of the Harvey heteroskedasticity test for the enhanced model
for capital goods. The null hypothesis states that the residuals are not heteroskedastic.
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Figure 18. Graph showing the p-values of the Bowman–Shenton test for the enhanced model for capital
goods. The null hypothesis states that errors are normally distributed.
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Figure 19. Graph showing the p-values of the Durbin–Watson test for the enhanced model for capital
goods. The null hypothesis states that residuals are not autocorrelated.

Figure 25 shows the p-values of Durbin–Watson statistics (see Durbin et al. [28,29]) for the
enhanced barebone model of non-durable goods. At the bottom of the graph, the straight red line
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denotes 0.05 line significance. The null hypothesis of no autocorrelation of the residual is strongly
accepted during the whole experiment. Towards the end of the second half of 2016 (see Figure 26), the
results of heteroskedasticity test of Harvey (see Harvey [13], p. 259) are less stable than the past.
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Figure 20. Graph showing the p-values of the Durbin–Watson test for the barebone model for durable
goods. The null hypothesis states that residuals are not autocorrelated.
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Figure 21. Graph showing the p-values of the Bowman–Shenton test for the barebone model for durable
goods. The null hypothesis states that errors are normally distributed.
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Figure 22. Graph shows the p-values of the Harvey heteroskedasticity test for the barebone model for
durable goods. The null hypothesis states that the residuals are not heteroskedastic.
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Figure 23. Graph showing the difference between the Bayesian information criterion of the barebone
model and the enhanced model for non-durable goods.
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Figure 24. Graph showing the p-values of the Bowman–Shenton test for the enhanced model for
non-durable goods. The null hypothesis states that errors are normally distributed.
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Figure 25. Graph shows the p-values of the Durbin–Watson test for the enhanced model for
non-durable goods. The null hypothesis states that residuals are not autocorrelated.
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Figure 26. Graph showing the p-values of the Harvey heteroskedasticity test for the enhanced model
for non-durable goods. The null hypothesis states that the residuals are not heteroskedastic.

6. Forecasting Study and Evaluation

6.1. Kalman Filter and State–Space Models

As indicated in Chapter 4 of Gómez [14], using the measurement equation and the transition
equation shown in Section 3.1, the Kalman filter is given by the following recursion

Et = Yt − Ht x̂t|t−1, , Σt = HtPtH
′
t + RtKt = (FtPt H

′
t + GtSt)Σ−1

t , , x̂t+1|t = Ft x̂t|t−1 + KtEt (36)

Pt+1 = FtPtFt
′ + GtQtG

′
t − (FtPtH

′
t + GtSt)

′
= (Ft + KtHt)PtFt

′ + (GtQt − KtS
′
t)G

′
t, (37)

initialized with x̂1|0 = a and P1 = Ω. Again, Gómez [14] showed the log-likelihood

l(Y) = constant− 1
2

{
1
σ2

n

∑
t=1

E
′
tΣ
−1
t Et +

n

∑
t=1

ln|σ2Σt|
}

(38)

and that maximizing the log-likelihood above is equivalent to minimizing the following non-linear
sum of squares

S =

(
n

∏
t=1
|σt|

1
2np

)(
n

∑
t=1

e
′
tet

)(
n

∏
t=1
|Σt|

1
2np

)
(39)

The specialized software described by Gómez [12,15] handles this special form of S where

et = Σ
−1
2

t Et.

6.2. Smoothing

Gómez [14] (Section 4.10) showed the following recursions are used for t = n, . . . , 1

(Lt, λt) = Z
′
tΣ
−
t 1(Et, et) + K

′
p,t(Lt+1, λt+1), , Λt = Z

′
tΣ
−1
t Zt + K

′
p,tΛt+1K

′
p,t (40)
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where Kp,t = Tt − KtZt, initialized with (Ln+1, λn+1) = (0, 0) and Λn+1 = 0. Letting α̂t|n = E(αt|Y)
be the orthogonal projection of αt onto Y and P̂t|n = MSE(α̂t|n) for t = n, . . . , 1, the fixed interval
smoother is given by

α̂t|n =
[(
−Ut, αt|t−1

)
+ Pt (Lt, λt)

]
(−γ̂n+1, 1)

′

Pt|n =

[
Pt|n + (PtLt −Ut) ∏

n+1
(PtLt −Ut)

′
]

σ̂2

where γ̂n+1 and ∏n+1 are the GLS estimator of γ for Y and its MSE.

6.3. Some Reflections over the Period before December 2014

The period from January 2001 to December 2014 requires an ad-hoc treatment to compare the
performance of the disaggregated composed model and a naive benchmark model, i.e., autoregressive
model of order three over the log seasonal differences of the whole index.

For this, two issues need to be tackled:

• backcast consumption of electricity daily data from 2006 to 2013 exploiting the compressed natural
gas for thermoelectricity daily data; and

• since the weight of every sub-component is not fixed for this period, e.g. from January 2015 up to
present time (i.e., they were rebuilt in terms of growth rate at the cost of fixed weight base year
structure), it is mandatory to compute the discrepancy between the data published and the data
obtained, holding the structure of base year weight (i.e., 2015) constant.

IPI = αIPIx + βIPIy + discrepancy :

discrepancy = discrepancyα + discrepancyβ;

discrepancyα = discrepancy · α;

discrepancyβ = discrepancy · β

(41)

6.4. Forecasting Competition for the Enhanced Model Applied to Intermediate Goods, Capital Goods and
Non-Durable Goods

It can be argued that Equation (33) faces the following problems:

• It uses log transformation.
• It applies the difference operator twice (first time with respect to the season and the second with

respect to the year).

See Section 3.1 and Gómez [12] for a description of SUTSE models (SSSMATLAB computer
programs are available from the author upon special request).

Table 6 outlines the results of the model confidence set procedure (see Hansen et al. [9]) at the
end of the sample using absolute error as the loss function. The supremacy of the enhanced model
is shown in the last line of the table (see ENHTTMI). The difference with its competitors shrinks at
Step 3. This is probably due to lack of information. This picture is confirmed looking at Table 7. Table 8
outlines the results of the model confidence set procedure at the end of the sample using squared error
as the loss function. In this case, the difference with respect to the simple barebone model competitors
(in particular, BBTTMI and BBLCVSP) is stable over time. Table 9 shows the same results only at
Steps 2 and 3. Table 10 shows a restricted group of model with similar results for capital goods. Once
again, the choice of stochastic regressors enhanced the model in an upper position. This results is
more important compared to the one shown in Table 11. On this table, the victory of the enhanced
model is not evident on the sample. On the other hand we are interested if the victory of the enhanced
model is statistically significant, so the results of the previous table are more convincing for us. Within
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the ratios of root mean square errors (RMSE) with respect to the benchmark of Bulligan et al. ([1]),
Table 12 shows that within the sample the difference is not so significant. Table 13 shows that the use of
stochastic regressors over the three-step horizon is the winning choice on the side of model confidence
set procedure for capital goods.

The picture is somewhat more linear for the enhanced model for non-durable goods using absolute
error and quadratic error as loss function for model confidence set procedure (see Tables 14 and 15)
and the IMAE (Table 16) and IRMSE (Table 17) tables.

Table 6. Model confidence set hierarchy loss function is the absolute error at the end of the sample for
intermediate goods model comparison α = 0.05, number of bootstrap replications = 5000 and block
length = 12. The null hypothesis is that the average performance of the model in the row is as small as
the minimum average performance across the remaining models. The alternative is that the minimum
average loss across the remaining models is smaller than the average performance of the model in
the row.

Index Step 1 Step 2 Step 3

IPI-BEN-INTERM 0.0216 0.0102 0.0088
BBLCVDE 0.0362 0.3634 0.7236
BBLCVFR 0.0362 0.3634 0.8332
BBLCVSP 0.2184 0.3634 0.8332
BBTTMI 0.2184 0.5904 0.8332

ENHTTMI 1.0000 1.0000 1.0000

Table 7. Comparison of the ratios of mean absolute error for models for intermediate goods with an
expanding window from 2008:01 to 2018:12.

