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Abstract: Electrical grid layout optimization should consider the placements of turbines and sub-
stations and include effects such as wake losses, power losses in cables, availability of different
cable types, reliability-based power losses and operational/decommissioning cost besides the initial
investment cost. Hence, optimizing the levelized cost of energy is beneficial capturing long-term
effects. The main contribution of this review paper is to identify the current works and trends on
electrical layout optimization for offshore wind farms as well as to analyze the applicability of the
found optimization approaches to commercial-scale floating wind farms which have hardly been
investigated so far. Considering multiple subproblems (i.e., micrositing and cabling), simultaneous
or nested approaches are advantageous as they avoid sequential optimization of the individual
problems. To cope with this combinatorial problem, metaheuristics seems to offer optimal or at
least close-to-optimal results while being computationally much less expensive than deterministic
methods. It is found that floating wind brings new challenges which have not (or only insufficiently)
been considered in present optimization works. This will also be reflected in a higher complexity
and thus influence the suitability of applicable optimization techniques. New aspects include the
mobility of structures, the configurations and interactions of dynamic cables and station-keeping
systems, the increased likelihood of prevailing heterogeneous seabeds introducing priority zones
regarding anchor and riser installation, the increased importance of reliability and maintainability
due to stricter weather limits, and new floating specific wind farm control methods to reduce power
losses. All these facets are crucial to consider when thoroughly optimizing the levelized cost of energy
of commercial-scale floating offshore wind farms.

Keywords: floating wind; cabling optimization; layout optimization; dynamic cables; station-keeping
systems; power losses; reliability; clustering; deterministics; metaheuristicts

1. Introduction

Bottom-fixed offshore wind structures are limited to a certain water depth. It is often
referred to as a threshold of 60 m, after which this type of substructure can no longer be
installed economically. Keeping in mind that around 80% of the world’s potential offshore
wind capacity is located in waters deeper than that [1], floating wind rose to the occasion
as a new, disruptive technology. All over the world, countries are looking for feasible
options to generate green energy. For countries/regions that do not have any or very
limited experience in offshore wind due to complex bathymetry and/or problematic soil
conditions, floating wind makes it possible to install projects in previously inaccessible
regions in order to harvest offshore energy. The sites, now possibly being located farther
offshore, typically offer stronger and steadier wind conditions that make it possible to
increase the captured power and therefore lower the levelized cost of energy (LCOE).
However, the relatively nascent technology is yet more expensive and less reliable than
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bottom-fixed offshore installations due to the geographical conditions of the open ocean
but also due to its relatively low technology readiness level. The high cost is due to the
construction of the large turbine foundations, using deep water mooring systems to ensure
the turbines endure the prevailing dynamic conditions and the necessity of using dynamic
subsea cables in order to collect the energy from the floating system. The low reliability is
mainly due to the poor accessibility of the floating offshore wind farms (FOWFs). Weather
conditions farther offshore are likely to be worse, whereas weather limits for repair works
are stricter due to the floating behavior. The possibly large distances from shore result in
longer travel times, which create the need for suitable weather windows. If a fault occurs in
any of the facilities, the effects last longer, leading to a deterioration in reliability. Therefore,
FOWFs must be planned carefully from both an economical and reliability perspective.

Offshore wind farms (OWF) are typically designed in a sequential planning process.
As a first step, a suitable area at sea is identified which can be used for power production.
Second, the area is populated with wind turbines (WTs) in the micrositing process which
typically tries to exploit the maximum annual energy production (AEP) considering wake
effects on downstream turbines within the designed wind farm. If applicable, the microsit-
ing process usually also deals with the positioning of an offshore substation (OSS) in the
wind farm area. In a last step, the fixed WT (and OSS) positions are used to carry out
the cable routing optimization [2]. This process offers a robust and computationally less
cumbersome solution but does not take the full complexity of the combinatorial problem
into consideration. The conservative micrositing process will try to maximize the distance
between individual WTs in order to reduce wake effects, which will have a large impact
on future offshore wind farms consisting of larger and more powerful turbines. The in-
creased distance between WTs will result in longer inter-array cables forcing an increase
in capital expenditures (CAPEX) and power losses over the OWF’s lifetime. Even though
power losses can be mitigated by taking advantage of different cable sizes, the selection
of the optimal cable diameter for a WT interconnection increases the complexity of the
overall optimization. The problem becomes even more convoluted when considering the
increasing size of future OWFs, as well as their increasing distance to shore, since both
factors strongly favor the use of at least one or even multiple offshore substations (OSS)
where the power is collected and transformed into a high-voltage export system which,
depending on the distance to shore, can be either an AC or DC system. Optimally placing
and interconnecting the OSS(s) brings a new dimension to the optimization as it will have
a major effect on the inter-array collection system as well as on the HV export system.

According to Serrano González et al. [3], the cost for the electrical infrastructure
of a bottom-fixed offshore wind farm accounts for 15–30% of the total acquisition cost
(CAPEX). Hence, optimizing the cabling and possibly the overall OWF layout offers a great
opportunity for cost saving. However, most of the literature on cabling layout optimization
is primarily developed for the bottom-fixed offshore wind industry, and the future trend
towards floating wind farms has not yet been thoroughly assessed. It can be assumed
that this cost share for the electrical infrastructure will be similar for commercial-sized
FOWFs. However, due to the increased complexity, the yet-missing experience in FOWF
deployment, and the lack of component standardization ([4]), it is assumed that the absolute
cost will be much higher. As a consequence of the high cost, the complexity of the overall
planning procedure and the low accessibility for repair work (especially for floating wind),
the cable layout optimization for floating wind applications is estimated to be a very
valuable area for future research activities.

This review paper aims to analyze cable layout optimization techniques primarily
developed for the bottom-fixed offshore wind industry and assesses their applicability to
future commercial-sized FOWFs. The outcome highlights areas and engineering constraints
which will require thorough consideration in order to design reliable FOWFs with long-term
economic benefits.

The remainder of this paper is organized as follows: In Section 2, the literature focusing
on bottom-fixed industry is examined in terms of applied optimization techniques and
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considered engineering constraints. Section 3 points out optimization techniques with
a focus on FOWFs, followed by the discussion Section 4 in which floating wind specific
aspects and constraints are identified which need to find consideration in future broader
optimization works. Finally, the findings are summarized in Section 5.

2. Bottom-Fixed Literature Approaches

The broad majority of the literature handling the inter-array cabling optimization
is focused on the traditional bottom-fixed offshore wind industry. Only a very limited
number of publications can be found which handle the matter with regard to floating wind
and tackle some of the new challenges that arise with the new technology, as can be seen in
the comparison of the studied literature in Figure 1.

Figure 1. Comparison of the amount of studied literature published since 2019.

Hence, in this section, an overview is presented on how the optimization problem is
addressed in the bottom-fixed case. Special attention was given to works published since
2019 since extensive review papers ([5,6], both from 2019) deal with earlier works.

In general, it can be said that due to the complexity of the overall optimization
framework, different approaches developed in the literature concentrate on certain parts of
the problem while neglecting others.

In the further course of this section, the investigated literature is examined.

2.1. Objectives and Common Constraints

Before going deeper into the optimization practices, it is important to clarify what is
to be optimized in the first place. The most obvious and also the easiest to implement is
to minimize the total cable length, because this is usually what everything depends on in
the first place: the acquisition cost, the losses in the cables, the trenching length (in case of
buried cables), etc. However, this optimization starts to fail as soon as several cable types
with different capacities are considered, which are typically subject to different cost factors
and represent different electrical impedances.

Furthermore, the question arises whether only a snapshot or a time period (e.g., the
lifetime of the wind farm) should be optimized. Thus, not only the CAPEX but also the
OPEX or even possibly DECEX must be included. In case of OPEX, in addition to the
electrical losses, there may also be failure rates which possibly trigger unavailabilities
due to long-lasting repair works, which have a negative impact on the annual energy
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produced (AEP) and therefore on the turnover. The most complete optimization objective
can therefore be the LCOE taking into account the entire lifetime performance of the OWF.

Although different approaches are used in the literature (e.g., the optimization objec-
tive or the techniques), there are some commonalities that make a meaningful simulation
possible. A common approach in the literature is to exclude the crossing or even the shared
trajectory of cables. It must be noted that cable crossings are not impossible in principle but,
especially for buried cable sections, this is a sensible constraint. Trenching and cable-laying
in the close vicinity of already-laid cables increases the risk of mechanical damage on both
cables. However, not just the installation could influence the cable’s performance but also
the operation itself. For example, heat generated by the Ohmic resistance can damage the
cables, and partial discharges in one cable could therefore influence the performance of
the other cable implying that two crossing cables would have to be insulated against each
other. Furthermore, O&M activities would be more time-consuming. In case the cable that
is buried lowest fails and has to be replaced, both cables would have to be dug up, resulting
in considerably higher costs.

For optimizing the inter-array cabling, most works only consider the Euclidean dis-
tance between WTs. This is a valid approach considering that those works only take a flat
homogeneous seabed into account. However, this simplification is broadly assumed but
does not reflect real conditions especially as OWFs become ever-larger, requiring more and
more space, enlarging the footprint on the seabed and making it therefore more likely that a
non-homogeneous seafloor and even possible restriction zones will be encountered on-site.
Works that raise this issue will be highlighted in the further course of this review and the
taken approaches to overcome this problem will be explained.

2.2. Topologies

It is a very common approach in the literature to restrict the cable layout to a topology
prior to the optimization. However, the interconnection of offshore wind turbines is
governed by the preferred topology since it heavily influences the length of the cabling,
the electrical losses, the OWF reliability, and so on. It should therefore be generally avoided
to exclude one topology from the beginning [7]. However, there are two main topologies
which are widely discussed in the literature. Each topology developed in the literature
comes with its own adaptations so that a variety of possible layouts exist.

2.2.1. Branched Topology

The branched topology connects WTs in a branch to the offshore substation. In a
branch, multiple cables are allowed to connect to a WT but only one cable is allowed to
transmit the power away from the WT towards the subsequent receiver (either another WT
or an OSS). Based on the N-1 requirement, the cable selection per WT interconnection only
needs to support all its downstream turbines, which leaves room for further optimization.
Hence, this problem can be modeled using a Capacitated Minimum Spanning Tree (C-
MST) considering that the largest available cable needs to be able to support the power
capacity [5]. The branched topology is sometimes prevented at the beginning of the
optimization by introducing restrictions. This is due to the fact that this type of cabling is
associated with a higher investment and installation effort regarding additional electrical
components (e.g., switchgears, (dis-)connectors and/or offshore transformer modules
(OTMs are able to handle the transformer function directly at the WT and allow it to be
directly connected to shore [8])), for which it may already be clear in advance that they may
not be available [5].

Hence, an adaptation of the branched layout exists—a subset of this topology named
the radial topology. It connects turbines in a string with at most only one cable enter-
ing and one cabling exiting each turbine. It is important to note that as a subset of the
branched topology, the radial connection cannot deliver shorter cable paths but can ease
the computational effort since it considers engineering constraints from the beginning [9].
In commercial-scale OWFs, the radial connection scheme is widely used at present since
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it is a relatively simple layout and offers a high degree of flexibility in control while
simultaneously coming with low initial investment cost.

