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Abstract: Installation of new wind farms in areas such as the north coast of the Yucatan peninsula is
of vital importance to face the local energy demand. For the proper functioning of these facilities it is
important to perform wind data analysis, the data having been collected by anemometers, and to
consider the particular characteristics of the studied area. However, despite the great development
of anemometers, forecasting methods are necessary for the optimal harvesting of wind energy. For
this reason, this study focuses on developing an enhanced wind forecasting method that can be
applied to wind data from the north coast of the Yucatan peninsula (in general, any type of data).
Thus, strategies can be established to generate a greater amount of energy from the wind farms,
which supports the local economy of this area. Four variants have been developed based on the
traditional double and single exponential methods. Furthermore, these methods were compared to
the experimental data to obtain the optimal forecasting method for the Yucatan area. The forecasting
method with the highest performance has obtained an average relative error of 7.9510% and an
average mean error of 0.3860 m/s.

Keywords: forecasting method; wind speed; exponential smoothing; moving average

1. Introduction

With the increase of Renewable Energy Sources (RES) the demand for oil and gas
has been decreasing. Moreover, 238 GW of installed wind and solar power capacity has
been added during 2021, thus demonstrating the ability of RES to overcome the world’s
energy crisis [1,2]. Likewise, RES provided approximately 29% of the world’s electricity
generation [3].

Wind energy is among the main RES. This energy source already provides a significant
portion of the electrical energy consumption in several countries of the European Union.
In Latin America and the Caribbean, 4.7 GW were added for a regional total of 33.9 GW.
In Mexico, during 2020, only 0.6 GW were added to its installed capacity. Therefore, Mexico,
which was considered one of the top 10 installers in Latin America, disappeared from the
list [3]. However, many regions in Mexico such as Baja California, Veracruz, Oaxaca,
and Yucatan have wind power capacity potential [4]. Particularly, the Yucatan Peninsula
has a technical capacity and annual generation potential of 6125 MW and 14,802 GWh,
respectively [5]. With three wind farms in operation, the state of Yucatan has an installed
capacity of 244.7 MW [6–8].
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With the installation of wind farms being more frequent in these types of regions
(i.e., flat areas and at sea level), a proper evaluation of the wind resource for each deter-
mined site is essential for the successful development of the power grid, since the turbine
production depends mainly on wind speed. It is possible to calculate energy production by
having the turbine power curve and the resource assessment. To carry out this evaluation,
the main anemometric variables to be measured are wind speed, wind direction, tempera-
ture, and atmospheric pressure (the first two parameters are key values since, as the wind
is an airflow, not all the wind is used to generate) [9]. However, recording wind speed data
using different devices as anemometers can present errors due to different wind conditions,
which represents a problem in obtaining the best performance from a power grid [10].
This affects the electricity service and the economy of the people who live in areas such
as Yucatan, especially people with low income. To solve this problem, many researchers
have developed different mathematical models depending on the lapse of time to be able to
anticipate wind conditions. Prediction models, depending on the period, can be classified
into very short term (a few seconds to 30 min), short term (30 min to 6 h), medium-term
(6 h to 24 h), long term (24 h to 72 h), and very long term (>72 h) [11–16].

Another classification is made according to methodology. In this way, the models
can be deterministic (or physical), statistical, and hybrid. Physical methods use previous
wind power data and Numerical Weather Prediction (NWP) data. These models require
a more detailed physical description of the site including roughness, obstacles, tempera-
ture, pressure, etc., which makes them computationally complex. This approach requires
considerable resources, both computationally and economically since, although the data
required are common to all wind forecast models, they will vary with the location of the
wind farm and it will be necessary to obtain them for each location. Physical approaches
are satisfactory for short-term and long-term forecasting [16–18]. Statistical methods are
based on historical data series to make a forecast for the next few hours. These models
present good results for short periods. Its main disadvantage is that, as the time in the
forecast increases, the prediction error also increases. Specifically, these methods can be
divided into traditional models, time series based, and Artificial Neural Networks (ANN).
The most frequently used statistical models include autoregressive model, moving aver-
age, autoregressive moving average (ARMA), autoregressive integrated moving average
(ARIMA), exponential smoothing, Markov chain, Generalized Autoregressive Conditional
Heteroskedasticity (GARCH), among others [19–22]. Hybrid or mixed methods are due
to the combination of different approaches (physical and statistical) and different time
windows. The main objective of this method is to benefit from each method and improve
the accuracy of the forecasts. Although it is not always achieved, it has been proved that
there are lower risks in most situations. Among these methods are ANN-ARIMA, wavelet-
ANN, wavelet-ARIMA, Kalman filter-ANN (KF + ANN), Wavelet-Support vector machine
optimized by genetic algorithm (WT-SVM-GA), Isolation Forest (IF)-deep learning-ANN,
CEE-CC-FS, among others [20–25].