Index Step 1 Step 2 Step 3

BBLCVDE 0.4749 0.5284 0.5672
BBLCVFR 0.4535 0.5181 0.5537
BBLCVSP 0.4431 0.5180 0.5478
BBTTMI 0.4304 0.5134 0.5560

ENHTTMI 0.4345 0.4885 0.5362

Table 8. Model confidence set hierarchy loss function is the squared error at the end of the sample for
intermediate goods model comparison α = 0.05, number of bootstrap replications = 5000 and block
length = 12. The null hypothesis is that the average performance of the model in the row is as small as
the minimum average performance across the remaining models. The alternative is that the minimum
average loss across the remaining models is smaller than the average performance of the model in
the row.

Index Step 1 Step 2 Step 3

IPI-BEN-INTERM 0.1490 0.1530 0.1414
BBLCVDE 0.1490 0.1530 0.1414
BBLCVFR 0.1490 0.2798 0.3096
BBLCVSP 0.3568 0.2798 0.3096
BBTTMI 0.3568 0.2798 0.3096

ENHTTMI 1.0000 1.0000 1.0000
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Table 9. Comparison of the ratios of RMSE for models for intermediate goods with an expanding
window from 2008:01 to 2018:12.

Index Step 1 Step 2 Step 3

BBLCVDE 0.6603 0.7419 0.7993
BBLCVFR 0.6143 0.7166 0.7496
BBLCVSP 0.5835 0.6698 0.7009
BBTTMI 0.6323 0.7344 0.7774

ENHTTMI 0.6296 0.6539 0.7011

Table 10. Model confidence set hierarchy loss function is the absolute error at the end of the sample for
capital goods model comparison α = 0.05, number of bootstrap replications = 5000 and block length
= 12. The null hypothesis is that the average performance of the model in the row is as small as the
minimum average performance across the remaining models. The alternative is that the minimum
average loss across the remaining models is smaller than the average performance of the model in
the row.

Index Step 1 Step 2 Step 3

IPI-BEN-CAPITAL 0.0040 0.0036 0.0010
BBLCVDE 0.6618 0.0356 0.3012
BBLCVFR 0.8222 0.9166 0.9820
BBLCVSP 0.9952 0.9328 0.9820

BBTMI 0.9952 0.9328 0.9820
ENHTTMI 1.0000 1.0000 1.0000

Table 11. Comparison of the ratios of absolute error for models for capital goods with an expanding
window from 2008:01 to 2018:12.

Index Step 1 Step 2 Step 3

BBLCVDE 0.4508 0.4943 0.5391
BBLCVFR 0.4543 0.4846 0.5327
BBLCVSP 0.4363 0.4924 0.5386
BBTTMI 0.4331 0.4907 0.5355

ENHTTMI 0.4344 0.5381 0.5755

Table 12. Comparison of the ratios of RMSE for models for capital goods with an expanding window
from 2008:01 to 2018:12.

Index Step 1 Step 2 Step 3

BBLCVDE 0.5287 0.5795 0.6065
BBLCVFR 0.5393 0.5690 0.5911
BBLCVSP 0.4606 0.5705 0.5558
BBTTMI 0.5350 0.5935 0.6137

ENHTTMI 0.5292 0.6261 0.6586



J 2019, 2 539

Table 13. Model Confidence Set Hierarchy Loss function is the squared error at the end of the sample
for capital goods model comparison α = 0.05, number of bootstrap replications = 5000 and block length
= 12. The null hypothesis is that the average performance of the model in the row is as small as the
minimum average performance across the remaining models. The alternative is that the minimum
average loss across the remaining models is smaller than the average performance of the model in
the row.

Index Step 1 Step 2 Step 3

IPI-BEN-CAPITAL 0.1412 0.0770 0.0708
BBLCVDE 0.7124 0.0770 0.0708
BBLCVFR 0.7124 0.7062 0.6688
BBLCVSP 0.7124 0.7736 0.6688

BBTMI 0.7124 0.8882 0.6688
ENHTTMI 1.0000 1.0000 1.0000

Table 14. Model confidence set hierarchy loss function is the absolute error at the end of the sample for
non-durable goods model comparison α = 0.05, number of bootstrap replications = 5000 and block
length = 12. The null hypothesis is that the average performance of the model in the row is as small as
the minimum average performance across the remaining models. The alternative is that the minimum
average loss across the remaining models is smaller than the performance of the model in the row.

Index Step 1 Step 2 Step 3

IPI-BEN-NDUR 0.0000 0.0000 0.0000
BBSNAMINDUSTRIAL 0.0000 0.0000 0.0002

ENHSNAMINDUSTRIAL 1.0000 1.0000 1.0000

Table 15. Model confidence set hierarchy loss function is the squared error at the end of the sample
for non-durable goods model comparison α = 0.05, number of bootstrap replications = 5000 and block
length = 12. The null hypothesis is that the average performance of the model in the row is as small as
the minimum average performance across the remaining models. The alternative is that the minimum
average loss across the remaining models is smaller than the average performance of the model in the row.

Index Step 1 Step 2 Step 3

IPI-BEN-NDUR 0.0000 0.0000 0.0000
BBSNAMINDUSTRIAL 0.0000 0.0000 0.0002

ENHSNAMINDUSTRIAL 1.0000 1.0000 1.0000

Table 16. Comparison of the ratios of absolute error for models for capital goods with an expanding
window from 2008:01 to 2018:12.

Index Step 1 Step 2 Step 3

IPI-BEN-NDUR 1.0000 1.0000 1.0000
BBSNAMINDUSTRIAL 0.6513 0.7434 0.7251

ENHSNAMINDUSTRIAL 0.6407 0.5787 0.5964

Table 17. Comparison of the ratios of RMSE for models for capital goods with an expanding window
from 2008:01 to 2018:12.

Index Step 1 Step 2 Step 3

IPI-BEN-NDUR 1.0000 1.0000 1.0000
BBSNAMINDUSTRIAL 0.6292 0.7334 0.7211

ENHSNAMINDUSTRIAL 0.6286 0.6969 0.7053
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7. Results and Discussion

Table 18 summarizes the performances of the models applied to the disaggregated components
mentioned in Figure 2 using the IMAE mentioned in Section 3.7. Table 19 summarizes the results of the
modified Diebold-Mariano test mentioned in Section 3.7 using as loss function absolute forecast error.
On the same path Table 20 focuses on the the IMAE concerning the subsample from January 2015 up
to December 2018, while Table 21 points out the results the modified Diebold-Mariano test mentioned
in Section 3.7 using as loss function absolute forecast error for the subsample from January 2015 up
to December 2018. Table 22 shows the performances of the models applied to the disaggregated
components mentioned in Figure 2 using the IRMSE mentioned in Section 3.7. Table 23 focuses
on the results the modified Diebold-Mariano test mentioned in Section 3.7 using as loss function
quadratic forecast error. Again on the same path Table 24 focuses on the the IRMSE concerning the
subsample from January 2015 up to December 2018, while Table 25 points out the results the modified
Diebold-Mariano test mentioned in Section 3.7 using as loss function quadratic forecast error for the
subsample from January 2015 up to December 2018.

An expanding window starting from January 2001 and moving from January 2008 to December
2018 is considered. (The dataset is updated on a monthly basis and is not prone to high revisions (see
dati.istat.it/). It was downloaded on 8 February 2019.)

The disaggregated model outperforms the benchmark at Step 1 and is still competitive at Step 2
due to the information available from the energy sector and, at Step 3, still holds due to good
performance of the intermediate, capital and non-durable goods. Disaggregating simply using the
past does not help. The line IPI-BENAGG shows that aggregating the benchmarks applied to the
sub-components does not change the situation. This concept is confirmed looking at the results shown
in Tables 26–32. Using 25 days of data, we achieved better results at Step 2 and still competitive results
due to an-hoc identification production on daily data (see Gómez et al. [11]). Tables 27, 29, 31 and 33
summarize the results of the modified Diebold–Mariano test mentioned in Section 3.7 for electricity.