However, both, the branched as well as the radial topology lack redundancy, as a
failure in an upstream centric branch will force all downstream WTs to shut down since the
power can not be transferred to a receiver [10]. Nevertheless, the broad use of this topology
is often justified by the fact that buried submarine cables show relatively low failure rates
(between 0.08% and 1.5% per km and year [11]) compared to other components. However,
besides the stated lower failure rates, Young [12] states that cable failures account for up
to 77% of the total global cost of OWF losses and that 95% of all offshore wind projects
experience one or more cable-related insurance claims. These may be due to incorrect cable
installation or operation while the latter translates to electrical faults in around 20% of
failures. Especially for large-scale wind farms which are located farther from shore, the
consequence of a cable failure could be dramatic, as a failure could last for two to three
months due to sea cables’ low accessibility and long mean times to repair (MTTR) causing
large losses of revenue connected with expected but not supplied energy (EENS) depending
on the failure location [13].

2.2.2. Ring Structure

To enhance the redundancy and therefore the reliability of the offshore collector
network, the loop or ring structure is proposed in the literature as it allows a bi-directional
power transmission to the OSS [14]. However, the looped structure comes with higher
installation cost due to the longer cabling route, the need to deploy larger cables with
higher ratings and electrical components such as reconfiguration switches. Furthermore, it
requires a higher level of control. Typically, cable ratings in a ring structure are selected to
be equal ([13]) but like in the branched case, connections only need to be able to support all
the downstream turbines as can be seen in Figure 2.

Figure 2. Number of turbines to be supported by a cable in a string (left) and ring (right) structure.

The looped structure corresponds to a Capacitated Vehicle Routing Problem (CVRP)
with the OSS, the WTs, and cable capacities being the depot, customers, and vehicle
capacities, respectively.

Despite the higher investment cost, it is argued that the ring design would save enough
money during the operation of the OWF that it would be the most economical solution in
long-term assessments [15].

2.3. Clustering and OSS Positioning

Large and distant OWFs require the application of one or even more OSS(s) in order to
transmit the generated power without larger power losses to the point of common coupling
(PCC) with the onshore grid. Hence, most papers consider flexible or pre-determined
locations of the OSSs in their work as they form the root of the inter-array cabling structure
and will therefore have a large impact on the objective or fitness function. Pérez-Rúa and
Cutululis [5] identified three approaches which are commonly found in the literature in
order to position the OSS(s) in the OWF area and to allocate multiple WTs to them:

Approach (1) is the simultaneous approach, in which the allocation of WTs is solved
concurrently with the cabling problem. For large OWFs, this high-quality approach typ-
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ically comes with major computational expenses, especially when using deterministic
methods which are explained in more detail in 2.4.1.

Approach (2) consists of multiple steps starting with the creation of clusters within
the OWF, locating a central OSS in each cluster, and then solving the inter-array cabling
problem in a subsequent step. The clustering may be carried out (but rarely applied in the
literature) mathematically or via clustering algorithms. Clustering algorithms split the OWF
into smaller subgroups by maximizing similarities of individual WTs in a subgroup (such
as minimizing the mean distance of WTs to an OSS location) while minimizing similarities
of individuals belonging to different groups. By creating subgroups of previously obtained
or pre-determined OWF layouts, the inter-array cabling can be simplified in order to find
a good initial or at least feasible initial solution for the interconnection faster. This holds
especially true once the number of WTs becomes larger which would result in a larger
computational burden. However, the main disadvantage of applying clustering as a pre-
processing step is that the number of clusters typically needs to be pre-determined and
that the subsequent cabling optimization is usually limited to being cluster-internal, so no
overall optimization is carried out. Both effects narrow the solution search space for the
overall problem optimization [16].

As representative clustering algorithms, there are quality threshold (QT) and K-
means ([17–20]), as well as fuzzy C-means (FCM), algorithms ([13,14,21–24]).

The QT clustering method determines a cluster quality, e.g., the cluster diameter and
the minimum number of WTs contained in each cluster ([25]), and performs clustering of
WTs so that a certain threshold value for the diameter is not exceeded.

While QT methods use only the diameter as a clustering criterion, two criteria were
introduced for K-clustering methods in [26]. One is the distance between WTs and the
center of each group, while the other is the angle of each WT with respect to the OSS.
Shin and Kim [17] point out that using the distance criteria, WTs in proximity can be
connected to each other. However, when collecting the electricity far from the OSS, the
main cables used between each feeder and the OSS may become longer which implies
increased cost since cables with higher capacities are more expensive. The angle criterion
naturally avoids crossings of collector cables to the OSS with any other cables within other
clusters. Nevertheless, a local minimum can also not be easily avoided depending on the
chosen number of clusters k and the initial angle of the WT allocation. Yi et al. [20] point
out that the conventional K-clustering method is not able to find clusters with the same
number of WTs, which will prevent equal capacity requirements in the case of multiple
OSSs. This will have an impact on the economic efficiency. Therefore, they adapted the
K-clustering solution by swapping memberships of WTs between any clusters until all
clusters incorporate the same number of WTs and the sum of distances between WTs and
OSS in each cluster is minimized. Furthermore, they notice that the OSS position in the
cluster’s center is possibly too close to a WT. Hence, they manually realign the OSS position
to comply with any given safety distance.

Fuzzy C-means clustering has been widely used in the literature and is therefore
considered validated as a reliable clustering method. The FCM algorithm is an extension
of the K-means clustering method with the feature that an object (WT) is allowed to be
assigned to more than one cluster (OSS). This fuzzy overlap is made possible by the fact
that a membership degree is introduced which is based on stochastic initialization which
may result in unstable outputs.

Approach (3), commonly found in the literature in order to position the OSS(s) in the
OWF area and to allocate multiple WTs, is the nested approach. It consists of a recurring
calculation process, where the OSS position(s) and WT allocations are assessed in an outer
loop while the specific cabling problem is addressed in an inner-loop. Zuo et al. [22] studied
the connection of an older already-existing OWF with a newly built OWF consisting of more
powerful turbines. Due to the large difference in turbine capacities over the geographic
area, they used a weighted FCM clustering method which was further refined by the
implementation of a pattern search algorithm (firstly implemented by Shin and Kim in [17])
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in which the area around the FCM solution is proposed as a search space and undergoes
further refinement per loop iteration. Pattern search is a heuristic-based optimization
method which follows a predefined exploration pattern. As it can not guarantee a global
optimum, modifications of the pattern are necessary in order to avoid falling into a local
optimum. The modifications to the search space are dependent on whether a better OSS
location could be found in the previous iteration loop or not [17].

In Figure 3, the chosen approaches for OSS positioning of analyzed studies published
since 2019 are shown.

Figure 3. OSS positioning approaches used in the analyzed literature since 2019.

It is shown that the sequential approach (2) is the most commonly used in the newer
offshore wind cabling optimization literature. This is partially due to the fact that some pa-
pers (mainly the ones following a deterministic approach) only take one predetermined OSS
location into account in order to solve the complex cabling problem optimally in a reason-
able amount of time. Furthermore, several yet-unestablished metaheuristics (i.e., compared
to genetic algorithms (GA) and particle swarm optimizations (PSO)) concentrate on solving
the cabling problem while considering a pre-assessed, fixed OSS location. Deterministic
approaches which consider more than one possible but predetermined location for the OSS
position are counted for as a simultaneous approach. However, it should be noted that no
analyzed deterministic method accounts for free OSS positioning. The simultaneous ap-
proach using GAs and PSOs is often realized by passing genetic/particle information about
the OSS location to the next generation of individuals/particles. This will be explained in
more detail in Section 2.4.

Overall, clustering-based methods can help to solve the inner-grid cabling problem in
a relatively short time but are keen to fall into a local minimum as they explore a relatively
narrow search space depending on the chosen criterion. Furthermore, positioning the OSS
via clustering methods typically locates the substation in the center of a cluster which
can evidently minimize the total cabling length when considering the inter-array collector
system. However, it should be noted that the positioning of the OSS(s) greatly affects the
routing of the costly HV export system towards the PCC, which should be considered given
a full optimization of the electrical system [16]. However, only a few papers do consider
the HV export cable system together with the inter-array cabling problem. For example,
Zuo et al. [24] make use of the nested approach and position multiple OSSs in a large OWFs
and consider the position of an offshore converter station which collects the power from
all OSSs and transmits it towards the PCC. The positioning of this converter is based on a
grid-like layout and the cost of the large DC cable is taken into account depending on the
used grid position. Zuo et al. [14] use FCM to position the OSS centrally in an OWF but
note the negative effects on the export cable length. In order to find a trade-off between the
lengths of inter-array (IA) and export cabling they implement improvements concerning
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the OSS position via a genetic algorithm. For further information, see [14]. For further
clarity, please refer to Figure 4.

Figure 4. OSS location refinement based on export cabling.

Another aspect to consider when allocating WTs to an OSS is that most OSSs only
allow for a limited amount of feeder cables to enter. This is not a very common approach in
the literature but an important engineering constraint to consider. Especially with a large
amount of WTs that have to be connected to an OSS, typical MST algorithms can not deal
with this restriction. To overcome this problem, Cazzaro et al. [27] developed the so-called
SWEEP heuristic which is similar to the K-clustering method. The turbines are sorted by the
angle defined with respect to the substation, a node is picked as the starting turbine, and the
other turbines are swept clockwise or anti-clockwise according to the chosen direction. The
number of turbines in each group is an integer between the number of turbines divided
by the number of OSS cable connections and the maximal turbine number which can be
supported by one cable. After the turbines have been grouped, the connection cost is set to
infinity for each connection among turbines of different groups, except for connections to
the substation. For computation within those groups, simple MST algorithms can be used,
thus choosing the best edges inside each group of turbines and towards the substation.
This heuristic typically finds an initial high-quality solution in a very short computing time.

2.4. Optimization Techniques of the Inter-Array Cabling

In general, optimization problems can be tackled by using different techniques. The
offshore wind farm cabling is known to be non-linear as well as non-convex; it is classified
as an NP-hard problem (no deterministic solution can be found in polynomial-time) which
increases in difficulty with the number of instances to be considered in the solution [20].
The non-convexity is due to the various sub-problems to be solved, possibly including
the AEP maximization, CAPEX and power loss reduction, etc., so that multiple different
solutions can result in the same objective value.

In the literature, various approaches have been applied for tackling cabling opti-
mization including deterministic, heuristic, and metaheuristic methods. Deterministic
approaches can guarantee finding a global optimum of the problem but very quickly be-
come a large computational burden once the number of considered instances increases.
Heuristics and metaheuristics come with more flexibility, due to, in theory, the possibil-
ity to consider all the complexity of physical modeling, at the expense of not having an
optimality guarantee [5]. In Figure 5, the chosen optimization methodology of analyzed
studies published since 2019 is shown.
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Figure 5. Optimization methodologies in the analyzed literature published since 2019.

It is shown that the majority is proposing metaheuristic approaches, which does not
necessarily exclude the use of deterministics or heuristics, as metheuristics can also be used
for creating an iterative framework as part of a nested approach (more in Section 2.4.3).