In particular, the exponential smoothing method has great variability, adaptation,
and a large number of applications. This method is characterized by giving weight to the
error caused by the forecast and the experimental data and using the previous forecasts to
generate the following predictions. Therefore, the latest observations significantly influence
the current forecast, as is the case with short-term measurements of wind speed. However,
according to works reported in the literature, the use of the exponential smoothing method
in the prediction of wind speed is scarce [19]. In [19], the authors have analyzed the
wind speed data collected in Chetumal, Quintana Roo by using a statistical analysis of the
time series and the Single Exponential Smoothing (SES) method. Finally, in the work [19],
the SES method has been compared with the artificial neural network method to prove
that the SES method is very useful for wind speed forecasting (in particular for Chetumal,
Quintana Roo). In [26], the authors have developed a combined forecasting system and
validated it by comparing it with wind speed data sets from three different wind farms
in Penglai, China. Furthermore, in the work [26], the performance of the model has been
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proved by contrasting it with an extension of the exponential smoothing method and two
machine learning models. In the paper [27], two-hybrid forecasting systems based on
the structural characteristics of wind speed have been proposed to capture the linear and
nonlinear factors hidden in wind speed data. This is because the authors have used a
decomposition algorithm to eliminate noise from raw data and reconstruct more reliable
wind speed time data. So, a linear model based on the exponential smoothing method or
autoregressive moving average model captures the linear patterns hidden and a nonlinear
model based on the backpropagation neural network extracts the nonlinear patterns hidden
in the data.

Although the use of the exponential smoothing method for the development of new
forecasting methods for wind speed is scarce, different forecasting methods have been
developed based on other traditional methods. In [10], the authors have evaluated the
effects of a set of various moving average filter durations and turbulence intensities on
the recorded maximum gust wind speed to present a function dependent on the average
duration and turbulence intensity. In [28], a new forecasting method is proposed by the
combination of the local convolutional neural network. The authors have transformed the
non-convex problems into convex problems to obtain the globally optimal solutions for
the convex problems by using heuristic optimization algorithms. Therefore, a more stable
model can be constructed to deal with various wind speed data sets. In the work [29],
the authors have developed a forecasting method to assess and predict wind speed by
integrating Sentinel satellite imagery analysis. This process has been carried out by using
multi-sensor satellites and machine learning methods. Furthermore, the developed method
has been applied to assess wind energy potential around the Favignana island in Sicily, Italy.
In [30], the authors have improved the accuracy of forecasting the short-term wind speed
by developing a hybrid wind speed forecasting model based on four modules: crow search
algorithm, wavelet transform, feature selection based on entropy and mutual information,
and deep learning time series prediction based on long short term memory neural networks.
Moreover, the proposed method developed in this work was applied to wind data from
Galicia, Spain, and Iran. In [31], a combined prediction system has been proposed to
develop a new forecasting method based on optimal sub-model selection, point prediction
based on a modified multi-objective optimization algorithm, interval forecasting based on
distribution fitting, and forecasting system evaluation.

From the current state of the art, this work focuses on developing four variants of the
exponential smoothing forecasting method to optimize the forecast of wind speed. Thus,
it is possible to propose strategies to improve the energy harvested from wind farms (in
this case, for Yucatan peninsula wind farms) avoiding the main grid as much as possible.
This would support the local economy and improve energy services. Furthermore, these
methods can be applied to any kind of data.

This paper is divided into six sections. After the introduction, in Section 2 the charac-
teristics of the experiment are described (i.e., experimental test set-up and characteristics of
the area where the data were collected). In Section 3, a brief description of the SES method
and the Double Exponential Smoothing (DES) method is provided. Later in Section 4,
the optimization of the SES and DES methods is developed and explained. Subsequently,
results and discussion of these forecasting methods developed are presented in Section 5.
Finally, the conclusion of this work is given in Section 6.