We see that especially for the subsample from January 2015 to December 2018 the sub-component
in charge of production of electricity can accept the null of equal forecast accuracy, especially at Step 2.
Finally, it recovers at Step 3, where we may reject the null hypothesis of equal forecast accuracy at
ten per cent significance. The low performance of IPI-PETROL is due to the lack of information for
this sub-component. We can accept the null hypothesis of equal forecast accuracy with respect to the
benchmark of using different loss functions only for durable goods. Given their low importance in
terms of weights, the overall impact is negligible.

Table 18. Comparison of the ratios of mean absolute error with an expanding window from 2008:01
to 2018:12.

Index Step 1 Step 2 Step 3

IPI-INT 0.4345 0.4885 0.5362
IPI-CAP 0.4200 0.5265 0.5692
IPI-DUR 0.4976 0.5006 0.5088

IPI-NDUR 0.6407 0.7196 0.7329
IPI-ENERGY 0.1498 0.5145 0.5328

IPI-AGG 0.3503 0.4254 0.4611
IPI-BENAGG 1.0019 1.0044 1.0035
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Table 19. Modified Diebold–Mariano statistics for equality of forecast accuracy of two forecasts under
general assumptions with an expanding window from 2008:01 to 2018:12. The null hypothesis is that
the two methods have the same forecast accuracy. The loss function is the absolute error.

Index Step 1 Step 2 Step 3

IPI-INT 0.0000 0.0000 0.0000
IPI-CAP 0.0000 0.0000 0.0000
IPI-DUR 0.0452 0.0539 0.0516

IPI-NDUR 0.0000 0.0000 0.0000
IPI-ENERGY 0.0000 0.0000 0.0000

IPI-AGG 0.0000 0.0000 0.0000

Table 20. Comparison of the ratio between mean absolute errors with an expanding window from
2015:01 to 2018:12.

Index Step 1 Step 2 Step 3

IPI-INT 0.4373 0.5935 0.6499
IPI-CAP 0.3890 0.4412 0.4288
IPI-DUR 0.8689 0.9072 0.8852

IPI-NDUR 0.5974 0.6673 0.7049
IPI-ENERGY 0.1603 0.6020 0.6094

IPI-AGG 0.3590 0.5206 0.4957
IPI-BENAGG 1.0051 1.0180 1.0170

Table 21. Modified Diebold–Mariano statistics for the equality of forecast accuracy of two forecasts
under general assumptions with an expanding window from 2015:01 to 2018:12. The null hypothesis is
that the two methods have the same forecast accuracy. The Loss function is the absolute error.

Index Step 1 Step 2 Step 3

IPI-INT 0.0001 0.0057 0.0179
IPI-CAP 0.0000 0.0000 0.0000
IPI-DUR 0.3469 0.4986 0.4446

IPI-NDUR 0.0000 0.0000 0.0000
IPI-ENERGY 0.0000 0.0081 0.0012

IPI-AGG 0.0000 0.0001 0.0002

Table 22. Comparison between RMSE ratios with an expanding window from 2008:01 to 2018:12.

Index Step 1 Step 2 Step 3

IPI-INT 0.6296 0.6539 0.7011
IPI-CAP 0.5631 0.6695 0.7140
IPI-DUR 0.9298 0.9136 0.8500

IPI-NDUR 0.6286 0.6969 0.7053
IPI-ENERGY 0.1556 0.5361 0.5550

IPI-AGG 0.3917 0.4724 0.5249
IPI-BENAGG 0.9982 1.0036 1.0037
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Table 23. Modified Diebold–Mariano statistics for the equality of forecast accuracy of two forecasts
under general assumptions with an expanding window from 2008:01 to 2018:12. The null hypothesis is
that the two methods have the same forecast accuracy. The loss function is the squared error.

Index Step 1 Step 2 Step 3

IPI-INT 0.0389 0.0291 0.0338
IPI-CAP 0.0041 0.0268 0.0252
IPI-DUR 0.7985 0.8010 0.9780

IPI-NDUR 0.0000 0.0000 0.0000
IPI-ENERGY 0.0000 0.0000 0.0000

IPI-AGG 0.0000 0.0000 0.0000

Table 24. Comparison of mean ratio between RMSEs with an expanding window from 2015:01
to 2018:12.

Index Step 1 Step 2 Step 3

IPI-INT 0.4517 0.6324 0.6783
IPI-CAP 0.4066 0.4357 0.4306
IPI-DUR 1.4071 1.4748 1.4073

IPI-NDUR 0.5891 0.6392 0.6439
IPI-ENERGY 0.1558 0.5921 0.6161

IPI-AGG 0.3642 0.5176 0.4926
IPI-BENAGG 0.9977 1.0048 1.0006

Table 25. Modified Diebold–Mariano statistics for the equality of forecast accuracy of two forecasts
under general assumptions with an expanding window from 2015:01 to 2018:12. The null hypothesis is
that the two methods have the same forecast accuracy. The loss function is the squared error.

Index Step 1 Step 2 Step 3

IPI-INT 0.0000 0.0003 0.0005
IPI-CAP 0.0003 0.0146 0.0312
IPI-DUR 0.0001 0.0001 0.0001

IPI-NDUR 0.8694 0.7945 0.9430
IPI-ENERGY 0.0000 0.0000 0.0000

IPI-AGG 0.0002 0.0121 0.0053

Table 26. Comparison of ratios between mean absolute errors with an expanding window for electricity
from 2008:01 to 2018:12.

Index Step 1 Step 2 Step 3

IPI-EXTRA 0.3910 0.4073 0.7706
IPI-PETROL 0.6150 0.6712 0.7422

IPI-PRODELE 0.0075 0.5686 0.6056
IPI-CNG 0.1543 0.2073 0.7581
IPI-AGG 0.1498 0.5145 0.5328

IPI-BENAGG 0.9939 0.9830 0.9836
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Table 27. Modified Diebold–Mariano statistics for the equality of forecast accuracy of two forecasts
under general assumptions with expanding window from 2008:01 to 2018:12. The null hypothesis is
that the two methods have the same forecast accuracy. The loss function is the absolute error.

Index Step 1 Step 2 Step 3

IPI-EXTRA 0.0000 0.0000 0.0094
IPI-PETROL 0.0000 0.0000 0.0000

IPI-PRODELE 0.0000 0.0005 0.0000
IPI-CNG 0.0000 0.0000 0.0004
IPI-AGG 0.0000 0.0000 0.0000

Table 28. Comparison of the ratio between mean absolute errors with an expanding window for
electricity from 2015:01 to 2018:12.

Index Step 1 Step 2 Step 3

IPI-EXTRA 0.3707 0.3893 0.6791
IPI-PETROL 0.6763 0.7953 0.7441

IPI-PRODELE 0.0054 0.6713 0.7433
IPI-CNG 0.0961 0.1593 0.7501
IPI-AGG 0.1603 0.6020 0.6094

IPI-BENAGG 0.8733 0.8573 0.8575

Table 29. Modified Diebold–Mariano for the equality of forecast accuracy of two forecasts under
general assumptions with an expanding window from 2015:01 to 2018:12. The null hypothesis is that
the two methods have the same forecast accuracy. The loss function is the absolute error.

Index Step 1 Step 2 Step 3

IPI-EXTRA 0.00000 0.00000 0.02050
IPI-PETROL 0.00950 0.06220 0.20580

IPI-PRODELE 0.00000 0.78530 0.03960
IPI-CNG 0.00000 0.00000 0.02340
IPI-AGG 0.00000 0.00810 0.00120

Table 30. Comparison of the ratio between RMSEs with an expanding window for electricity from
2008:01 to 2018:12.

Index Step 1 Step 2 Step 3

IPI-EXTRA 0.3852 0.3967 0.8318
IPI-PETROL 0.6272 0.7061 0.7946

IPI-PRODELE 0.0100 0.4496 0.4778
IPI-CNG 0.0184 0.0235 0.0815
IPI-AGG 0.1556 0.5361 0.5550

IPI-BENAGG 1.0012 0.9986 0.9992

Table 31. Modified Diebold–Mariano statistics for the equality of forecast accuracy of two forecasts
under general assumptions with an expanding window from 2008:01 to 2018:12. The null hypothesis is
that the two methods have the same forecast accuracy. The loss function is the squared error.