2.4.1. Deterministics

Global optimization can provide the mathematical certification to find a globally
optimal solution under certain conditions (i.e., the need for assuming convexity) and
has been applied to some extent to overcome the cabling problem [28]. Types of models
useful for solving the cabling layout are binary integer programming (BIP), mixed-integer
linear programming (MILP), mixed-integer quadratic programming (MIQP), and mixed-
integer non-linear programming (MINLP) [29]. Compared to the other models, MILP
formulations are generally computationally more efficient and are therefore the preferred
choice. However, each model comes with certain limitations on how to model important
engineering constraints (e.g., the quadratic active power losses can not be fully considered
in the MILP model and also the widely used Newton–Raphson method to model power
flow equations can not be applied in an MILP nor MIQP) and it is often not feasible to fully
describe and solve the problem in an analytical form without significant simplifications
of the search space [30]. Common simplifications, for example, are that the position of
the OSS is restricted to only a few discrete candidate locations and that the use of cables
is restricted to only a few different types in order to keep the number of binary variables
below a certain threshold with which the problem will still be computationally tractable [28].
Hence, the main challenge for using deterministic solution methods is to find a reasonable
balance between functionality (i.e., performance) and complexity [29]. The solution of
those problems is often obtained using external solvers which are usually used as a black
box, using algorithms such as branch-and-cut or Benders’ decomposition. Searching for
a proven optimal solution under all combination possibilities makes the approach more
transparent [5]. However, since only one solution can be obtained at a time, the solution
would have to be discarded and the problem reformulated in case a solution is found to be
infeasible due to an unconsidered engineering constraint [28].
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With discrete decision variables they mostly solve the problem by using a mixed integer
linear programming (MILP) approach and focus mostly on the radial structure ([21,29,31–36])
while only some explore the optimization of the more reliable looped structure ([30,37]). It
is also the latter two articles in which the mathematical optimization program is embedded
in an iterative framework called Progressive Contingency Corporation, which can simplify
the problem while still including the global optimum [37]. Both papers also incorporate a
stochastic model in order to analyze the impact of failure rates and MTTRs on the availability
of the wind farm and hence on the EENS. Comparing radial and looped structures, Pérez-
Rúa et al. [30] find that the profitability of either topology type is heavily dependent on the
project size and wind turbine ratings, as these largely affect the EENS. Furthermore, it is
stated that the stochastic model comes with low tractability which especially affects large-scale
instances with an increase in the required computing time and memory resources.

As already mentioned, MILP models can not incorporate the quadratic electrical losses
in the cables in their objective function. To overcome this issue, most authors propose
a pre-processing step in which the losses are pre-computed in the form of a database
which can then be accessed during the optimization process. Shen et al. [21] simplified
the calculation even more by assuming a coefficient for the power loss over the OWF’s
lifetime. Marge et al. in [35] use a simplification developed in [38] in which a layout is first
designed without taking the energy losses into account. Then, the losses for the designed
layout are approximated by the probable power flow and the cable resistances. Based on
this, local modifications (e.g., changing a cable type) are made to the current layout, and
the algorithm is run again until no more changes are due.

Their work ([35]) is also the only studied article that incorporates different WT layouts
in a deterministic optimization. In a first step, different layouts are designed with the
help of the Jensen wake model considering different wind speeds as well as directions.
The WT layouts are grid-based and differ in the distances between WT rows which are
then integrated into the MILP model. Although the positioning of the WTs is not directly
optimized, this approach enables a broader optimization. Furthermore, the obtained power
for each turbine under the influence of the wake plays an important role in the assessment
of power losses and the EENS due to failures of components which are typically only
considered assuming the rated power of each WT.

Most works only take into account a flat homogeneous seabed which makes it possible
to only consider the Euclidean distance between two WTs. Klein and Haugland in [33]
present an MILP model in which segments of different cables are allowed to share a common
trajectory but are not allowed to cross paths. Cables can be placed in close proximity to
turbines they are not connecting to, which is accomplished by introducing so-called “Steiner
points” in arbitrarily small circles centered around the locations of the turbines to which
the cables may be connected (see Figure 6).

Figure 6. (a–c): Examples of Steiner nodes (blue) used for laying a cable around a turbine (black).
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A similar procedure is used for (multiple) cables routed around possible restriction
zones on the seabed. Klein and Haugland point out that the potential cost savings can be
considerable when considering the high cost per meter of cables in offshore wind farms.

Even though their MILP model proves to have a practical and applicable computa-
tional performance handling around 60 WTs, it is pointed out that it would be a challenge to
adopt the model and algorithm to handle commercial-scale offshore wind farms with pos-
sibly 200 or more turbines.

This points towards the main problem that comes with the use of deterministic models,
as their complexity and search for optimality grow exponentially with the number of
considered instances such as WTs, OSSs, cable types, etc.

Ulku and Uslu [36] developed an MILP model to find the optimal location for a
voltage source converter across the map to achieve the most cost-effective design for power
transmission to the onshore substation. They limited the computational time to two hours
and were able to find optimal solutions for several layouts with up to 20 fixed turbines.
A higher turbine number led to non-optimal results within the given computational time.
Newer works incorporating MILP models were able to increase the number of considered
WTs to around 100 ([29–32]), but do not consider certain key constraints such as obstacles
or no-cable crossings and furthermore suffer from long computational times compared to
heuristics and metaheuristics, which are assessed in the next subsections.

2.4.2. Heuristics

Due to the intrinsic complexity of the problem and the large number of constraints,
heuristic methodologies offer an efficient alternative. Heuristics can be defined as solver-
free algorithms which construct a solution by following a set of sequential steps, which are
based on stochastic searching processes. Hence, they offer more possibilities for pursuing
better results in a shorter amount of time but could deliver unstable outputs as well as fall
into a local optimum as they do not discover all of the search space [14]. In contrast to
deterministic methods, heuristics alone can not be guaranteed to find an optimal solution
(let alone a feasible one), but are very useful for obtaining an approximate solution within
an acceptable time for NP-hard problems [16]. This is often required because the recurring
process of calculating the evaluation function when simultaneously solving multiple layers
of problems is often bound to a given time limit. The faster the heuristic performs, the
more exhaustively the search space can be explored [2]. Classic heuristic algorithms
which find application in the inter-array cabling problem are Prim’s ([24,39]), Dijkstra’s,
Kruska’s, Clark and Wright’s savings ([22,23,40]), or Esau-William’s ([29]) algorithms (it
is pointed out that the named algorithms intrinsically all obey the same underlying rules
during the design process [41]) but also new and individual heuristics can be used as their
development and integration are subject to the designer’s creativity [5].

Combining heuristic approaches with deterministic optimization can have the benefit
of limiting the search space for deterministic methods which can result in an acceleration
of convergence when searching for a global optimum. The merging of both methods is
called matheuristic [5].

After Ulku and Uslu’s MILP formulation in [36] failed to provide optimal solutions in a
two-hour timeframe, the authors incorporated heuristics in a later work [34]. Matheuristics
led to faster convergence and thus reduced the computational time significantly by 55%.

Pérez-Rúa and Cutululis [2] focused on the simultaneous optimization of the OWF
layout and inter-array cabling. After generating a layout by an external model taking
wake and wind variability into account, it is firstly assessed in terms of cabling optimiza-
tion by the Esau–Williams greedy heuristic. The authors claim that the Esau–Williams
heuristic has consistently performed better in terms of feasible points and investment
cost in the testing phase when compared to Prim’s and Kruskal’s algorithms. After
the connections have been assessed, one out of three available cable types has to be
assigned to the WT connections. This decision is made by evaluating the number of
downstream turbines connected to the branch and choosing the cheapest type capable of
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handling the given capacity. After assessing the objective value (here the internal rate of
return), a random WT is randomly moved and the process starts again. This is repeated
until a certain time budget has run out. The best preliminary solution is taken forth to
a global optimization with an MILP which can now solve the cabling for this specific
layout optimally, taking pre-processed power losses into account as carried out in their
previous work [29].

The MILP model in the upper example provides optimality to the cable type selection
for each WT interconnection. Routing heuristics alone can not decide on an adequate cable
type for WT interconnection, hence this is mostly carried out in a subsequential step. To
overcome this, Zuo et al. [24] deeply modified Prim’s algorithm to foresee which possible
connections may follow so that during the heuristic run, a feasible cable type can already
automatically be selected. This way, a higher control is achieved, especially in terms of
keeping track of the number of feeders for the OSS and the number of turbines per feeder.

Another example of how heuristics can speed up an iterative design process is shown
in [23] as well as in the follow-up work [22], in which a large offshore wind farm is parti-
tioned and the cable layouts in different regions were optimized. What is special about this
work is that it focuses specifically on the inter-corporation across OSSs, adding another level
of redundancy to the cabling structure (illustrated in Figure 7). Furthermore, it is argued
that by connecting the two OSSs, a transformer sharing capability is established, which
reduces the acquisition cost of spare parts. After two substations have been positioned in
the OWF by clustering methods, iterative angular adaptations (and thus stepwise changes
of the WT allocations) are used to establish the cabling between the OSSs and the WTs by
Clark and Wright’s savings algorithm.

Figure 7. OSS inter-corportaion.

Gong et al. [40] investigate (in a simple manner) the construction of a new, more
reliable cabling structure. It should be noted that they, unlike most works, consider a
heterogeneous seabed and use the geodesic length based on triangular meshes of the
seabed to compute exact lengths between WTs. They first explore a ring structure which
is partially redundant but can still (due to only one available cable capacity with n
turbines) suffer from overloads if a failure close to the substation occurs. After locating
the OSS in the center of the OWF, they allocate the 2n−1 WTs to feeders using the sweep
algorithm. To find the optimal routing for this feeder, the savings algorithm by Clarke
and Wright is used. This procedure optimizes the use of the cable capacity and naturally
reduces the occurrence of forbidden cable crossings. Based on the ring structure, they
introduce the reliable “multi-loop structure” (see Figure 8). Additionally, it uses WTs
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in those ring structures as nodes to connect to other rings. To find those nodes, the
turbines in each feeder are counted up to the (n + 1)-th turbine which is identified as
the interconnecting node. When all interconnecting nodes have been found, the sweep
algorithm is applied and interconnecting nodes that are swept will be connected to the
next-swept connecting point.

Figure 8. Multi-loop structure.

2.4.3. Metaheuristics

Metaheuristics are generally used to guide the search process with the goal to find
near-optimal solutions while exploring a large-enough search space without being too
computationally expensive. Their use is more typical when an initial solution is intended
to be improved in an iterative manner in a nested (3) approach (see again Section 2.3).
Metaheuristics make use of different stochastic operators in order to enhance traditional
heuristic algorithms, i.e., to avoid them from falling into local minima by smartly searching a
larger search space [5]. These methods are mostly based on naturally occurring phenomena
such as (but not limited to) the genetic algorithm (GA), the particle swarm optimization
(PSO) algorithm, the ant colony optimization (ACO) algorithm, the bat algorithm (BA),
neighborhood searches, tabu searches, or the simulated annealing algorithm. An overview
of the published work since 2019 is given in Figure 9.