2. Measurements Site and Characteristics

Data collection was carried out on the north coast of the state of Yucatan, Mexico.
The surface of the territory is mainly flat and its elevation is 2 m above mean sea level.
The climate of the site is warm semi-dry with rains in summer. Its average temperature is
26 °C with prevailing winds from the south-east [32].

The geographical characteristics of the measurement site are presented in Table 1 and
its location in Figure 1.



Clean Technol. 2023, 5 747

Table 1. Geographical characteristics of the measurement station.

North Coast of the Yucatan Peninsula

Latitude 21°23′ N
Longitude 89°53′ W
Height above sea level 2 m

Figure 1. Location of the north coast of the Yucatan peninsula.

An ultrasonic wind sensor (Gill windsonic anemometer) was used to measure the
speed and direction of the wind, placed at 40 m in a mobile phone tower; see Figure 2. This
sensor records the horizontal components of the wind vector to generate the scalar values
of wind speed and wind direction. The technical parameters of the ultrasonic sensor used
are presented in Table 2 [33].

Table 2. Main technical characteristics of the measurement sensor.

Characteristics Wind Speed Wind Direction

Measurement range 0 to 60 m/s 0 to 359°
Resolution 0.01 m/s 1°

Error ±2% ±3%
Starting threshold 0.01 m/s 1°

Operational temperature −35 °C to 70 °C −35 °C to 70 °C
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Figure 2. Telecommunication tower with ultrasonic wind sensor.

The monitoring frequency for both variables was 1 Hz and the average data of every
10 min was stored in a data logger. The measurements were carried out during a year from
January to December of 2011, Figure 3.
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Figure 3. Wind speed data behavior over a year.

The descriptive statistics for the site are presented in Table 3.

Table 3. Descriptive statistics of the site.

Statistical Value

Mean, µ 6.286 m/s
Minimum 0.044 m/s
Maximum 18.82 m/s

Standard deviation, σ 2.82
Total data 52,560

The frequency distribution of the wind speed series and their probability distributions
(Weibull and Normal) are shown in Figure 4.

0 2 4 6 8 10 12 14 16 18

Wind speed (m/s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

D
e

n
s
it
y
 (

%
)

Wind speed data

Weibull distribution

Normal distribution

Figure 4. Probability distributions for wind speed data.

The shape (k = 2.3952) and scale parameters (A = 7.0909) of the Weibull distribution
(dp(v)) for the wind speed (v) are calculated as in [34].

dp(v) =
(

k
A

)
·
( v

A

)k−1
· exp

[( v
A

)k
]

, (1)
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k =

(
σ

µ

)−1.086
, (2)

A =
µ

Γ
(

1 + 1
k

) , (3)

where Γ is the Gamma function.

3. Forecasting Methods for the Wind Speed

One way to analyze the wind speed data is by forecasting methods, since this type
of data is essentially a complex process to be analytically modeled [35]. Moreover, as has
been proved, some forecasting methods for the wind speed depend not only on the exper-
imental data values, but can also be a function of the residuals of past forecasts, which
corresponds to small periods [13,36]. Therefore, due to the behavior of the experimental
data, the analysis has been carried out using these methods.

3.1. Moving Average

There are many wind speed forecasting methods. One of the most common is the
moving average method, which is a time series constructed by taking averages of several
sequential values of another time series [37]. In this study, the data analysis began with
the average method, since the time series have demonstrated accuracy in wind speed
forecasting [14]. Moreover, in the application of the wind speed, the moving average
method is used to extract the wind power fluctuations [11].

To start the analysis of the experimental data, the moving average methods to forecast
were as follows:

(1) The Two-Period Simple Moving Average (2-SMA):

F1 = y1

F2 = y2

Ft = yt−1+yt−2
2

(4)

(2) The Three-Period Simple Moving Average (3-SMA):

F1 = y1

F2 = y2

F3 = y3

Ft = yt−1+yt−2+yt−3
3

(5)

(3) The Two-Period Double Moving Average (2-DMA):

F1 = y1

F2 = y2

F3 = y2+y1
2

F4 = y3+y2
2

Ft = yt−2+2·yt−3+yt−4
4

(6)
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(4) The Three-Period Double Moving Average (3-DMA):

F1 = y1

F2 = y2

F3 = y3

F4 = y3+y2+y1
3

F5 = y4+y3+y2
3

F6 = y5+y4+y3
3

Ft = yt−2+2·yt−3+3·yt−4+2·yt−5+yt−6
9

(7)

For all cases, yt and Ft are the experimental data and the predictive value correspond-
ing at time t, respectively.