Index Step 1 Step 2 Step 3

IPI-EXTRA 0.0000 0.0000 0.1298
IPI-PETROL 0.0000 0.0000 0.0001

IPI-PRODELE 0.0000 0.0010 0.0000
IPI-CNG 0.0000 0.0000 0.0003
IPI-AGG 0.0000 0.0000 0.0000
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Table 32. Comparison of the ratio between RMSEs with an expanding window for electricity from
2015:01 to 2018:12.

Index Step 1 Step 2 Step 3

IPI-EXTRA 0.3330 0.3524 0.6130
IPI-PETROL 0.7224 0.7541 0.7532

IPI-PRODELE 0.0072 0.4659 0.5101
IPI-CNG 0.0105 0.0180 0.0787
IPI-AGG 0.1558 0.5921 0.6161

IPI-BENAGG 0.9129 0.9019 0.8997

Table 33. Modified Diebold–Mariano statistics for the equality of forecast accuracy of two forecasts
under general assumptions with an expanding window from 2015:01 to 2018:12. The null hypothesis is
that the two methods have the same forecast accuracy. The loss function is the squared error.

Index Step 1 Step 2 Step 3

IPI-EXTRA 0.0022 0.0023 0.0164
IPI-PETROL 0.0212 0.1571 0.4489

IPI-PRODELE 0.0017 0.5629 0.0809
IPI-CNG 0.0000 0.0000 0.0163
IPI-AGG 0.0002 0.0121 0.0053

Finally, the model confidence set procedure described in Section 3.7 can be used to make
comparison with all the models mentioned in this paper. Using the absolute forecast error as a
loss function (see Table 34), the aggregated model on average is found to be the best, and there are
no competitors. Using the quadratic forecast error as a loss function (see Table 35), the difference
shrinks due to lack of information. Nevertheless, the aggregated model is still the best over the
three-step horizon.

Table 34. Model confidence set hierarchy loss function is the absolute error at the end of the sample
α = 0.05, number of bootstrap replications = 5000 and block length = 12.

Index Step 1 Step 2 Step 3

IPI-BEN 0.0010 0.0000 0.0000
IPI-AIRLINELW 0.0010 0.0000 0.0000
IPI-VARMABM 0.0010 0.0030 0.0010

IPI-VARMABMND 0.0010 0.0150 0.0150
IPI-AGG 1.0000 1.0000 1.0000

Table 35. Model confidence set hierarchy loss function is squared error at the end of the sample
α = 0.05, number of bootstrap replications = 5000 and block length = 12.

Index Step 1 Step 2 Step 3

IPI-BEN 0.0566 0.0398 0.1012
IPI-AIRLINELW 0.0566 0.0692 0.1012
IPI-VARMABM 0.0566 0.0692 0.1012

IPI-VARMABMND 0.0566 0.0692 0.1012
IPI-AGG 1.0000 1.0000 1.0000

8. Conclusions

We evaluated the gains in the information from the highest disaggregation level at time t + 1 and
time t + 2. Using statistical inference, we found that, for enhanced barebone models for intermediate
goods, capital goods were the best in terms of superior predictive ability with respect to the set
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benchmark as well as other combinations of the barebone model not using the German Truck Toll
Index. The barebone model for durable goods is the weakest model compared to the set benchmark
due to lack of information concerning this index. Nevertheless, its relative weight (four per cent ) is
negligible. We found that, using a quadratic forecast error loss function, we accept the null hypothesis
of equal forecast accuracy between the enhanced model for non-durable goods and the benchmark
in the subsample from January 2015 up to December 2018 (see Table 25). This result for non-durable
goods is not confirmed (see Table 21). On average, the enhanced model for non-durable goods is still
competitive over three steps horizon.

Of course, when the forecasting errors propagate over time, even a naive autoregressive model
(see Section 3.5) is competitive with a disaggregated one (see Steps 2 and 3 of Table 35). Nevertheless,
guessing the proper data generating process inside the main components allows us to shrink the
forecast bands, even on the third-step horizon (see Tables 34 and 35), where some information
is available.
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Video S1: Evolution of Q-statistics and p-values over time and over 36 lags applied to vectorized residuals of
Varma Basic Model , Video S2: Evolution of Q-statistics and p-values over time and over 36 lags applied to squared
vectorized residuals of Varma Basic Model, Video S3: Evolution of t-statistics and p-values over time of regressors
coefficients of Enhanced Model for intermediate goods, Video S4: Evolution of Q-statistics and p-values over
time and over 36 lags applied to vectorized residuals of of Enhanced Model for intermediate goods , Video S5:
Evolution of Q-statistics and p-values over time and over 36 lags applied to squared vectorized residuals of of
Enhanced Model for intermediate goods, Video S6: Evolution of Q-statistics and p-values over time and over 36
lags applied to vectorized residuals of of Enhanced Model for capital goods , Video S7: Evolution of Q-statistics
and p-values over time and over 36 lags applied to squared vectorized residuals of of Enhanced Model for capital
goods, Video S8: Evolution of t-statistics and p-values over time of regressors coefficients of Enhanced Model for
capital goods, Video S9: Evolution of t-statistics and p-values over time of regressors coefficients of Enhanced
Model for non-durable goods.
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Abbreviations

The following abbreviations are used in this manuscript:

IPI Italian Industrial Production Index
LCV-SUM Sum of the level of registration of light commercial van over Germany, Italy, France

and Spain
LCV-GER Level of registration of light commercial vehicles in Germany
LCV-ITA Level of registration of light commercial vehicles in Italy
LCV-FRA Level of registration of light commercial vehicles in France
LCV-SPAIN Level of registration of light commercial vehicles in Spain
SUTSE Seeminly unrelated time series equations
VARMA Vector autoregressive moving average
IPI-AGG Forecast obtained by aggregating sub index forecasts
IPI-AGGFROM201501 Forecast obtained by aggregating sub index forecasts from January 2015
IPI-AGG Forecast obtained by aggregating naive benchmark sub index forecasts
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IPI-INT Italian Industrial Production Index of Intermediate goods
IPI-CAP Italian Industrial Production Index of Capital Goods
IPI-DUR Italian Industrial Production Index of Durable goods
IPI-NDUR Italian Industrial Production Index of Non-durable goods
IPI-EXTRA Italian Industrial Production Index of extraction of crude petroleum and natural gas
IPI-PETROL Italian Industrial Production Index of manufacture of coke and refined petroleum

products
IPI-PRODELE Italian Industrial Production Index of electric power generation, transmission and

distribution
IPI-CNG Italian Industrial Production Index of manufacture of gas; distribution of gaseous

fuels through mains
IPI-ENERGY Italian Industrial Production Index of Electricity, gas, steam and air conditioning

supply
PRODCARS Level of cars produced in Germany
SNAM-IND Level of M3 of natural gas for industrial use
IPICL29 Italian Industrial Production Index of manufacture of motor vehicles, trailers and

semi-trailers
CH4-PRODNAZ Level of M3 of natural gas produced in Italy
CH4-THERMO Level of M3 of natural gas for thermoelectric use
CH4-TRANSPORTED Total level of M3 of natural gas for transported on its own net
WDITA Working days in Italy
WDGER Working days in Germany
BIC Bayesian information criterion
AIK Akaike information criterion
TTMI German Truck Toll Mileage Index
IPI-AIRLINELW Airline model with no logarithmic transformation and workings days and dummy

variables for long weekends
IPI-BEN Benchmark model described in Bulligan et al. [1]
TC Transitory Component
LS Level Shift
AO Anomalous Outlier

Appendix A

Appendix A.1

It is possible to download daily data from January 2013 to the present from www.terna.it and
www.snam.it. On the one hand, we have daily data from 2006 to 2012 on the production of natural
gas for thermoelectric use. On the other hand, only chunks of information are available for the
consumption of electricity during this period in the past. We assume that in the remote past renewable
sources of energy (e.g., wind, solar power, hydroelectricity, and geothermic source) had less relevance.