Figure 9. Metaheuristics used in the analyzed literature since 2019.
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Genetic Algorithm

The GA is named after principles observed in evolutionary processes to create and
test new solutions. For reasons of clarity, a short description is given in the following
based on [42]: An initial population consists of multiple individuals with individual
chromosome pairs, e.g., one individual’s chromosome contains specific information
about the OSS location for this specific individual’s solution. Every GA generation
begins with a selection, where pairs of individuals already in the population are chosen
based on the quality of their solutions to provide genetic material for the next generation.
These pairs of individuals are combined using crossover and mutation operators to
produce new solutions, called child solutions. These child solutions take on some of their
parent solutions via crossover and are then modified, possibly randomly, via mutation.
Using these two stochastic operations, GAs try to preserve the good elements of the
parent solutions in the new child solution, while the random element is used to avoid
settling in local optima solutions. The “replace the weakest first” strategy is then utilized
to determine which of the newly created children will be included in the next generation.
This process of selection, crossing, and mutation is repeated until a certain portion of
the population has been replaced and the quality of the entire population has improved,
marking the end of a generation. Generally, GAs continue for a predetermined number
of generations or until there is sufficient similarity (i.e., convergence) in the population.
Although both crossover and mutation take constraints into account, after crossover and
mutation, constraints are explicitly imposed and if a child solution does not satisfy a
constraint, crossover and mutation are repeated until it does.

For the inter-array cabling of OWFs, GAs can be used in two ways. The information
about the electrical system (e.g., OSS locations, WT interconnections, cable types, etc.) can
be integrated into the chromosomes, so that each individual represents a different and
complete cabling solution [43].

Another method used in the literature is to use the chromosome information to only contain
parts of the overall problem (e.g., WT positions, the OSS location) while the rest of the connection
(e.g., WT allocation, cabling) is carried out using non-metaheuristic approaches, i.e., clustering
or cabling heuristics, respectively, in an iterative nested approach ([13,14,16,17,44]).

From the works studied using GA, only three investigate the construction of the more
reliable ring structure ([13,14,45]). The latter compares radial and ring structures in terms
of life cycle cost including unavailability and repairs while ignoring power losses over the
OWF’s life time. It is concluded that partial redundancy of the system can outperform full
redundancy compared to the radial structure since the CAPEX is increasing with the level of
redundancy. With their specific cost assumptions, partial redundancy is economically more
viable after eight years of OWF operation while amortization is reached after twelve years
in the total redundancy case, leaving the radial structure as the most expensive after the
OWF’s lifetime. Only considering the cabling CAPEX but therefore taking lifetime power
losses into account (at nominal power production), Wei et al. [13] also compare ring and
radial structures and come to the same conclusion that the ring design is more expensive,
but, with the same failure rates, is more economical in the long term. It is interesting to
note that the authors decided to use a single-parent GA, as they point out that this would
lead to faster computational times.

A very sophisticated power loss model is introduced in [43], where a variable wind
speed is considered for calculating the wake losses inside a fixed OWF layout and to deter-
mine the power output of each individual WT. They also consider current and voltage drops
in each branch. WT interconnections, cable types and possible OSS positions are contained
within the chromosomes and are all simultaneously optimized considering the fitness
function of CAPEX and power loss cost. For creating a new generation, adaptive niche
techniques are utilized to maintain population diversity and avoid local convergence. They
report that this procedure comes with significant cost reductions when compared to the
sequential step approach in which first the cabling length is minimized and subsequently
the cable type is selected.
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GAs can also be used to position WTs effectively in the OWF either in a grid-like ([46])
or coordinate-based ([44]) layout. Both works only consider one cable type and therefore
only try to minimize the overall inter-array cabling length. Wade et al. [44] make use of two
heuristics, namely the planar open savings heuristic (developed by Bauer and Lysgaard
in [47]) and the Esau–Williams algorithm.

In [46], a Euclidean minimum Steiner tree (EMST) approach has been explored, uti-
lizing a “GeoSteiner” algorithm solver which is an exact algorithm to solve the EMST
problem [48]. Compared to finding an MST according to the fixed vertices, an EMST allows
to add extra vertices to the network in order to reduce the overall length, as illustrated in
Figure 10.

Figure 10. (a) Minimum spanning tree; (b) Euclidean minimum Steiner tree.

With this method, a solution for a small problem (about 30 turbines) can be generated
in less than an hour; however, for a larger problem (about 50 turbines), the calculation time
increases rapidly to about 10 h. It should be noted that this work did not incorporate any
OSSs in its model.

Considering a heterogeneous seabed, Yi et al. [20] divide the available seabed area
into different zones. These correspond to different cable costs in order to penalize solutions
in which cabling would be more complicated. Furthermore, exclusion zones are considered
where cabling is not permitted. To cope with the exclusion zones, a visibility graph is
constructed before the cabling problem is assessed. This graph contains all connections
from the starting point (OSS) to all straight-lined accessible clients (WTs), the corners of
the exclusion zones, and their edges. For reasons of clarity, a visibility graph is included in
Figure 11 from [9], where this problem is also tackled accordingly.

For the initial solution, Yi et al. [20] use a stochastic greedy run which assures connec-
tivity of all WTs. After the initial connection is set by 500 greedy runs through the visibility
graph, the GA randomly chooses branches for re-connection. The turbines in this branch
are then connected to their nearest connected neighbor WT. If the solution provides better
results, it is taken forward; otherwise, the move will be discarded. It is worth noting that
the used model is relatively complex considering 119 WTs, 2 OSSs (by K-means clustering)
in 5 different installation zones, power outputs (and correspondingly electrical losses) due
to wake effects, and availability accounts due to stochastically occurring cable failures.

Furthermore, considering the installation complexity of certain seabed areas, Roetert
et al. [49] are the first to consider morpho-dynamic seabed conditions in the cable route
optimization problem. Their work can be divided into two parts. Firstly, they develop a GA
to find the optimal turbine interconnection considering a static seabed. Herein after, they
optimize these gained connections by varying the cable’s vertical (initial burial depths) and
horizontal offsets to avoid cable exposure due to seabed movements in the form of migrating
sand waves. In the GA, the initial population consists of multiple solutions for the layout
problem. An initial solution consists of one string containing all turbines in a random order
which is infeasible but denotes turbine connectivity. For each solution, the total weight is
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calculated by adding up all edges present in the solution. For every possible connection
between turbines, as well as turbines and the OSS, a certain “weight” according to seabed
restrictions is generated and saved in a distance matrix. In a second step, the total population
is divided into sets of eight solutions. With a sufficiently large population and a division
in subsets, the risk of local optima being considered globally optimal is diminished. Later
on, the fitness of all solutions is evaluated by assessing whether all turbines are connected
to the OSS and whether the string capacity is exceeded. The solution with the lowest total
weight is then chosen as the best solution in this set. The fourth step consists of applying
eight mathematical operations independently to the best solution in a subset. This repeats
until a certain maximum amount of computational time, a specific number of iterations is
reached, or no significant improvement in the total solution can be identified. With the aid
of the GA and the constraint of non-crossing, as well as defining a maximum number of
turbines per string, a somewhat optimal layout is calculated. The gained connections are
then subject to variations in vertical and horizontal offsets. Internal and external risks are
analyzed and are included in the cost function as well as the required burial depth for each
possible hazard. The vertical determination is achieved by sectioning the connection and
varying the burial depth per section. Then, for each section, the optimal initial burial depth
in terms of minimized cost is determined and all segments are combined. Independently,
the horizontal offset is determined by the use of Dijkstra’s algorithm which searches for
the shortest path between two given vertices for a graph with weighted edges. It can be
observed that the more cost-efficient parts are located in the sand wave troughs, since they
already represent the lowest seabed level where the predicted seabed lowering is equal to
the uncertainty band.

Figure 11. Shortest paths from WTs to OSS computed using a visibility graph for exclusion zone
avoidance ([9]).
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Particle Swarm Optimization

Like the GA, the particle swarm optimization (PSO) algorithm is a population-based
metaheuristic optimization algorithm. It is inspired by the collective behavior of social
animals. Within the PSO, the set of candidate solutions to the optimization problem is
defined as a swarm of particles that can move freely in the multi-dimensional search space,
defining trajectories. Each particle updates its position in each iteration of a loop based on
its personal best solution found so far, the global best solution found so far by all particles,
and according to its velocity of the subsequent iteration. This is expected to move the
swarm towards the best solutions [50].

Similar to the application of GAs in the inter-array cabling, the metaheuristic infor-
mation of a PSO can be used in two ways, while works incorporating GAs mainly focus
on providing the framework for other heuristics (e.g., OSS or WT positioning) to conduct
the inter-array cabling in a nested approach, PSOs are mainly used to optimize the IA
cabling ([51,52]) or OSS position ([40,53]) or even both simultaneously ([54–56]).

Pillai et al. [18], on the other hand, developed a nested approach that is iteratively
run by each particle solution in which the WT layout, OSS position, and IA cabling are
optimized simultaneously. The WTs are positioned taking the wake effect into account
considering variable wind speeds and directions. With the initial WT positions, one OSS
is positioned using K-clustering while the inner grid cabling is handled afterwards by
an MILP model. In subsequent steps in the PSO loop, the AEP and the LCOE as the
fitness function are calculated, respectively, taking into account the initial investment cost,
electrical losses, and the cost for decommissioning. The cables are assumed not to be
recovered. After each particle ran through the loop, the particles are re-positioned in the
search space, corresponding to new WT layouts. All steps adhere to the implemented
seabed conditions, meaning that no WTs, OSS, or cables can be placed in certain zones
in the wind farm. This is carried out by introducing a Delaunay triangulation which is
an approximation of a visibility graph explained earlier (see again Figure 11), which was
already used in their earlier work [57]. For an explanatory illustration of the Delaunay
triangulation, please refer to [57]. The PSO loop is repeated until the population diversity
is lower than 10%, which indicates a settlement in the global optimum.

Related to the Delaunay triangulation mentioned above is the use of a Voronoi diagram
which was implemented by Qi et al. [51] to prescribe the WT connections. In the K-shaped
Voronoi diagram, according to the nearest neighbor rule, each discrete point is assigned
to the area of the vertex to which it is nearest so that each discrete point corresponds to
only one region as illustrated in Figure 12. It can be observed that the Euclidean distance
between OSS node 1 and WT node 6 is closer than the distance 13. However, node 3 is a
first-order neighbor to the OSS. Hence, this connection is preferred. As this avoids cables
crossing adjacent areas without connecting to any node, the probability of cable crossings
is automatically minimized.

An adaptive particle swarm optimization with local search is implemented in order to
optimize the cable routing for a fixed OWF consisting of multiple WT types with different
rated power values. The local search randomly changes a value of one dimension of the
global optimal position particle. If this move benefits the global best, it will be accepted;
otherwise, it will be randomly re-executed until a limit is reached. The integrated local
search enhances the algorithm’s searching ability and can improve the heuristic solution
significantly. The fitness function consists of the CAPEX for initial cable installation but
also takes the energy losses due to cable resistances over the OWF’s lifetime into account.
By considering the cable’s quadratic energy losses in the fitness function as well as the
cable type, they prove that, in the long run, it is heavily beneficial in terms of cost to choose
a cable type accordingly, rather than selecting the minimal possible cable type and, hence,
it is conducive to reducing the total cost of OWF during the operational period.
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Figure 12. K-shaped Voronoi diagram ([51]).

Qi et al. [51] are the first ones to incorporate Voronoi distances into the cable connection
layout optimization problem and show by comparison with a PSO algorithm working
with an MST designed in [58] that the Voronoi distances are better suited to judging the
proximity relations between points in the layout.