3.2. Exponential Smoothing

Exponential smoothing is one of the classical methods used for forecasting. This
method has been used in diverse fields of research [38,39]. In addition to forecasting, this
method allows smoothing the analyzed function. Therefore, the data can be presented in a
more convenient form and the random errors can be removed [19].

An efficient implementation of the method together with the descriptive and the
inferential statistic is allowed due to its robustness [19]. This method is based on the
intuitive application of movable averages, in where the tool to smooth the function is the
combination of the error of the last observations and one or some constants [40]. In this
work, the SES and DES methods are described.

The SES method used in this study is based on the methodology described in [19],
which is presented as:

F1 = y1

Ft = Ft−1 + α · (Ft−1 − yt−1)
(8)

where α is a constant taking values within the interval [0, 1] [19]. However, as will be
shown later in Section 5, the optimal α was greater than 1 for some cases.

For the DES method, the equations presented in [40] are used:

S1 = y1

B1 = y2 − y1

F1 = y1

St = β · yt + (1− β) · (St−1 + Bt−1)

Bt = γ · (St − St−1) + (1− γ) · Bt−1

Ft = St−1 + Bt−1

(9)

where γ and β are constants. Like α, the values of γ and β must be between 0 and 1 [40].
However, as is presented in Section 5, the optimal β was greater than 1 and the optimal γ
was lower than 1 for some cases.
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4. Proposed Optimization of SES and DES Methods for Wind Speed Data

The non-linear least squares function (Equation (10)) has been implemented to op-
timally calculate the parameters α, β, and γ for each day of the year according to the
experimental data obtained, as an optimization for the SES and DES methods. The mini-
mum daily error of the SES and DES methods was calculated by adjusting the parameters
α, β, and γ. With these parameters, it is possible to develop variants of the traditional SES
and DES methods as described in this section.

S = min
p

n

∑
i=1

(Fi − yi)
2 (10)

where n is the number of data, p is the set of parameters of the equations (i.e., p = {α}
for (8) and p = {β, γ} for (9)).

With optimal parameters, two variants from the SES method and two variants from
the DES method have been proposed. The first variant for the SES method is given by:

F1 = y1

Ft = Ft−1 + αm · (Ft−1 − yt−1)
(11)

where

αm =
1
N

N

∑
k=1

αopt,i (12)

where αopt,k is the optimal parameter of the day k and N is the number of days of the month
(i.e., N is equal to 28, 30, or 31 depending on the month). αopt,k has been calculated by using

the command lsqcurvefit in the software MATLAB®. As can be seen, this variant consists in
obtaining the average of the optimal αs corresponding to a month. Then this average is
implemented in the classical SES method.

The second variant for the SES method is given by:

F1 = y1

Ft = Ft−1 + αopt,k−1 · (Ft−1 − yt−1)
(13)

In this variant, the classical SES method has been adapted by iterations of the opti-
mal value of αopt,k−1, in other words, it is the optimal parameter of the previous day k,
the optimum value αopt,1 has been used for the first day of each month (k = 1).

Similarly, the variants of the DES method are similar to the variants of the SES method.
The first variant of the DES method is given by:

S1 = y1

B1 = y2 − y1

F1 = y1

St = βm · yt + (1− βm) · (St−1 + Bt−1)

Bt = γm · (St − St−1) + (1− γm) · Bt−1

Ft = St−1 + Bt−1

(14)
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where βm and γm are similarly as αm

βm =
1
N

N

∑
k=1

βopt,i, γm =
1
N

N

∑
k=1

γopt,i (15)

where βopt,k and γopt,k are the optimal parameter of the day k and they have been calculated

by using the command lsqcurvefit in Matlab®.
Finally, the second variant of the DES method is given by:

S1 = y1

B1 = y2 − y1

F1 = y1

St = βopt,k−1 · yt + (1− βopt,k−1) · (St−1 + Bt−1)

Bt = γopt,k−1 · (St − St−1) + (1− γopt,k−1) · Bt−1

Ft = St−1 + Bt−1

(16)

As for Equation (13), the optimum values βopt,1 and γopt,1 have been used for the first
day of each month (k = 1).

5. Results and Discussion

To apply the methods developed in Section 4, the optimal constants αopt, βopt, and γopt

for each day have been calculated using MATLAB®. Figures 5 and 6 illustrate the optimal
αopt behavior from the months January–June.
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Figure 5. Optimal values of αopt for the days from the months January, February, and March.
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Figure 6. Optimal values of αopt for the days from the months April, May, and June.