∆7log(Ct) = constt + φ1∆7log(Ct−1) + φ2∆7log(Ct−2)+

φ3∆7log(Ct−3) + β1∆7log(CH4t) + γDt + εt
(A1)

Equation (A1) is cast in state–space form to backcast daily consumption data in the remote past.
The equation is a univariate autoregressive model over weekly frequencies with a set of exogenous
regressors composed of weekly seasonal log differences daily data of natural gas for thermoelectric
use and by a year fixed seasonal cycle over a year (see Gómez [15]).

More in detail, Dt is obtained by the following equation according to Gregorian calendar with a
period of 365.25 days:

www.terna.it
www.snam.it
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st = a · cos(wt) + b · sin(wt),

w = 2π · k
n

(A2)

For a more complex example considering two fixed seasonal patterns (according to the Gregorian
and the Hiri calendar), see Livera et al. [30]. For all the explanations concerning filtering and smoothing
(used here to backcast data), see Chapter 4 of Gómez [14].

Appendix A.2. Model Synthesis

Table A1. Synthesis of state–space models used for energy.

Index Log Model Step 1 Step 2 Step 3

IPI-EXTRA YES SUTSE CH4NAZ CH4NAZ25days NaN
IPI-PETROL NO ARIMA Automatic Automatic Automatic

IPI-PRODELE YES SUTSE TERNAPROD CONSUMPTION25days NaN
IPI-CNG YES SUTSE CH4TRANSPORTED CH4TRANSPORTED25days NaN

Table A2. Synthesis of state–space models used for energy at daily frequencies.

Index Week Model Step 1 Step 2

CH4-PRODNAZ Yes ARIMA 25 days NaN
CONSUMPTION Yes ARIMA 25 days NaN
CH4-THERMO Yes ARIMA 25 days NaN

CH4-TRANSPORTED Yes ARIMA 25 days NaN

Table A3. Synthesis of Seasonal Arima used for energy at daily frequencies.

Index No Log p d q ps ds qs

CH4-PRODNAZ true 1 0 1 0 1 0
CONSUMPTION true 3 0 0 0 1 0

CH4-TRANSPORTED true 2 0 0 0 1 1

According to Gómez [15]:

• p: degree of regular AR polynomial
• d: degree of regular differencing
• q: degree of regular MA polynomial
• ps: degree of seasonal AR polynomial
• ds: degree of seasonal differencing
• qs: degree of seasonal MA polynomial.
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Appendix B

Table A4. Barebone model variables: IPIt intermediate goods TTMIt in Germany.

Parameter Estimate t-Ratio

σlevel11
1.1845 NaN

σlevel21
0.5328 7.5028

σlevel22 0.3730 5.3705
σseas11 0.0000 NaN
σseas21 0.2027 5.4352
σseas22 0.0000 NaN
σirreg11 1.2117 4.1055
σirreg21 0.8714 4.3232
σirreg22 1.0022 4.8066

βLS0902ITA 1.06778 5.40
βLS0902GER 0.30503 2.26
βLS0812ITA 1.25554 7.12
βLS0812GER 0.51971 4.36
βLS0908ITA 1.05184 4.38
βLS0908GER 0.10807 0.72
βWDITA1 3.16489 7.78
βWDITA2 0.16782 0.56
βWDGER1 0.63938 1.72
βWDGER2 3.15687 11.38

βLTRENDITA −0.10771 −1.28
βLTRENDGERM 0.19798 4.25

βLS0401ITA 0.33050 0.14
βLS0401ITA −0.62274 −0.43

σε1 3.3784
σε2 2.3052

Parameter σlevel11
is concentrated out of the likelihood

AIC 4050.8877
BIC 4131.1130

Table A5. Barebone model variables: IPIt intermediate goods LCVDEt in Germany.

Parameter Estimate t-Ratio

σlevel11
1.0361 NaN

σlevel21
0.2124 3.6125

σlevel22 0.3613 5.2296
σseas11 0.0000 NaN
σseas21 0.2261 5.8753
σseas22 0.0000 NaN
σirreg11 1.0233 3.2737
σirreg21 0.2602 1.7839
σirreg22 0.6933 4.8188

βLS0902ITA 1.11999 6.05
βLS0902GER 0.14078 1.59
βLS0812ITA 1.28269 7.77
βLS0812GER 0.22200 2.82
βLS0908ITA 1.09914 4.96
βLS0908GER −0.02810 −0.28
βAO064ITA −0.33737 −1.39
βAO064GER 1.01140 8.21
βAO1612ITA 1.73391 3.28

βAO1612GERM 1.04162 3.86
βWDITA1 3.20568 8.00
βWDITA2 −0.28366 −1.40

βWDGERM1 0.69936 1.92
βWDGERM2 1.18202 6.39
βLTRENDITA −0.10538 −1.45

βLTRENDGERM 0.05833 1.97

σε1 3.3051
σε2 1.5841

Parameter σlevel11
is concentrated out of the likelihood

AIC 3921.7404
BIC 4009.9883
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Table A6. Barebone model variables: IPIt intermediate goods LCVFRt in France.

Parameter Estimate t-Ratio

σlevel11
1.1822 NaN

σlevel21
0.3091 3.4874

σlevel22 0.4283 4.8279
σseas11 0.0000 NaN
σseas21 0.2044 5.1963
σseas22 0.0000 NaN
σirreg11 1.1527 3.8582
σirreg21 0.0000 NaN
σirreg22 1.2818 6.2179

βLS0902ITA 1.06634 5.40
βLS0902FRA −0.04654 −0.37
βLS0812ITA 0.80955 3.85
βLS0812FRA 0.31748 2.11
βLS0908ITA 0.99775 4.18
βLS0908FRA 0.10745 0.80
βLS0712ITA 1.30024 3.89
βLS0712FRA 0.48621 2.14
βWDITA1 3.48145 8.90
βWDITA2 0.39849 1.46
βWDFRA1 0.27574 0.81
βWDFRA2 0.91456 3.83

βLTRENDITA −0.08364 −1.01
βLTRENDGERM 0.04172 1.11

σε1 3.4133
σε2 2.1920

Parameter σlevel11
is concentrated out of the likelihood

AIC 4075.3171
BIC 4151.5312

Table A7. Barebone model variables: IPIt intermediate goods LCVESt in Spain.

Parameter Estimate t-Ratio

σlevel11
1.1822 NaN

σlevel21
0.3091 3.4874

σlevel22 0.4283 4.8279
σseas11 0.0000 NaN
σseas21 0.2044 5.1963
σseas22 0.0000 NaN
σirreg11 1.1527 3.8582
σirreg21 0.0000 NaN
σirreg22 1.2818 6.2179

βLS0902ITA 1.09510 5.62
βLS0902SPA 0.14489 1.73
βLS0812ITA 1.25567 7.21

βLS0812SPAIN 0.16982 2.27
βLS0908ITA 1.03560 4.46

βLS0908SPAIN 0.22975 2.26
βLS061ITA −0.05388 −0.27

βLS061SPAIN 0.98863 11.43
βLS081ITA −0.63779 −1.59

βLS081SPAIN 1.12031 6.38
βTC054ITA −0.05465 −0.09

βTC054SPAIN 1.01704 4.14
βLS086ITA 1.67800 3.12

βLS086SPAIN 1.09436 4.66
βWDITA1 3.22807 9.08
βWDITA2 0.48477 3.25
βWDFRA1 0.60840 1.98
βWDFRA2 0.27005 2.10

βLTRENDITA −0.09225 −1.19
βLTRENDGERM 0.08284 2.31

σε1 3.4853
σε2 1.4908

Parameter σlevel11
is concentrated out of the likelihood

AIC 3908.4210
BIC 4016.7252
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Table A8. Endogenous variables: IPIt intermediate goods TTMIt in Germany.