The impact of considering cable losses on the cable selection is also highlighted in [54],
where it is reported that the energy (and therefore the current) supported by the cables
is generally overestimated when not taking wake effects into account. This leads to a
larger cable selection and therefore higher cost. Cost savings of up to 1

3 are reported. Al-
though the authors make use of a simplified energy loss calculation (the Newton–Raphsom
load flow method), computational time increases ten-fold when considering the power
losses in the cable type selection process compared with taking the rated WT power into
consideration.

In [52], two metaheuristics are applied to solve the overall OWF layout model. In an
outer layer, a GA designs the layout when given OWF parameters such as area, available
WT types as well as prevailing wind speeds and directions. Hence, the algorithm decides
on a near-optimal OWF capacity which is normally a strict input. With an initial layout and
an OSS fixed to the OWF’s center, a binary PSO (originally developed by Pookpunt and
Ongsaku in [59]) is conducting the IA connection scheme and cable type selection. Since
the authors explore the interaction of wake and different turbine types, they conclude that
due to wake-induced different wind resources in the wind farm, a combination of different
types of WTs can be beneficial in order to satisfy the requirements of both high average
capacity factor and low variance in power production.

Ant Colony Optimization

Ant colony optimization (ACO) is another population-based metaheuristic that mimics
the behavior of ants when randomly looking for food and leaving a trace of pheromones
along their paths. When a food source is found, the ant returns to the nest and thus
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increases the pheromone concentration on that particular path. The other ants notice this
and tend to follow the paths with the highest pheromone density. In this way, the paths
leading from the anthill to a food source are reinforced. However, every ant is equipped
with an individual susceptibility to the pheromone concentration found, which is part of a
local search strategy in order to possibly discover new paths. Due to the initial random
fluctuation, the shorter paths are preferred because the ants return to the nest earlier and
the pheromones have less time to fade than those on the longer paths. Hence, a vital
parameter for building the metaheuristic is the pheromone decay probability which is used
to calculate an edge’s probability when exploring the search space. It needs to be large
enough to allow “wrong” edges to be forgotten, especially if chosen in the initial stages of
the algorithm where the solutions are more or less random but not too strong to delete the
previous “good” edges found in good solutions [27].

Two studies have been analyzed with a focus on the application of ACOs for the IA
cabling problem ([19,60]).

In [19], 133 WTs are randomly positioned, followed by K-means clustering which
positions four OSSs in each cluster center. In each cluster, ants are distributed randomly on
WTs and each WT is visited once by every ant during a random walk. The shortest paths
will have the highest amount of pheromones. As a local search step, the ant’s likelihood
of following pheromones is adjusted. However, they point out that pheromones on most
favorite paths do not change much, which leads the ACO to converge to a local optimal
solution. To help the ACO discover new solutions, the four-vertex three-line inequality
heuristic is adopted as a local search strategy. If that does not improve the solution, Prim’s
algorithm is applied in each cluster. The final layout is visibly not implemented in practice.
Each of the four OSSs is only fed by one cable which radially collects the energy from each
turbine. Furthermore, Wu and Wang [19] stage a main substation in the middle of the wind
farm which collects the energy from the cluster OSSs, and their interconnections cause
multiple cable crossings. No export cable is considered.

Taylor et al. [60] compare the MILP model (previously developed in [61,62]) with a
newly developed ACO. For the original MILP model, due to computational constraints,
power losses based on the power curve (depending on wind variability) of each WT have
been pre-processed, which is also carried out for the ACO in order to obtain comparable
results. The OWF layout consisting of 112 WTs and two OSSs is fixed and only the cabling
is optimized. Three available cable types are considered, and type selection is based on the
lowest acquisition cost.

The ACO starts with placing an ant at the furthest-distanced (unconnected) WT to the
OSS, which, from there, starts “randomly” visiting nodes until it reaches the OSS. Another
ant then starts at the next-furthest (unconnected) WT, and randomly visits nodes until it
reaches a substation node or a turbine on an existing string. This procedure is repeated
until all WTs are connected (in a possibly unfeasible manner). Now, the fitness function
can be evaluated. It is worth noting that several penalty functions are implemented, which
restrict unfeasible solutions to be taken as global bests. In essence, cable crossings are
penalized as well as the crossing of exclusion zones which are modeled by Steiner points.
Furthermore, the authors restrict the number of feeders connected to the OSS. According to
the fitness function, the pheromones on each path that led to the global best solution can be
updated. The algorithm is then launched again, eventually converging to a near-optimal
solution which is 0.4–7.6% worse compared to the MILP model while not suffering from
the same memory and time constraints as the MILP algorithm.

However, certain problems have been discovered when updating pheromones of the
global best solution since the pheromones are equally distributed on all branches which
have been utilized (while obtaining the global best), not taking into account that there can be
connections involved which would have worsened the obtained solutions if others did not
enhance it. Hence, a decomposition into sub-problems (ACOsp) is adapted in the form of a
post-processing step of an obtained solution. Two branches are randomly selected and their
connectivity is discarded, while all other branches stay unchanged. In this unconnected
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sub-region, the ACO is launched again, while the fitness function is evaluated for the whole
OWF as WTs in the sub-region can be connected to already-connected WTs outside the sub-
region. Once all branch pairs have been evaluated, the same is conducted for sub-regions
consisting of three branches which further increases the size of the search space.

The found solutions cost only 0.0–1.4% more than optimal solutions. However, for the
largest case with 122 WTs, the computational time is approx. eleven-fold compared to the
classic ACO but 2

3 of the computational time needed by the MILP algorithm.

Bat Algorithm

The bat algorithm (BA) is inspired by the preying process of bats using echolocation.
Depending on the distance to their prey, bats vary the utilized wavelength and frequency
of the firing pulse. This can be adopted to solve optimization problems as is explained in
more detail in [63] by creating a population of bats and iteratively changing their behavior
based on personal experiences, but also based on the collective search quality in the search
space similar to the PSO.

Qi et al. [64] make use of this to solve the inter-array cabling for 50 WTs in an irregular
fixed layout with a predetermined OSS location.

Iteratively, the positions of each bat in the population are updated by varying their
velocity and frequency, mutation, the bat’s loudness, and emission frequency. The bat’s
position contains information about cable layout as well as the available cable types.

To enhance the algorithm’s local search ability, they introduce a varying operator
which inserts a bat’s position into another bat’s position. To trigger this varying operator,
they use the bat’s previous behavior, i.e., its pulse loudness and emission frequency, which
are designed to balance the global searching ability and the local searching ability of the BA.

In their case study, the authors compare different approaches based on the chosen
cable selection scheme, i.e., (I) where the thinnest (most cost-effective) cable that satisfies
the cable current constraint is selected or (II) where the impact of the cable selection on the
objective function (hence on the power losses) is considered while allowing crossed cables.
Approach (III) is based on (II), but penalizes crossings significantly. In the first scenario
analyzed, 11 cable types are considered and it is found that approaches (II) and (III) are
producing similar total costs which are 2% lower than the results obtained by approach (I).
Due to the prior restriction, the minimum cable selection approach already converges after
120 s. However, the most realistic approach (III) also converges relatively fast after 250 s of
CPU time, which indicates the general feasibility of the BA in the IA cabling optimization.

Due to the high production volume related to eleven cable types, a more reality-based
scenario is performed with only five available cross-sections. With a lower amount of avail-
able cable types to choose from, the accuracy of approach (III) becomes more or less obsolete,
because the chosen minimum cable is now more likely to support even more turbines,
which lowers electrical power losses automatically. Hence, the purchasing cost is more
likely to unnecessarily increase just to save more electrical power losses. Computationally,
all approaches take longer to converge now at the same time at around 350 s.

It can be concluded from this study, that the number and segmentation of available
cable types significantly influences the suitability of different approaches.

Neighborhood Search and Others

Cazzaro et al. [27] have tested five different metaheuristic schemes in a case with
220 turbines with fixed placements and one substation with three previously determined
possible positions. The algorithms tested are GA, simulated annealing (SA), ant colony op-
timization (ACO), tabu search, and the variable neighborhood search (VNS). The heuristics
are explained shortly below. Since the case with 220 WT is rather large, their first approach
is to utilize the SWEEP algorithm (see again Section 2.3) to find good initial solutions which
can be used for the other metaheuristics explained shortly below based on [27].
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Simulated annealing comes from re-heating and cooling of metals in order to get rid
of impurities by lowering the energy in the system (here the solution cost). Originally,
the main parameter is called temperature and it is updated at each step controlled by a
parameter describing the cooling speed. Another important feature of SA is the probability
of accepting a move, which favors the procedure of passing from one solution to another.
One move is always to accept when an improvement in terms of energy of the solution
is possible. A move is allowed for a worsening with good probability only when the
temperature is high and the acceptance probability must depend on the magnitude of the
difference between the energy of the candidate move and the energy of the current solution.

The tabu search works with a memory structure called tabu list that registers which
moves the algorithm is not allowed to repeat (for a while). This allows the metaheuristic
to reach new solutions while avoiding returning to a previous local optimum. There are
three options that the tabu list forbids: nodes where the connection is coming from; nodes
to which the connection is going; newly chosen arcs can not be removed too soon. It was
shown that the third option is the most efficient.

The variable neighborhood search (VNS) consists of three main steps, which are repeated
until a time limit is reached. Only one parameter, k, is needed which describes the current
neighborhood considered in the set of neighborhoods. This makes VNS easy to adjust.
The first step is “Shaking” where from the initial solution obtained by SWEEP, random
k arcs are changed in the k-th neighborhood. Secondly, a local search is applied to find
the best arc change until the solution cost stops improving. Afterwards, it will be decided
if the overall solution has been improved; if not, the initial solution is kept and the next
neighborhood is considered. If an improvement can be made, the new solution is saved
and the neighborhood counter is reset.

Cazzaro et al. [27] found out that the tested metaheuristics are capable of increasing
the initial SWEEP solution by only 4–5%. The overall best performance was achieved by
VNS reaching the best solution among all metaheuristics in over 92% of all cases. In the
rest of the cases, VNS was outperformed by tabu search but only by a small margin. The
tabu search performed second best with a gap to the VNS solution cost of less than 2%.
A possible explanation is that the local search allows the VNS and tabu search to reach
good local minima while simulated annealing and the genetic algorithm seem to arrive
close to good solutions but struggle to reach the global minimum. The GA is able to
improve the initial SWEEP solution only in about 20% of the cases. Besides the missing
local search phase, this can be explained by the fact that the internal mechanism of the
GA is more complex and requires heavier computation per generation. The ant colony
optimization even struggles with reaching feasible solutions since it tends to just connect
a few cables to the OSS (anthill) which are not able to support all the power produced by
the wind farm.

Based on the experience described above, the same authors focused on the neigh-
borhood search metaheuristic in a later work [9]. They note that the branched topology
problem has only been studied in an unbalanced case, meaning that an arbitrary number
of WTs could be allocated to a string, resulting in strings carrying different amounts of
electrical charges. The main disadvantages of this asy224 etrical routing are the additional
cost of the electrical equipment (i.e., a spare offshore transformer module) that must be
installed in the offshore substation, whereas balanced cable routing allows a single type of
transformer to be used as a spare. Therefore, Cazzaro and Pisinger [9] point out that the
industry prefers the balanced option although it might result in longer cabling.