Figures 7 and 8 illustrate the optimal βopt and γopt calculated from the months July–
September.

Figures 9 and 10 illustrate the optimal βopt and γopt behavior from the months October–
December.

As can be seen in Figures 5–7 and 9, the values of the optimal constants αopt and βopt
in some cases are greater than 1, which contrasts the theory of the classical SES and DES
methods, since the values α and β are assumed to be between 0 and 1 [19,40]. Similarly,
the value of the optimal constant γopt in some cases is lower than 1, when it is speculated
that the value oscillates between 0 and 1 according to the classic DES method [40], see
Figures 8 and 10.

With the values of the optimal constants αopt, βopt, and γopt, the values of αm, βm,
and γm have been calculated for each month of the year, as presented in Table 4.
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Figure 7. Optimal values of βopt for the days from the months July, August, and September.
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Figure 8. Optimal values of γopt for the days from the months July, August, and September.
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Figure 9. Optimal values of βopt for the days from the months October, November, and December.
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Figure 10. Optimal values of γopt for the days from the months October, November, and December.
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Table 4. Value of αm, βm, and γm for each month of the year.

Month αm βm γm

January 0.9962 0.9968 0.0612
February 1.0224 1.0119 0.0775

March 1.0209 0.9979 0.0921
April 0.9239 0.9374 0.0669
May 1.0296 0.9941 0.0730
June 0.9709 0.9634 0.0501
July 1.0940 1.0891 0.0543

August 1.0590 1.0711 0.0421
September 1.0171 1.0179 0.1200

October 0.9806 1.0047 0.1048
November 0.9568 0.9705 0.0523
December 0.9662 0.9799 0.0424

Once the values of constants αm, βm, and γm have been obtained, the methods devel-
oped in Section 4 are applied.

5.1. Simulation

To evaluate and compare forecasting methods, the relative error Er, the mean error
Em, the mean squared error MSE, the root mean square error RMSE, and the coefficient of
determination R2 have been calculated as follows:

Er =

(
100
n

)
·

n

∑
i=1

∣∣∣∣yi − Fi
yi

∣∣∣∣, (17)

Em =

(
1
n

)
·

n

∑
i=1
|yi − Fi|, (18)

MSE =

(
1
n

)
·

n

∑
i=1

(yi − Fi)
2, (19)

RMSE =
√

MSE, (20)

R2 = 1− MSE(
1
n

)
·
(

n

∑
i=1

(yi − ȳ)2

) . (21)

where ȳ is the mean of the month

ȳ =

(
1
n

)
·

n

∑
i=1

yi. (22)

As mentioned in Section 3, the first forecasting methods for wind speed were based
on the moving average method. Moreover, the recursive function yn−1 = yn was analyzed.
This is due to the similarity with the proposed method. Table 5 reports the relative errors of
the methods 2-SMA, 3-SMA, 2-DMA, 3-DMA, and the recursive function yn−1 = yn.

As presented in Table 5, the recursive function reports the best performance between
these five methods. However, the methods developed in Section 4 are implemented to
reduce the relative and mean errors obtained by the recursive function.
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Table 5. Relative error Er of each month for the moving average methods and the recursive function.

Month 2-SMA 3-SMA 2-DMA 3-DMA yn−1 = yn

January 8.3791% 12.0417% 9.3219% 13.5351% 7.3480%
February 10.7523% 16.2833% 12.2760% 18.4714% 9.2389%

March 7.0649% 10.2133% 7.8744% 11.6019% 6.2399%
April 7.3615% 10.2289% 8.0536% 11.3832% 6.5910%
May 6.7493% 9.9103% 7.5640% 11.3564% 5.8844%
June 11.0256% 16.3919% 12.4935 % 18.5795% 9.5157%
July 10.1798% 15.5182% 11.6359 % 18.0141% 8.5348%

August 12.4476% 19.0425% 14.3996% 21.5779% 10.5174%
September 11.9148% 16.8656% 13.1133% 19.1404% 10.5390%

October 9.2039 % 13.3220% 10.2939% 14.8698% 7.9508%
November 8.1505% 12.3263% 9.3076% 14.4212% 6.9477%
December 8.2529% 11.9821% 9.2462% 13.5334% 7.1385%

With the values obtained for αopt, αm, βopt, βm, γopt, and γm in the previous subsection,
the methods developed in Section 4 have been applied. After that, the forecasts with these
methods have been analyzed and compared to the experimental data using different error
flags. A summary of the results obtained from this analysis is presented in Tables 6–10.