Parameter Estimate t-Ratio

σlevel11
1.2754 NaN

σlevel21
0.4541 5.4054

σlevel22 0.3707 5.0575
σseas11 0.0048 −0.2245
σseas21 0.2097 5.5352
σseas22 0.0000 NaN
σirreg11 0.7965 3.4383
σirreg21 1.1091 5.9255
σirreg22 0.3019 0.9444

βLS0902ITA 0.97539 5.10
βLS0902GER 0.22781 1.84
βLS0812ITA 0.96489 5.57
βLS0812GER 0.36516 3.25
βLS0908ITA 0.96095 4.05
βLS0908GER 0.11530 0.85
βWDITA1 −1.11149 −0.48
βWDITA2 −0.87904 −0.66
βWDGER1 3.32781 8.86
βWDGER2 0.39080 1.41

βLTRENDITA −0.18370 −0.50
βLTRENDGERM 2.51376 9.16

βLCVITA1 −0.14214 −1.58
βLCVITA2 0.16423 3.88

βLCVGERM1 0.00039 4.62
βLCVGERM2 0.00008 1.52
βLS0412ITA 0.00040 3.38
βLS0412GER 0.00055 6.35

σε1 3.2395
σε2 2.1093

Parameter σlevel11
is concentrated out of the likelihood

AIC 4007.5646
BIC 4107.8463

Table A9. Endogenous variables: IPIt capital goods TTMIt in Germany.

Parameter Estimate t-Ratio

σlevel11
1.0740 NaN

σlevel21
0.4663 7.9032

σlevel22 0.3079 4.3649
σseas11 0.0000 NaN
σseas21 0.1542 4.2180
σseas22 0.0000 NaN
σirreg11 1.9223 6.2424
σirreg21 0.5257 3.0287
σirreg22 1.3111 6.5791

βLS0811ITA 0.64013 2.58
βLS0811GERM 0.28580 1.77

βLS0902ITA 0.78372 4.42
βLS0902GERM 0.24890 2.29

βLS0802ITA 0.87032 3.84
βLS0802GERM 0.29600 2.19

βLS0808ITA 0.85618 2.23
βLS0808GERM 0.62724 2.49

βWDITA1 3.69889 8.01
βWDITA2 0.17520 0.58
βWDGER1 0.15927 0.37
βWDGER2 3.09418 10.92

βLTRENDITA 0.11424 1.49
βLTRENDGERM 0.22951 5.71

βLS0412ITA 2.11634 0.89
βLS0412GER −0.52124 −0.38

σε1 3.5837
σε2 2.2536

Parameter σlevel11
is concentrated out of the likelihood

AIC 4078.9627
BIC 4151.1655
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Table A10. Endogenous variables: IPIt capital goods TTMIt in Germany.

Parameter Estimate t-Ratio

σlevel11
1.0984 NaN

σlevel21
0.5051 7.1653

σlevel22 0.3435 5.2124
σseas11 0.0034 0.1592
σseas21 −0.1124 −2.9125
σseas22 0.0000 NaN
σirreg11 1.4849 4.9785
σirreg21 0.2746 1.6744
σirreg22 0.9444 5.6833

βLS0811ITA 0.21208 1.24
βLS0811GERM 0.21766 1.95

βLS0902ITA 0.62362 4.51
βLS0902GERM 0.22689 2.59

βLS0808ITA 0.27547 1.42
βLS0808GERM 0.12754 1.03

βWDITA1 −0.77571 −0.38
βWDITA2 −0.51911 −0.42
βWDGER1 2.95664 8.05
βWDGER2 0.30505 1.21

βLTRENDITA −0.34809 −0.95
βLTRENDGERM 2.11117 8.46

βLCVITA1 0.05194 0.72
βLCVITA2 0.20176 4.85

βLCVGERM1 0.32615 11.17
βLCVGERM2 0.07065 3.70
βLS0412ITA 0.08949 1.58
βLS0412GER 0.32594 8.55

σε1 2.8376
σε2 1.8952

Parameter σlevel11
is concentrated out of the likelihood

AIC 3924.8623
BIC 4005.0876

Table A11. Endogenous variables: IPIt capital goods LCVDEt in Germany.

Parameter Estimate t-Ratio

σlevel11
0.9588 NaN

σlevel21
0.2376 4.6892

σlevel22 0.2919 4.1896
σseas11 0.0189 1.1352
σseas21 0.1833 4.8999
σseas22 0.0000 NaN
σirreg11 1.9132 6.1456
σirreg21 0.0064 0.0512
σirreg22 0.7469 5.3079

βLS0811ITA 0.93367 4.77
βLS0811GER 0.28173 3.57
βLS0902ITA 0.93005 5.73
βLS0902GER 0.15037 2.31
βLS0808ITA 0.92789 4.22
βLS0808GER 0.03098 0.35
βAO0604ITA −0.33339 −1.14
βAO0604GER 0.98745 8.25
βAO0612ITA 0.98016 1.53
βAO0612GER 1.08035 4.13

βWDITA1 3.81575 8.05
βWDITA2 −0.29295 −1.50
βWDGER1 0.06230 0.14
βWDGER2 1.14210 6.37

βLTRENDITA 0.10298 1.52
βLTRENDGERM 0.06338 2.38

σε1 3.6460
σε2 1.5178

Parameter σlevel11
is concentrated out of the likelihood

AIC 3954.0442
BIC 4046.3033
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Table A12. Endogenous variables: IPIt capital goods LCVFRt in France.

Parameter Estimate t-Ratio

σlevel11
1.1694 NaN

σlevel21
0.3471 4.6773

σlevel22 0.3395 4.2102
σseas11 0.0000 NaN
σseas21 0.1624 4.0324
σseas22 0.0000 NaN
σirreg11 1.8498 6.0017
σirreg21 0.0073 0.0431
σirreg22 1.2797 6.2774

βLS0811ITA 0.60877 2.43
βLS0811FRA 0.37689 2.48
βLS0902ITA 0.79028 4.33
βLS0902FRA −0.06272 −0.62
βLS0808ITA 0.91365 3.90
βLS0808FRA 0.07199 0.58
βLS0812ITA 0.93976 2.30
βLS0812FRA 0.52237 2.08
βWDITA1 3.68414 8.37
βWDITA2 0.36392 1.34
βWDFRA1 0.20422 0.53
βWDFRA2 0.93457 3.95

βLTRENDITA 0.10829 1.32
βLTRENDFRA 0.05151 1.49

σε1 3.6843
σε2 2.1486

Parameter σlevel11
is concentrated out of the likelihood

AIC 4103.5609
BIC 4183.7862

Table A13. Endogenous variables: IPIt capital goods LCVESt in Spain.

Parameter Estimate t-Ratio

σlevel11
2.0010 NaN

σlevel21
0.2001 40032.8244

σlevel22 0.2000 2122.4735
σseas11 0.2002 3128.5844
σseas21 0.2001 4228.3941
σseas22 0.0000 NaN
σirreg11 0.2001 28197.7772
σirreg21 0.2002 1871.4497
σirreg22 0.2001 2797.4601

βLS0811ITA 0.72268 3.44
βLS0811SPA 0.22154 2.09
βLS0902ITA 0.54647 2.75
βLS0902SPA 0.03201 0.40
βLS0808ITA 0.92888 3.36
βLS0808SPA 0.10834 0.71
βLS0812ITA −0.44912 −1.83
βLS0812SPA 0.88650 12.98
βLS0601ITA −1.63635 −3.27
βLS0601SPA 1.03738 6.12
βLS0801ITA 1.00302 1.53
βLS0801SPA 1.02250 3.09
βLS0806ITA 0.22150 3.44
βLS0806SPA 0.06790 2.09
βWDITA1 3.60571 10.12
βWDITA2 0.57797 2.04
βWDSPA1 0.24221 0.81
βWDSPA2 0.27781 1.16

βLTRENDITA 0.00694 0.05
βLTRENDSPA 0.09744 4.63

σε1 3.9909
σε2 2.6079

Parameter σlevel11
is concentrated out of the likelihood

AIC 4167.8550
BIC 4276.1592
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Table A14. Endogenous variables: IPIt durable goods TTMIt in Germany.