To further enhance reality-based modeling, they consider obstacles in the wind farm
layout by utilizing a visibility graph (see again Figure 11) now interfering with the well-
suited SWEEP algorithm. Hence, they adjust the SWEEP algorithm following the shortest
visibility paths and perform SWEEP at the string end for each turbine. The initial solution
undergoes several operations (neighborhoods) with increasing complexity before the final
solution is output. After each operation, the WT’s interconnection in each feeder area is
solved optimally by brute-force enumeration or the application of MILP models.
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Firstly, they swap two WTs in neighboring branches, followed by a cycle swap consisting
of an exchange of multiple WTs among branches. The double swap operator exchanges
two pairs of turbines at the same time between three adjacent root branches while in the
following re-partition operator, two adjacent root branches are selected and completely
re-partitioned and re-routed.

Comparing the branched and the radial topology shows that the radial topology is
only around 1.4% more expensive, which underlines the industry’s choice to use radial con-
nections, which require fewer electrical components than the branched solutions. However,
the runtime of the optimization is three-fold when investigating the radial structure. It is
shown that the biggest improvements are made after the first phases and that the double
swap is the most time-consuming, accounting for half of the optimization.

Comparing the developed metaheuristic to an MILP model for an unbalanced case
in [61], the worst case is 0.60% more expensive than the best-known solution while the
average runtime can be decreased from 700 min to 5 min.

2.5. Comparison of Methodologies Used in the Literature

Even though deterministic models guarantee finding an optimal solution for offshore
wind cabling optimization problems, their computational time increases significantly with
the number of considered instances (at least with widely used computers nowadays). This
problem will be encountered more and more in the future as OWF sizes tend to grow.
Several authors have encountered that problem and have therefore pledged for the use
of heuristics if OWF sizes grow over a certain threshold. It must also be considered that
most authors using a deterministic model have solely focused on the optimization of the
electrical layout and have not taken into account the overall optimization of WT and OSS
positioning together with the electrical grid. With more systems to consider, more variables
and constraints will need to be incorporated into the model which makes it even more
time-consuming. Especially problematic is the common neglect in the literature of the
natural non-convexity of the problem which makes the development of widely used MILP
models possible in the first place.

Prim’s widely used algorithm is a fairly easy procedure to identify an MST in a layout
with fixed nodes. It is able to find an optimal solution if only one type of cable and no
constraints other than connectivity are considered. Solutions found in more complex
problems were often infeasible because the few arcs connected to the OSS each had to
support a large number of turbines, but were technically not able to carry that amount of
capacity. Likewise, Cazzaro et al. [27] point out it can be used to find an initial, but probably
infeasible, solution for other metaheuristics. By considering the cheapest cable for each
edge in the MST and ignoring the fact that the power may exceed the cable’s capacity,
the solution to Prim’s algorithm can provide an approximate lower bound on the cost of
the optimal solution.

Furthermore, Clarke and Wright’s savings heuristic is frequently used and can be
used for cabling layouts where loops are intended. However, it does not include strategies
for avoidance of cable crossings, which can be a major concern in feasibility regarding
installation and O&M activities [40].

Population-based metaheuristics such as GA and PSO are widely used in the offshore
wind optimization field. As with all heuristics, by nature, they do not guarantee finding
the optimal solution, especially for a complex objective function such as, e.g., the LCOE,
since they involve a risk of premature convergence but show good performance in solving
non-convex problems. Since methodologies based on the genetic algorithm explore a very
wide solution space, they are able to search for good and feasible solutions, but therefore
require a major computational effort [17]. In order to accelerate the rate at which the process
and its ability to avoid local solutions converge, Srinivas and Patnaik in [65] proposed
the use of adaptive parameters such as mutation and crossover. Pillai et al. [66] have
implemented these adaptive operators in terms of probability functions of the quality of the
solution. The solution’s fitness value is therefore compared to the population’s mean fitness
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value so that better solutions not only have a higher probability of being selected, but also
have a higher probability of contributing through crossover effects. Another option in order
to enhance the quality of the solution is to use single parent mutation operators which,
according to Wei et al. in [13], can guarantee that all the new individuals have feasible
solutions. It also can improve the ability to search the solution space since any parent can
produce the new individual with a limited amount of “gene” exchange, which contributes
to a higher convergence speed.

The main difference between PSO and GA is the fact that PSO is based on swarm
intelligence, which leads to the promotion of a cooperative environment where individual
decisions directly influence each other, while the genetic algorithm is seen as a competitive
metaheuristic where different solutions compete for survival [18]. All particles in the PSO
are therefore aware of the improvements found by other members of the swarm and are
able to adapt that information to their own movements in the search space. Keeping that in
mind, it does not seem surprising that different benchmarking studies have come to the
conclusion that PSO is more likely to find high-quality solutions in less time than a similar
genetic algorithm which needs more parameters to be adjusted (e.g., [67,68]).

Considering the ongoing wind farm growth and the new complexity and constraints
for the development of future wind farms, PSOs, but also currently less-used metaheuristics
such as neighborhood searches, bat algorithms, and possibly tabu searches, might be of
interest to wind farm developers, as these methods allow to identify more feasible solutions
than industry standard multi-step optimization approaches, leading to more efficient wind
farm layouts.

3. Floating Offshore Wind

Floating wind turbines can be used to harvest stronger winds farther offshore in water
depths in which conventional bottom-fixed turbines can not be economically installed. The
as-yet relatively nascent technology has entered the pre-commercial stage and will soon
experience commercial-sized deployments worldwide.

Due to the floating nature, the inter-array cabling needs to be capable of adjusting
its shape without harming the electricity flow or its connection to the floating platform.
This is achieved by the use of so-called dynamic cables rising from the cable’s touchdown
point (TDP) on the seabed to the cable hang-off point (HOP) on the floating structure.
Different shapes can be realized with the help of buoyancy elements or even clump weights
distributed over the length of the cable in order to distribute the acting forces and to be
able to adjust to certain offsets of the structure. It should be noted that the design offset
which is limited by the station-keeping system is due to the allowance of the dynamic
cable as the electrical connection can only be guaranteed under design tensions. Since the
environment is highly dynamic, the cable experiences much more stress than compared to
the bottom-fixed case where only static cables are deployed. Hence, dynamic cables need
protection from overbending and abrasion both at the HOP and at the TDP. Bend stiffeners
at the HOP are typically used to prevent the cable from overbending while protective
sleeves at the TDP protect the cable from seabed abrasion.

Common industry practice (especially in relatively shallow waters) is to connect
the dynamic cable to a static cable section which is buried in the seabed and is used to
cover longer distances of electricity transfer. However, due to economies of scale and the
increased costs in the case of submarine joints between static and dynamic cables, having
a TDP might not be economically viable as the dynamic cable could stay in a suspended
position before rising again to connect to another turbine. It could also come with benefits
in reliability, as fewer connections are used, reducing the number of possible points of
failure. However, the suspended configuration still needs to prove its feasibility in real
applications, although it is already subject to research ([69,70]). Especially beneficial will
be its application in large water depths, as it would also diminish the need for costly
deep-water trenching. Different cable configurations are illustrated in Figure 13 followed
by Table 1 which lists more details.
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Figure 13. Different configurations of dynamic cables: (a) free hanging (catenary), (b) lazy wave,
(c) tethered wave (reverse pliant wave), (d) steep wave, (e) lazy S, (f) Chinese lantern (all [4]) and
(g) W-shaped (adapted from [69]).

As illustrated, the chosen configuration greatly impacts the overall length of the cable
and thus the area of possible impact by, e.g., waves, currents, and marine growth. Contact
with mooring lines should be avoided in all respects so as not to further strain the already
mechanically stressed structural integrity of the cable.

As described in the bottom-fixed literature, optimizing the overall wind farm layout
is key to reaching good results. However, due to the lack of industry experience, only a
handful of the optimization literature regarding the layout or cabling is published. Hence,
a short review is given, highlighting the need for further optimization works.
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Table 1. Advantages and drawbacks of common dynamic cable configuration (adapted from [4]).

Type Description Advantages Disadvantages

(a) Catenary Free hanging to seabed - Simplest configuration
- Lowest cost solution

- Floater motion not decoupled
- No restriction of lateral motion
- High tension at HOP *
- Bend stiffener at HOP required
- Unsuitable for significant dynamic motions

and great water depths

(b) Lazy
wave

Attached buoyancy
modules provide lift at
midwater cable section

- Simple configuration
- Decoupling of floater motions from TDP **
- Proven use for deep water application
- Low cost solution

- No restriction of lateral motion
- Prone to marine growth depending on depth
- Bend stiffener at HOP required
- Buoyancy modules required
- Critical where distance between HOP and TDP is restricted
- Strong currents may lead to TDP migration

(c) Tethered
wave

Similar to lazy wave with
additional tether
restraining TDP

- Decoupling of floater motions from TDP
- Reduced freedom of TDP under cross current
- Higher levels of marine growth possible due to tethered TDP
- Mid-range cost solution

- Tether and clamp complicate installation
- Prone to marine growth depending on depth
- Bend stiffener at HOP required
- Buoyancy modules required

(d) Steep
wave

Similar to lazy wave
but connection
to seabed junction is made
vertically via bend stiffener

- Decoupling of floater motions from TDP
- Limited changes in configuration with higher levels of

marine growth
- Subsea base reduces excursion under current
- Reduced distance between HOP and TDP

- Bend stiffeners at HOP and TDP required
- Buoyancy modules required
- High cost solution given additional termination units

(e) Lazy S

Similar to lazy wave but
with subsea buoy
(fixed or floating)
creating mid-water arch

- Decoupling of floater motions from TDP
- Limited changes in configuration due to marine growth
- Subsea buoy reducing excursion under cross current
- Sag bend (arch open to the top) carefully controlled

(good for offset control)
- Suitable for multiple cables approaching hub (e.g., OSS)

- Bend stiffener at HOP required
- Buoyant mid-water arch, clamps and maybe tether required
- Fixed sag bend location
- High-cost solution; may not be economical for a single cable
- Minimum separation distance on buoy may become critical (danger of cable

clashing and current rating reduction)

(f) Chinese
lantern

U-shaped slacked keeping
tether vertically
aligned with HOP

- Decoupling of floater motions from TDP
- Subsea base reduces excursions under cross currents and prevents

migration of TDP
- Reduced distance between HOP and TDP
- Accommodates significant upward motions (heave)

- Bend stiffener at HOP and TDP required
- Buoyancy modules required
- Limited regarding water depth
- Unsuitable for dynamic motions with large offsets

(g) w-shaped

Suspended between
floaters without touching
seabed and aided by
buoyancy modules

- Short cable length for great water depths
- Avoidance of TDP and trenching
- Low-cost solution

- Buoyancy modules required
- Bend stiffener at HOPs required
- Prone to marine growth and cross currents
- Motions of connected floaters need to be accurately assessed
- Feasibility not fully proven

* HOP = Hang-off point ; ** TDP = Touchdown point
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3.1. FOWF Inter-Array Cabling Optimization

In 2019, Lerch et al. in [71] first addressed the cabling optimization in FOWFs by
utilizing a PSO considering 50 WTs in a fixed layout with one OSS. As a dynamic cable
configuration, the lazy wave form is assumed. The particle information in the search space
consists of the cable types, turbine connections, and the cumulative power to be transmitted.
If the presented solution was not feasible, the particles were reallocated and checked for the
lowest cost which included the cost of acquisition, installation, and power losses (based on
production of individual turbines) in the cables. As often discussed, the CAPEX is highly
dependent on the length of the cable. The authors assume the length of an interconnection
between two floating platforms as

LIA = 2Dw × 2.6 + DFOWTs, (1)

where Dw denotes the water depth and DFOWTs the Euclidean distance between FOWTs. As
can be seen, the cable is assumed to be connected to a static part with the length of DFOWTs
before it rises again to connect to the next FOWT. The factor of 2.6 is not further explained
but it is assumed that it accounts for the classic wavy shape and/or for the detour the cable
has to undertake to avoid the station-keeping system.