Table 6. Relative error Er of each month for the methods developed.

Month SES with αm
DES with βm

and γm

SES with
αopt,k−1

DES with
βopt,k−1 and

γopt,k−1

January 7.3179% 7.4546% 7.4044% 7.8011%
February 9.1370% 9.7825% 9.1248% 10.5609%

March 6.1663% 6.5688% 6.1834% 7.3060%
April 6.5365% 6.8765% 6.6173% 8.8812%
May 5.8199% 6.0283% 5.8835% 8.3500%
June 9.4510% 9.5696% 9.3666% 10.0587%
July 8.4060% 8.7448% 8.5213% 9.3265%

August 10.3946% 11.0006% 10.5174% 18.6109%
September 10.4158% 11.1853% 10.5249% 12.9710%

October 7.8859% 9.0046% 8.0213% 10.3701%
November 6.7872% 7.2908% 6.8571% 7.9540%
December 7.0938% 7.4475% 7.2330% 8.5124%

Table 7. Mean error Em of each month for the methods developed.

Month SES with αm
DES with βm

and γm

SES with
αopt,k−1

DES with
βopt,k−1 and

γopt,k−1

January 0.3814 m/s 0.3936 m/s 0.3870 m/s 0.4079 m/s
February 0.3928 m/s 0.4203 m/s 0.3977 m/s 0.4597 m/s

March 0.3596 m/s 0.3794 m/s 0.3615 m/s 0.4240 m/s
April 0.3524 m/s 0.3704 m/s 0.3568 m/s 0.4907 m/s
May 0.3533 m/s 0.3620 m/s 0.3564 m/s 0.5087 m/s
June 0.3982 m/s 0.4123 m/s 0.4008 m/s 0.4408 m/s
July 0.3919 m/s 0.4078 m/s 0.3987 m/s 0.4347 m/s

August 0.4241 m/s 0.4506 m/s 0.4249 m/s 1.0123 m/s
September 0.3624 m/s 0.3868 m/s 0.3689 m/s 0.4495 m/s

October 0.4021 m/s 0.4436 m/s 0.4061 m/s 0.4873 m/s
November 0.4104 m/s 0.4396 m/s 0.4132 m/s 0.4850 m/s
December 0.4034 m/s 0.4229 m/s 0.4101 m/s 0.4737 m/s
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Table 8. Mean squared error MSE of each month for the methods developed.

Month SES with αm
DES with βm

and γm

SES with
αopt,k−1

DES with
βopt,k−1 and

γopt,k−1

January 0.2987 0.3225 0.3083 0.3455
February 0.3418 0.4043 0.3444 0.4535

March 0.2622 0.2994 0.2648 0.3611
April 0.2485 0.2805 0.2558 0.7677
May 0.2836 0.2976 0.2841 0.8630
June 0.3959 0.4177 0.3989 0.4506
July 0.3556 0.3802 0.3668 0.4129

August 0.4506 0.5275 0.4589 11.2723
September 0.3150 0.3674 0.3298 0.5816

October 0.4071 0.5012 0.4149 0.6028
November 0.5009 0.5511 0.5046 0.6527
December 0.4786 0.5068 0.4859 0.6101

Table 9. Root mean square error RMSE of each month for the methods developed.

Month SES with αm
DES with βm

and γm

SES with
αopt,k−1

DES with
βopt,k−1 and

γopt,k−1

January 0.5465 m/s 0.5679 m/s 0.5552 m/s 0.5878 m/s
February 0.5847 m/s 0.6359 m/s 0.5868 m/s 0.6735 m/s

March 0.5121 m/s 0.5472 m/s 0.5146 m/s 0.6009 m/s
April 0.4985 m/s 0.5296 m/s 0.5058 m/s 0.8762 m/s
May 0.5326 m/s 0.5455 m/s 0.5330 m/s 0.9290 m/s
June 0.6292 m/s 0.6463 m/s 0.6316 m/s 0.6713 m/s
July 0.5963 m/s 0.6166 m/s 0.6057 m/s 0.6426 m/s

August 0.6712 m/s 0.7263 m/s 0.6774 m/s 3.3574 m/s
September 0.5612 m/s 0.6062 m/s 0.5743 m/s 0.7626 m/s

October 0.6380 m/s 0.7080 m/s 0.6441 m/s 0.7764 m/s
November 0.7077 m/s 0.7423 m/s 0.7104 m/s 0.8079 m/s
December 0.6918 m/s 0.7119 m/s 0.6970 m/s 0.7811 m/s

Table 10. Coefficient of determination R2 of each month for the methods developed.