Parameter Estimate t-Ratio

σlevel11
1.0978 NaN

σlevel21
0.4715 4.3692

σlevel22 0.4598 4.5298
σseas11 0.0035 0.1760
σseas21 0.3480 5.1223
σseas22 0.0000 NaN
σirreg11 3.4814 5.1377
σirreg21 0.1092 0.5888
σirreg22 1.3653 5.3712

βLS0801ITA −16.83680 −5.51
βLS0801GER −9.64008 −6.39
βWDITA1 3.21904 3.92
βWDITA2 −0.00274 −0.01
βWDGER1 1.67770 2.21
βWDGER2 3.31421 11.77

βLTRENDITA −0.21005 −2.66
βLTRENDGERM 0.19630 4.22
βLS01010412ITA −1.15132 −0.38
βLS01010412GER −0.69390 −0.46

σε1 6.0879
σε2 2.3218

Parameter σlevel11
is concentrated out of the likelihood

AIC 4331.5822
BIC 4379.7174

Table A15. Endogenous variables: IPIt non-durable goods, CNGt Industrial.

Parameter Estimate t-Ratio

σlevel11
0.7388 NaN

σlevel21
0.4359 0.6489

σlevel22 2.4961 3.6884
σseas11 0.1133 2.2909
σseas21 0.0994 1.9265
σseas22 0.0790 0.9532
σirreg11 1.9753 3.2214
σirreg21 0.2920 0.8076
σirreg22 1.4162 2.1224

βWDNDUR 0.14242 0.98
βWDCNG 0.96736 5.59

βAO0412NDUR 0.13234 0.73
βAO0412CNG 0.92258 4.37

βAO0602NDUR 3.13904 12.63
βAO0602CNG 0.24930 0.88

βCONSELENDUR 0.00021 2.08
βCONSELECNG −0.00012 −0.87
βLCVITNDUR 0.00066 1.75
βLCVITCNG 0.00257 5.29

σε1 3.0291
σε2 4.1020

Parameter σlevel11
is concentrated out of the likelihood

AIC 3474.8432
BIC 3543.5512
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Table A16. Endogenous variables: log production of electricity log cumulated daily consumption of
electricity.

Parameter Estimate t-Ratio

σlevel11
0.0149 NaN

σlevel21
0.0038 3.3241

σlevel22 0.0044 5.2690
σseas11 0.0001 −0.1268
σseas21 0.0001 0.1369
σseas22 0.0000 0.0907
σirreg11 0.0206 6.4089
σirreg21 0.0144 7.0658
σirreg22 0.0100 3.9126

σε1 0.0370
σε2 0.0278

Parameter σlevel11
is concentrated out of the likelihood

BIC 376.56
AIK 384.58

Table A17. Endogenous variables: log IPI extraction of crude petroleum and natural gas log production
of natural gas.

Parameter Estimate t-Ratio

σlevel11
0.0270 NaN

σlevel21
0.0171 13.7116

σlevel22 0.0079 7.3941
σseas11 0.0014 6.1766
σseas21 0.0043 5.6644
σseas22 0.0001 −0.1410
σirreg11 0.0242 9.3619
σirreg21 0.0145 4.0573
σirreg22 0.0167 3.9616

σε1 0.0727
σε2 0.0515

Parameter σlevel11
is concentrated out of the likelihood

BIC 867.38
AIK 875.40

Table A18. Endogenous variables: log IPI manufacture of gas; distribution of gaseous fuels through
mains log natural gas transported.

Parameter Estimate t-Ratio

σlevel11
0.0378 NaN

σlevel21
0.0341 18.8915

σlevel22 0.0057 5.4502
σseas11 0.0038 NaN
σseas21 0.0054 12.057
σseas22 0.0038 NaN
σirreg11 0.0038 NaN
σirreg21 0.0013 −0.3442
σirreg22 0.0038 NaN

σε1 0.0766
σε2 0.0724

Parameter σlevel11
is concentrated out of the likelihood

BIC 872.70
AIK 880.72
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Table A19. Long weekend model dependent variable: IPI (0, 0, 1)(0, 1, 1)12 nolog.

Parameter Estimate t-Ratio

θ1 0.7559 18.3690
θ12 −0.1882 −2.2772

βWD 3.40012 13.26
βNEWYEAR 0.38226 0.31
βEPIPHANY −2.34537 −1.44

βREPUBLICDAY −0.75782 −0.56
β IMMACULATE −1.09217 −0.76
βWORKERSDAY 1.09799 0.90

Parameter σε is concentrated out of the likelihood

BIC 2127.4359
AIK 2153.9809

Table A20. Dependent variable: IPI manufacture of coke and refined petroleum products
(0, 1, 1)(0, 1, 1)12 nolog.

Parameter Estimate t-Ratio

θ1 −0.8844 −28.48
θ12 −0.4798 −6.16

βAO0605 −22.81603 −5.61
βAO0803 20.07762 4.95
βAO0411 −15.59829 −3.81
βAO0212 −15.02531 −3.63
βTC0203 15.42229 6.32
βAO1006 −18.32463 −7.65
βAO0711 −14.53021 −7.18
βLS0504 8.61470 3.64
βLS1211 −15.34803 −6.45
βLS1502 10.36593 7.74
βTC0911 −12.05044 −8.93
βTC0911 13.36453 10.35
βTC0311 −11.53890 −5.96
βAO1611 −7.45864 −3.69
βTC1802 −10.33852 −5.53
βTC0106 9.70640 4.11
βTC0102 10.45859 4.57
βTC1706 −11.93867 −5.11
βAO0405 −9.59695 −3.63
βTC0511 6.21901 3.05
βTC1111 8.58217 3.63
βLS1002 −7.92531 −4.04
βLS0805 −9.49671 −4.82
βLS1701 6.98222 5.17
βTC0702 −7.00933 −5.12
βAO1009 6.31182 4.26
βAO0904 6.02294 3.21
βAO1505 −7.31103 −3.12
βAO1206 7.94524 3.35
βAO0710 6.80889 2.89
βAO0410 −7.37313 −3.12
βAO0402 −7.31373 −3.10

β −6.83603 −2.89
β 6.11984 2.64

σε 2.7709

BIC 1878.96
AIK 1872.34
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Appendix B.1. Seasonal VARMA Model

Bruno et al. [4] used the following unrestricted vector autoregressive model:

∆∆12yt = β∆12yt−1 + Σ13
j−1γj∆∆12yt−j + φdt + εt (A3)

where ∆ = (1 − L), ∆12 = (1 − L12) and L is the usual lag operator such that Lpzt = zt−p,
yt = (log(I IPIt); log(TONFSt); PPt). (PPt represents production prospects from ISTAT surveys,
and TONFSt stands for tons of raw material transported by Italian railways. Bruno and Lupi [4]
applied to PPt a logistic transformation, dt contains some deterministic components (constant, specific
impulse dummies.) The endogenous variables available at the time t + 1 of forecast are TONFSt and
PPt. For the next periods, the forecast is unconditional since there is no further information. Since
intermediate goods plus capital goods together account for 61 per cent of the whole index and they are
transported on light commercial vehicles, I take the sum of their registration over Italy, France, Spain
and Germany. Thus, the new model is

∆∆12yt = φdt + γ∆∆12yt−1 + θkεt−1 (A4)

where ∆ = (1 − L), ∆12 = (1 − L12) and L is the usual lag operator such that Lpzt = zt−p, yt =

(log(IPI INTERMEDIATEt); log(IPICAPITALt); log(LCVSUMt)) (LCVSUMt represents the total
level of registrations of light commercial vehicles over the four mentioned European countries, while
dt contains the long weekend dummies, the growth rates of number of days worked over the four
countries and the growth rates of number of days worked in Italy computed as first differences as
first log year to year differences) (γ and θ for simplicity have no further lags to ease estimation with
Hannan–Rissanen method, see Gómez [15]).