For the power production, a Jensen-based wake model is taken into account which
considers single, partial, and multiple wake effects and wind directions while the individu-
ally generated power is dependent on the turbine’s tip-speed ratio in the form of power
coefficient and experienced wind speeds.

The authors optimize a layout in Golfe de Fos, France, which has been developed
in the LIFES50+ project, consisting of 50 FOWTs at a water depth of 70 m. The original
layout only uses two IA cable types while their optimization considers six cable types to be
available, which makes it less representative. They are able to reduce the total cost by 6%,
and power losses and cabling length by 8%. Furthermore, the amount of OSS feeders is
reduced.

In a later step, the effect of discounts due to the use of solely the two greatest cable
types is assessed assuming a discount of 15%. They find that the reduced energy losses
can not compensate for the higher acquisition cost at that discount. However, this is highly
dependent on the available cable types.

In 2021, the authors adapted their work in [50] and introduce reliability-based EENS
as well as OSS position determination from predetermined possible OSS locations tak-
ing the cost of the export cable into account. Furthermore, they adapt the cable length
determination to

LIA = 1.05DFOWTs + 2(Ldynamic − Dx), (2)

where Ldynamic denotes the length of the dynamic cable part and Dx the horizontal distance
from the hang-off point to the cable’s touchdown. The 5% increase in the static cable part is
due to cable routing around the station-keeping system which is based on industry discus-
sions. However, no further statement regarding the considered mooring system is made.
Ldynamic can be determined by segmenting the lazy wave form into three catenary lines,
assuming the curvature as a hyperbolic cosine function and calculating each arc length.

Regarding the reliability assessment, they only consider failure rates and MTTRs for
feeders directly connected to the OSS (taken from [11] for static cables), the export cables,
and the transformers.

Lerch et al. [50] validate the model successfully by comparing it to deterministic mixed-
integer quadratic constraint programming (MIQCP) developed by Banzo and Ramos in [72]
under the adoption of a few constraints, e.g., the allowance of cable crossings, the considera-
tion of variable OSS locations, and the fact that the wind turbine connection possibilities are
restricted to the adjacent wind turbine of its row. In comparison, the difference in required
computational time for the exact same solution is immense; while the MIQCP needs 26 h
for the exact calculation, the adapted PSO only takes 14 s.
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Lastly, the authors compare two inter-array cabling options. Namely they compare
the options of connecting FOWTs by solely dynamic cables without a specific submarine
joint to static cables with the traditional use of buried static cable sections. Main difference
is that the cost-intensive submarine joint would be redundant. Nevertheless, the dynamic
cable would be buried to cover major distances between turbines and would therefore
need extra protection which makes them more expensive. The technical feasibility of only
using a dynamic cable which is partially buried is not assessed but it can be expected that
this configuration will lead to large scour and bending forces on the cable’s burial points.
On the other hand, having only one cable part could come with reliability benefits as less
connection and hence less possible breaking points are included. However, in case repair is
needed, the maintenance work will likely be much more complicated since an individual
part can not be exchanged easily. However, as the optimal design is very case dependent,
an universally valid statement could not be made. The option of having no touchdown
point, i.e., having a fully submerged dynamic cable section between both structures is
not assessed.

3.2. FOWT Positioning

In 2015, Rodrigues et al. [73] presented an optimization framework for reducing
overall losses due to the wake effects in FOWFs. The authors aim to find optimal
anchoring locations as well as optimal locations of the FOWTs within the allowable offset
area depending on incoming wind directions. They assumed that the FOWTs could
be moved in a controlled manner by using pulleys. With the help of an evolutionary
algorithm, they made use of a nested approach by establishing the turbine’s three
anchoring positions in an outer loop while optimizing the turbine location within the
possible watch circle for each wind direction in an inner loop. The overall goal was
to maximize the FOWF’s efficiency (calculated ratio between wind farm production
with and without wake losses, which is computed as mean power output for all wind
directions and scaled according to each direction probability). At all times, the minimum
distance of two adjacent structures had to be four times the turbine diameter since the
Jensen wake model used offers fast calculation times and is able to provide a preliminary
description of the wake when turbine distances are around 4–6D [74], which was utilized
throughout the optimization. To validate the simplified wake regime, they used high-
fidelity CFD simulations for the optimized layout. Furthermore, the central point of the
maneuverable area has to be placed inside the FOWF area while temporary excursions
are allowed. For the lengths of mooring lines, a rather arbitrary rule had been applied as
they were assumed to be 50% longer than the turbine diameter.

They found relatively large differences between Jensen wake and CFD-based models
when evaluating the final layout and concluded that it is of high importance that accurate
wake models are developed which are also fast enough to also find application in future
large-scale FOWF optimization processes.

Kheirabadi and Nagamune [75] (2020) present a wind farm control concept to passively
reposition FOWTs focusing on the so-called yaw- and induction-based turbine repositioning
strategy. With active yaw-misalignment, the experienced thrust force can be varied in
magnitude and direction, pushing the FOWT in a passive manner towards a desirable
location. The benefit of reducing wake effects on following turbine rows is assumed to be
able to compensate for the reduced power production of individual turbines. The authors
try to optimize the FOWF’s efficiency and determine the FOWT’s operating parameters
that reallocate the turbines. They discovered that the anchors need to be placed adequately
far from the turbine’s neutral position and that the mooring lines need to be sufficiently
long in order to guarantee a large enough mobility. Furthermore, the specific orientation
of the station-keeping system with regard to the prevailing wind direction is critical for
permitting substantial gains in FOWF efficiency, which may be considerably raised up
to 43% compared to the common greedy operation with individual maximum power
point tracking.
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In 2021, Serrano González et al. [76] presented a GA to optimally place weather-
vaning FOWTs in a wind farm, minimizing the LCOE by determining the coordinates of
the pivoting points as well as an optimal allowable pivoting radius RW as illustrated in
Figure 14.

Figure 14. Weathervaning FOWT ([76]).

The structures are held in place by one mooring line and can move freely around the
pivoting points. The mooring line length is approximated by the hypotenuse of the triangle
that is formed by the sea depth Dw and the horizontal distance between the mooring
hang-off point and anchoring point (i.e., RW minus horizontal distance between the FOWT
position and the mooring fairlead).

Placing 30 FOWTs in a specified grid-like OWF area while varying the allowable
radius, the LCOE is calculated in an iterative approach based on the resulting wake effects
as well as the length of the inter-array cabling. They consider buried static cables between
the pivoting points and lazy wave-shaped dynamic cable sections from the anchoring point
towards the FOWT position. The dynamic cable length is calculated as follows:

Ldynamic = RW + 2.6Dw. (3)

During the GA process, each static cabling layout is assessed by Prim’s algorithm
determining the minimum spanning tree of a graph while ignoring electrical losses.

It is worth noting that they introduce a local search for each individual. Iteratively,
the values of design variables are modified in small steps taking into account the global
best solution found by an individual which introduces a collaborative behavior similar to
the PSO.

The considered constraints are the minimum distance to the next FOWT which is set
to be two times the weathervaning radius as well as the limited area of the wind farm.

They find that with an increasing weathervaning radius, the turbines tend to be located
closer together in order to avoid the FOWTs being located outside the allowable area during
the vaning motion. This, however, leads to large wake losses but decreases the length of
the needed static cables while requiring longer dynamic cable sections. The interaction of
anchor chains and dynamic cable(s) is not considered in this study. However, it is expected
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that free weathervaning will cause contact and entanglement between the two systems,
resulting in clashing and friction creating mechanical stresses on the cable.

Similarly to the upper mentioned study, Mahfouz and Cheng [77] (2022) investigated
the possibility of reducing wake losses and increasing the AEP in FOWFs by including the
emerging horizontal offsets of individual FOWTs as a new design variable in the overall
layout planning. It should be noted that this study only accounts for the horizontal thrust
force and does not include any hydrodynamic effects nor tilting moments on the structure
which would have an effect on the downwind wake effect [78]. Since the offset majorly
depends on the mooring system, each FOWT in the farm is attached to a customized
three-line station-keeping system varying in line diameter, line heading, angle between
lines, anchor radius, and line length. By comparing the targeted layouts for each wind
direction with the achievable layouts considering the mentioned variables regarding the
station-keeping system, they find that the overall AEP can be increased by 1.6% compared
to a base case. However, since FOWF layout planning is very complex, it should be kept in
mind that in order to avoid computationally expensive optimizations, the authors followed
a newly developed methodology which includes several restrictions and simplifications.
Furthermore, the impact of the customized station-keeping systems on the wind farm’s
LCOE has not been assessed, but it can be assumed that it will have a major impact.
Regarding the dynamic inter-array cabling, no comments were made. As mentioned above,
the allowable offset of the structure is typically due to the dynamic cable’s allowance. This
presented approach will require the individual cable design (i.e., configuration) but also
the overall cabling layout optimization to be adapted, as different offsets require different
cabling schemes.

4. Discussion

As seen throughout this paper, there are multiple aspects to consider when optimizing
the inter-array cabling for OWFs, and even more so when considering floating turbines.
This section will describe several constraints and features which will need to be considered
for the optimization of commercially sized future FOWFs.

4.1. Cabling Configuration

The literature focusing on bottom-fixed OWFs takes the Euclidean distance as a straight
line between WTs into account. It is obvious that this will not be feasible for floating wind
as the cabling length highly depends on the chosen configuration consisting of a dynamic
cable section and possibly (depending on water depth and distance to cover) a buried
static cable (see again Figure 13). However, the chosen cabling configuration is highly
dependent on the susceptibility to marine growth on site (possibly sharp-shaped), ocean
currents (especially for the fully submerged connection), and even more on the station-
keeping system which, in turn, depends on aero and hydrodynamic forces experienced
by the structure, water depth, and soil conditions. Contact between the dynamic cable
and any mooring lines or other cables needs to be avoided. Depending on the chosen
station-keeping system, optimal detour routing might be valuable to consider to avoid
close encounters. For this, the use of Steiner points (see again Figure 6) could be helpful
to introduce connection possibilities in close proximity to the FOWT but far enough away
from all station-keeping equipment. Euclidean minimum Steiner trees (see again Figure 10)
could also be used to create a floating hub to which several dynamic cables can connect
and where the energy is bundled before being transmitted to a receiver. However, it should
be kept in mind that the complexity of the optimization model drastically increases when
introducing more instances such as Steiner points.