Month SES with αm
DES with βm

and γm

SES with
αopt,k−1

DES with
βopt,k−1 and

γopt,k−1

January 0.9569 0.9548 0.9554 0.9508
February 0.9616 0.9566 0.9613 0.9510

March 0.9709 0.9682 0.9706 0.9621
April 0.9755 0.9727 0.9748 0.9271
May 0.9666 0.9664 0.9665 0.9031
June 0.9390 0.9385 0.9385 0.9323
July 0.9299 0.9290 0.9277 0.9218

August 0.9132 0.9081 0.9117 0.4691
September 0.9235 0.9182 0.9199 0.8755

October 0.9408 0.9324 0.9396 0.9196
November 0.9267 0.9224 0.9261 0.9114
December 0.9463 0.9448 0.9454 0.9350

As can be seen in Table 6, the ranges of the relative error were: 5.8199% to 10.4158%
for SES method with αm; 6.0283% to 11.1853% for DES method with βm and γm; 5.8835%
to 10.5249% for SES method with αopt,k−1; and 7.3060% to 18.6109% for DES method with
βopt,k−1 and γopt,k−1. Furthermore, the average relative errors were 7.9510%, 8.4128%,
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8.0213%, and 10.0586% for SES with αm, DES with βm and γm, SES with αopt,k−1, and DES
with βopt,k−1 and γopt,k−1, respectively.

In the analysis of the relative error Er, the method with the best performance for each
month was the SES method with αm except for February and June where the SES method
with αopt,k−1 obtained the smallest error, see Tabla 4. However, the SES method with αm
generally performed the best as its average relative error was the lowest.

As presented in Table 7, the ranges of the mean error were: 0.3524 m/s to 0.4241 m/s
for SES method with αm; 0.3620 m/s to 0.4506 m/s for DES method with βm and γm; 0.3564
m/s to 0.4249 m/s for SES method with αopt,k−1; and 0.4079 m/s to 1.0123 m/s for DES
method with βopt,k−1 and γopt,k−1. Moreover, the average mean errors were 0.3860 m/s,
0.4074 m/s, 0.3905 m/s, and 0.5062 m/s for SES with αm, DES with βm and γm, SES with
αopt,k−1, and DES with βopt,k−1 and γopt,k−1, respectively.

In the analysis of mean error Em, the method with the best performance for each month
was the SES method with αm, see Table 6. Therefore, based on the mean error analysis,
the SES method with αm has the best performance.

In Tables 8 and 9, the mean squared errors and the root mean squared errors are
reported. The ranges of the mean squared error were: 0.2485 to 0.5009 for SES method with
αm; 0.2805 to 0.5511 for DES method with βm and γm; 0.2558 to 0.5046 for SES method with
αopt,k−1; and 0.3455 to 11.2723 for DES method with βopt,k−1 and γopt,k−1. Furthermore,
the average mean squared errors were 0.3615, 0.4046, 0.3681, and 1.4478 for SES with αm,
DES with βm and γm, SES with αopt,k−1, and DES with βopt,k−1 and γopt,k−1, respectively.
The ranges of the root mean squared error were: 0.4985 m/s to 0.7077 m/s for SES method
with αm; 0.5296 m/s to 0.7423 m/s for DES method with βm and γm; 0.5058 m/s to 0.7423
m/s for SES method with αopt,k−1; and 0.5878 m/s to 3.3574 m/s for DES method with
βopt,k−1 and γopt,k−1. Moreover, the average root mean squared error were 0.5974 m/s,
0.6319 m/s, 0.6029 m/s, and 0.9555 m/s for SES with αm, DES with βm and γm, SES with
αopt,k−1, and DES with βopt,k−1 and γopt,k−1, respectively.

Based on the analysis of mean squared error and the root mean squared error, the method
with the best performance was the SES method with αm.