It is also possible to compute a bivariate VARMA system to evaluate the importance of single
country LCV registration over Italian Production Index of Intermediate Goods and over Italian
Production Index of Capital Goods.

B.2. Performance of Conditional VARMA over Three Steps

Table A21 summarizes the performance of the conditional vector autoregressive model using
different light van registration and the truck index. From a comparison of Tables A21–A28, it is possible
to check how the barebone model beats conditional VARMA over three steps. Similarly, by means
of Model Confidence Set Procedure (see Tables A25–A28), we show the supremacy of the enhanced
model with respect to the conditional VARMA alternatives.

At Step 1, the system using the truck index as endogenous variable available at time t + 1 always
wins the competition. This advantage is not so marked at Steps 2 and 3.

Table A21. Comparison of mean absolute error with expanding window applied to conditional var
with three variables. The forecast windows expands itself from 2008:01 to 2018:12. The ratio between
MAEs is shown. A value less than one shows an improvement over benchmark.

Step 1 Step 2 Step 3

IPI-INT IPI-CAP IPI-INT IPI-CAP IPI-INT IPI-CAP
LCV-SUM 0.5392 0.5648 0.6994 0.7289 0.7074 0.7619
LCV-ITA 0.8725 0.8992 0.7385 0.7344 0.8032 0.8544
LCV-GER 0.6644 0.6834 0.7242 0.7614 0.7340 0.7729
LCV-FRA 0.8217 0.8025 0.7732 0.7951 0.7877 0.8703
LCV-SPA 0.7332 0.7723 0.7110 0.7642 0.7420 0.7858

TTMI 0.4896 0.4852 0.7043 0.7821 0.7082 0.8018
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Table A22. Comparison of root mean squared error with expanding window applied to conditional var
with three variables. The forecast windows expands itself from 2008:01 to 2018:12. The ratio between
RMSEs is showed. A value less than one shows an improvement over benchmark.

Step 1 Step 2 Step 3

IPI-INT IPI-CAP IPI-INT IPI-CAP IPI-INT IPI-CAP
LCV-SUM 0.4862 0.5687 0.6265 0.7250 0.6621 0.7711
LCV-ITA 1.1405 1.4685 0.7189 0.7313 1.0082 1.1193
LCV-GER 0.5803 0.6675 0.6386 0.7336 0.6987 0.7902
LCV-FRA 0.8912 0.9998 0.7483 0.8452 0.8403 0.9994
LCV-SPA 0.7010 0.8923 0.6656 0.7758 0.7339 0.8508

TTMI 0.4216 0.4674 0.6165 0.7490 0.6535 0.7932

Table A23. Comparison of mean absolute error with expanding window applied to conditional var
with three variables. The forecast windows expands itself from 2015:01 to 2018:12. The ratio between
MAEs is shown. A value less than one shows an improvement over benchmark.

Step 1 Step 2 Step 3

IPI-INT IPI-CAP IPI-INT IPI-CAP IPI-INT IPI-CAP
LCV-SUM 0.7694 0.5258 1.0942 0.7630 0.9811 0.6883
LCV-ITA 1.1604 0.7950 1.1291 0.7167 0.9077 0.6726
LCV-GER 0.9548 0.6766 1.0178 0.8397 0.9458 0.7705
LCV-FRA 1.0818 0.7495 1.1096 0.7672 0.8648 0.6616
LCV-SPA 1.0210 0.6814 1.0239 0.7269 0.8363 0.5922

TTMI 0.7428 0.5384 1.0637 0.8261 0.9844 0.7180

Table A24. Comparison of root mean squared error with expanding window applied to conditional var
with three variables. The forecast windows expands itself from 2015:01 to 2018:12. The ratio between
RMSEs is shown. A value less than one shows an improvement over benchmark.

Step 1 Step 2 Step 3

IPI-INT IPI-CAP IPI-INT IPI-CAP IPI-INT IPI-CAP
LCV-SUM 0.7838 0.5489 1.0692 0.7853 0.9875 0.6902
LCV-GER 0.9195 0.6840 0.9842 0.8748 0.9213 0.8064
LCV-ITA 1.1272 0.8163 1.0679 0.7395 0.8667 0.6506
LCV-FRA 1.0477 0.7754 1.0505 0.7771 0.8869 0.6629
LCV-SPA 0.9834 0.7256 0.9956 0.7552 0.8533 0.6180

TTMI 0.7313 0.5721 1.0384 0.8308 0.9445 0.7178

Table A25. Model confidence set hierarchy loss function is absolute error at the end of the sample for
intermediate goods model comparison α = 0.05, number of bootstrap replications = 5000 and block
length = 12. The null hypothesis is that the average performance of the model in the row is as small as
the minimum average performance across the remaining models. The alternative is that the minimum
average loss across the remaining models is smaller than the average performance of the model in
the row.

Index Step 1 Step 2 Step 3

IPI-BEN-INTERM 0.0000 0.0020 0.0290
VARMMATTMI 0.0000 0.0020 0.0320

VARMALCVGER 0.0000 0.0060 0.0320
VARMALCVITA 0.0000 0.0060 0.0320
VARMALCVFRA 0.0030 0.0060 0.0320
VARMALCVSPA 0.1450 0.0060 0.0380
VARMALCVSUM 0.2470 0.0060 0.0380

ENHMTTMI 1.0000 1.0000 1.0000
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Table A26. Model confidence set hierarchy Loss function is squared error at the end of the sample for
intermediate goods model comparison α = 0.05, number of bootstrap replications = 5000 and block
length = 12. The null hypothesis is that the average performance of the model in the row is as small as
the minimum average performance across the remaining models. The alternative is that the minimum
average loss across the remaining models is smaller than the average performance of the model in
the row.

Index Step 1 Step 2 Step 3

IPI-BEN-INTERM 0.0770 0.3160 0.2470
VARMMATTMI 0.0770 0.3160 0.2470

VARMALCVGER 0.0770 0.4110 0.6180
VARMALCVITA 0.0770 0.4110 0.6180
VARMALCVFRA 0.0770 0.4110 0.6180
VARMALCVSPA 0.0770 0.4110 0.8620
VARMALCVSUM 0.0770 0.4110 0.8620

ENHMTTMI 1.0000 1.0000 1.0000

Table A27. Model confidence set hierarchy loss function is absolute error at the end of the sample for
capital goods model comparison α = 0.05, number of bootstrap replications = 5000, and block length
= 12. The null hypothesis is that the average performance of the model in the row is as small as the
minimum average performance across the remaining models. The alternative is that the minimum
average loss across the remaining models is smaller than the average performance of the model in
the row.

Index Step 1 Step 2 Step 3

IPI-BEN-CAPITAL 0.0000 0.0000 0.0000
VARMMATTMI 0.0000 0.0100 0.0110

VARMALCVGER 0.0000 0.0210 0.0510
VARMALCVITA 0.0000 0.0210 0.0510
VARMALCVFRA 0.0000 0.0210 0.0510
VARMALCVSPA 0.0040 0.0210 0.0510
VARMALCVSUM 0.1350 0.0290 0.0510

ENHMTTMI 1.0000 1.0000 1.0000

Table A28. Model confidence set hierarchy loss function is squared error at the end of the sample for
capital goods model comparison α = 0.05, number of bootstrap replications = 5000 and block length
= 12. The null hypothesis is that the average performance of the model in the row is as small as the
minimum average performance across the remaining models. The alternative is that the minimum
average loss across the remaining models is smaller than the average performance of the model in
the row.

Index Step 1 Step 2 Step 3

IPI-BEN-CAPITAL 0.0000 0.0000 0.0000
VARMMATTMI 0.0110 0.1640 0.1630

VARMALCVGER 0.0110 0.1640 0.1630
VARMALCVITA 0.0110 0.1640 0.1630
VARMALCVFRA 0.0110 0.1640 0.1630
VARMALCVSPA 0.0160 0.1640 0.8640
VARMALCVSUM 0.5980 0.8460 0.8640

ENHMTTMI 1.0000 1.0000 1.0000
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