4.2. Station-Keeping System and Allowable Offsets

The station-keeping system is vital for keeping the wind turbine in position in order for
it to generate electricity, and so that the transfer of electricity to a receiver can be maintained.
The station-keeping system typically refers to the catenary or taut mooring systems of
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either chain, wire, or fiber ropes for compliant support structures, or to the tendon systems
of tethers for restrained support structures such as TLPs. Allowable offsets and footprints
are decided by the chosen station-keeping system which will influence the micrositing of
turbines and therefore the power production due to wake effects as well as the distance
covered by the cabling and hence the overall cost. The question still remains as to how the
allotted space can be used optimally and whether possible compensatory motions of the
structures beyond these limits are permitted to some extent.

4.3. Bathymetry

Most analyzed papers only consider a homogeneous seabed. Especially for floating
wind, this will probably not be suitable. Future OWFs are expected to grow by means of
turbine numbers and in the case of floating wind, spacing between FOWTs will be increased
in order to allow a certain offset of the substructure and to reduce wake effects within
the farm induced by bigger turbines. All in all, future FOWFs will have to deal with a
larger footprint on the seabed, resulting in a higher probability of dealing with a more
heterogeneous seabed. For a dynamic cable and touchdown point, this will be crucial, as
friction on sharp/rocky grounds will damage the protection sleeves and eventually the
moving cable, leaving the question of whether a seabed touchdown will be at all feasible.
Furthermore, the placements of submarine joints/touchdown points will compete with
suitable anchoring positions, leaving the submarine joint with fewer possible positions.
When large distances need to be covered by a buried static cable, possible obstacles need
to be avoided. Steiner points or visibility graphs could be implemented. The drawbacks
are increased computational expenses and engineering constraints such as the low limit
of the bending radii of buried cable sections when close runarounds are implemented
or possible cable crossings when sharing a trajectory on exclusion zone edges (see again
Figure 11). However, it is not only the static seabed conditions that might be interesting,
as morpho-dynamic seabed areas could also pose a potential danger (e.g., migrating sand
waves) for the cabling (see again [49]). For floating wind, there should be several gradations
in different seabed zones. For example, one zone may not be viable for hosting the cable’s
touchdown point, but dynamic cables could still extend over this zone in a submerged state.

4.4. Power Losses

As seen in several studies, wake losses are often ignored, leading to overestimated
cable type selections, whereas not considering cable losses can lead to the minimum cable
type selection scheme. Hence, power losses in the form of wakes but also cable losses
are important to consider when optimizing an OWF layout and have an influence on the
optimal choice of cable types and therefore on the long-term economic efficiency, which
should not be underestimated. FOWTs can be placed in a somewhat controlled manner
either passively or actively using yaw misalignment, station-keeping designs, or active
winches on mooring lines. Furthermore, FOWTs perform translational and tilting motions
(i.e., surging and pitching) which possibly lead to wake deflections ([78,79]). All these
effects will have an influence on the wind experienced by downstream FOWTs. However,
it should be kept in mind that OWF developers will most likely not be able to diversify the
cable selection optimally for the prevailing technical conditions of the considered OWF. This
is due to the dependency on the capabilities of their cable suppliers and the ability to take
advantage of economies of scale. Furthermore, having to install multiple different cable
types would result in a more complicated and costly installation procedure considering the
use of costly cable laying vessels.

Regardless of floating wind, an identified gap which has not yet been fully established
in the grid layout optimization is the consideration of reactive power in the offshore grid.
Most papers neglect it while only a couple ([14,23,31,52]) briefly introduce this problem
in their optimization. As the sizes of WTs and OWFs are constantly growing, resulting in
larger ratios of offshore wind power in the energy mix, the importance of handling reactive
power and its incorporation with the grid will grow in the future [80].
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4.5. OSS Positioning

When optimizing the position of the OSS in the wind farm, it is often placed in its
center or in the center of a cluster in order to reduce the distance in the inter-array cabling.
The negative influence of the costly export cable is mostly ignored. It must also be taken
into account that floating OSSs will most likely require much more space than bottom-fixed
ones, hence having centralized floating OSSs may lead to a reduction of available space for
energy generation and could even have an effect on wakes. For large-scale FOWFs, placing
the floating OSS centrally might be critical since the off-hanging dynamic cables all around
the OSS could cause congestion near the substation, which in turn creates obstacles for
other cables and might limit boat landing possibilities and therefore accessibility for O&M
reasons. Furthermore, entangling and unwanted interactions with the OSS mooring lines
as well as the development of thick marine growth between cables might be possible and
may affect their maintainability and could lead to an increase in failure risks. A failure in
the proximity of the OSS would be critical as whole branches would blackout or, in the case
of cyclic cable layouts, an affected cycle could immediately experience overloading.

Positioning the OSS outside the array will lead to longer IA cables but could ease
the density of closely positioned mooring lines and rising dynamic cables in the center
of the wind farm, which would also ease the installation procedure in terms of ship
maneuverability and hook-up procedures. It may be necessary to introduce larger cable
types (i.e., with higher ratings) to further reduce the number of feeder cables leaving the
OWF to enter the outer positioned OSS.

4.6. Topology and Reliability

Most papers assume a branched/radial structure originating from the OSS. This
structure is in fact most commonly used in practice due to its well-known advantages.
Nevertheless, it lacks redundancy and is therefore more prone to blackouts than other
structures, especially when considering FOWFs, where O&M activities are more restricted
by weather limits due to the dynamic behavior and are likely to be placed in larger distances
to shore, resulting in longer travel times creating the need to wait for suitable weather-
windows, which could lead to long-lasting power losses and to large amounts of EENS [81].
Another aspect is that the more costly dynamic cables are much more exposed to envi-
ronmental impacts and mechanical scour which will lead to higher fatigue loads. Hence,
the cables must be designed differently in order to reach similar failure rates as buried
static cables. To adapt to possibly higher failure rates, it might be valuable to focus on
more reliable topologies such as the ring structure, especially in the case of FOWFs. In the
bottom-fixed case, studies have already shown that ring structures can be more economical
in a long-term assessment compared to string/branched structures when typical static
cable failure probabilities are taken into account. Due to the limited deployment of floating
wind projects, reliable failure rates of dynamic cables are not yet available. Avanessova
et al. [82] assume the failure rate is twice as high as for the static array cable because of the
harsher environment.

To further enhance the reliability of the electrical system, multiple OSSs could be
placed in or around the OWF, providing higher security and redundancy when one sub-
station is experiencing faults. The OSSs could possibly be incorporated as proposed by
Zuo et al. in [23] (see again Figure 7), which minimizes the risk of losing entire branches or
overloading of ring structures in the case of a cable failure. Depending on the available
topside space, OSSs could also be used as O&M hubs, e.g., for storing spare parts. To further
reduce the needed variety of necessary topside equipment (i.e., transformers), balanced
branched or string structures containing the same amount of FOWTs (see again [9]) would
be beneficial as not only the investment cost but also O&M cost for these components can
possibly be decreased.
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4.7. Incorporation of Multiple OWFs

During the review process, several studies have been found that focus on the optimal
incorporation of multiple OWFs and the development of a common export system ([28,83–85]).
These have not been assessed here, as it would have been out of scope of this study. However,
the integration of several wind farms can show great potential for the optimization of the
export system, especially when individual wind farm developers are not responsible for
transmission to the main grid. Such a separate optimization, however, poses the risk that
optimization of the array grid loses the global perspective on the overall problem and thus
misses potential savings.

Another aspect that is not considered, since it is not directly related to the individual
OWF layout, is the impact of wakes from neighboring wind farms as is currently assessed
in the North Sea where bottom-fixed wind farms are planned to be densely populated [86].
Under certain wind conditions, an energy production deficit of up to 20% is reported.
Once floating wind will reach a commercial scale, this effect might be valuable to consider
regarding the FOWF layout and cabling optimization.

The scheme in Figure 15 wraps up the overall findings and clarifies the key points
which will need to find consideration to reach meaningful floating wind-specific grid
layout optimizations.

Figure 15. Key take-aways for meaningful floating wind specific electrical grid optimizations.
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5. Conclusions

This review aimed to identify current state-of-the-art optimization techniques applied
to cable routing problems for FOWFs. The literature review has shown that the great
majority of research is still very concentrated on the bottom-fixed industry. Only in recent
years has research focusing on FOWFs been published occasionally, highlighting some of
the new challenges that arise with this nascent technology.

In order to find an optimal cost-effective solution for the inter-array cabling of OWFs,
it is necessary to take the whole picture into account, i.e., micrositing, wake effects, cable
type selection, long-term effects such as cable power losses, reliability-based availability,
etc. This is best carried out using a nested or even simultaneous optimization considering
all relevant aspects simultaneously in the optimization process.

Concerning the optimization techniques, deterministic methods do not seem to
be able to cope with the increasing sizes of wind farms and the growing complexity
of problems in a reasonable computational time. This will be especially the case when
looking at the additional complexity which is introduced by considering large-scale
FOWFs. Already today in the bottom-fixed-based optimization literature, most papers
approach the cabling problem by using metaheuristic methods. The most common are
the population-based metaheuristics genetic algorithm and particle swarm optimization.
It seems that the PSO, in contrary to the GA, comes with less programming effort and
can benefit from the cooperative behavior of particles, whereas the GA promotes the
survival of the fittest while leaving poorer solutions to themselves as a product of
random mutation and crossover. Besides PSO and GA, some other metaheuristics seem
to be able to cope with this complex problem. The variable neighborhood search, tabu
search, and the bat algorithm were only encountered in a handful of studies, but seem
to produce good results, and it may be worth taking a closer look at them in the future.
However, it should be noted that (meta-)heuristics, in general, do not guarantee finding
an optimal solution. Therefore, researchers underline the benefits of including a local
search phase in the metaheuristics in order to prevent it from falling into a local optimum.
On the other hand, the literature has also shown that fully sophisticated metaheuristics
are not necessarily needed in order to find good solutions. Clustering heuristics can also
provide good solutions or give high-quality initial solutions for metaheuristics in order
to ease the searching process.

For future works, treating the cabling optimization of commercial-sized FOWFs,
new restrictions and constraints will need to be considered which will make the problem
more complex and possibly more time-consuming. In order to find feasible and practical
solutions, cabling configurations, station-keeping systems, seabed characteristics, water
depths, power losses in the form of wake and cable losses, floating wind-specific control
mechanisms, OSS positioning, and reliability and maintainability aspects, amongst others,
will need to be taken into consideration by future optimization works to substantially lower
the LCOE of commercial-scale FOWFs.
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Abbreviations
The following abbreviations are used in this manuscript:

AEP Annual Energy Production
AC Alternating Current
ACO Ant Colony optimization
BA Bat Algorithm
CAPEX CAPital EXpenditure
DC Direct Current
DECEX DECommissioning EXpenditure
EENS Expected Energy Not Supplied
FCM Fuzzy C-Means (clustering)
FOWF Floating Offshore Wind Farm
FOWT Floating Offshore Wind Turbine
GA Genetic Algorithm
HOP Hang-Off Point
HV High Voltage
IA Inter Array (cabling)
LCOE Levelized Cost Of Energy
MTTR Mean Time To Repair
MST Minimum Spanning Tree
OPEX OPerational EXpenditures
OSS Offshore Substation
OTM Offshore Transformer Module
OWF Offshore Wind Farm
PCC Point of Common Coupling
PSO Particle Swarm Optimization
SA Simulated Annealing
TDP TouchDown Point
TLP Tension-Leg Platform
TS Tabu Search
VNS Variable Neighborhood Search
WT Wind Turbine
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