Table 10 reports the coefficients of determination. These values had the following
ranges: 0.9132 to 0.9755 for SES method with αm; 0.9081 to 0.9727 for DES method with
βm and γm; 0.9117 to 9748 for SES method with αopt,k−1; and 0.4691 to 0.9621 for DES
method with βopt,k−1 and γopt,k−1. The average coefficients of determination were 0.9459,
0.9426, 0.9447, and 0.8882 for SES with αm, DES with βm and γm, SES with αopt,k−1, and DES
with βopt,k−1 and γopt,k−1, respectively. In this case, the SES method with αm has reported
better performance.

Once the analysis had been carried out, the simulations were carried out to be able to
observe the behavior of the forecasting methods developed in this work. The simulations
compared the SES with αm, DES with βm and γm, SES with αopt,k−1, DES with βopt,k−1
and γopt,k−1, and 2-SMA methods, which have shown the lowest relative and mean errors.
In Figures 11 and 12 the behavior of the data taken on the first day of January and the
simulations of the forecasting methods proposed in this work can be appreciated. In
Figures 13 and 14, the errors between experimental data and the forecast for the first day of
May have been illustrated, which is the month with the lowest relative errors (see Table 6).
The last four simulations illustrate the behavior and comparison of the forecasts with the
highest relative and mean error, see Tables 6 and 7. In Figures 15 and 16, the behaviors of
the data taken and the forecasts corresponding to the first day August have been shown,
in this month the SES with αopt,k−1, DES with βopt,k−1 and γopt,k−1, and 2-SMA methods
incurred their largest relative error. Finally, Figures 17 and 18 illustrate the behavior of
the error of the comparison between experimental data and the forecasts for the first day
of September, where the SES method with αm and DES method with βm and γm obtained
their largest relative error.
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Figure 11. Simulation and comparison of the SES method with αm and DES method with βm and γm

with the experimental data for the first day of January.
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Figure 12. Simulation and comparison of the SES method with αopt,k−1, DES method with βopt,k−1

and γopt,k−1, and 2-SMA method with the experimental data for the first day of January.
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Figure 13. Error when comparing the experimental data with the simulation data of the SES method
with αm and DES method with βm and γm for the first day of May (month with the lowest relative errors).
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Figure 14. Error when comparing the experimental data with the simulation data of the SES method
with αopt,k−1, DES method with βopt,k−1 and γopt,k−1, and 2-SMA method for the first day of May
(month with the lowest relative errors).
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Figure 15. Simulation and comparison of the SES method with αm and DES method with βm and γm

with the experimental data for the first day of August.
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Figure 16. Simulation and comparison of the SES method with αopt,k−1, DES method with βopt,k−1

and γopt,k−1, and 2-SMA method with the experimental data for the first day of August (these
methods obtained their largest relative error in this month).
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Figure 17. Error when comparing the experimental data with the simulation data of the SES method
with αm and DES method with βm and γm for the first day of September (these methods obtained
their largest relative error in this month).
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Figure 18. Error when comparing the experimental data with the simulation data of the SES method
with αopt,k−1, DES method with βopt,k−1 and γopt,k−1, and 2-SMA method for the first day of September.

5.2. Discussion

With the methods developed in this work, it is possible to obtain up to an average
relative error Er = 7.9510 %, an average mean error Em = 0.3860 m/s, an average mean
squared error MSE = 0.3615, an average root mean square error RMSE = 0.5974 m/s,
and an average coefficient of determination R2 = 0.9459, which indicate a high degree of
accuracy of the proposed methods (i.e., due to the amount of experimental data used in
this work, 52,560 wind speed data). Moreover, based on the analysis carried out, the SES
method with αm has reported the best performance by having the lowest errors. Therefore,
the developed method in this work is effective in forecasting wind speed data. However,
the estimation of the model is not optimal, and errors between the experimental data and
the model can be observed. Furthermore, the obtained errors are particularly noticeable in
some months, which are complex to forecast according to the weather conditions. Thus,
taking into account the weather conditions, it is possible to increase the reliability of this
forecasting method.

6. Conclusions

In this study, four methods have been developed based on the classic SES and DES
methods to forecast the wind speed in the north coast of the Yucatan peninsula. Statistical
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tests have demonstrated the effectiveness of these methods. Thus, strategies to optimize the
energy harvests from wind farms in this region can be established. However, the variability
of the weather affects the performance of the proposed methods. To solve this, it is necessary
to collect more data from the studied area to find patterns for improving forecasting
methods. It is also worth mentioning that forecasting methods developed in this work can
be applied not only for wind speed data but for different kinds of data.
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The following abbreviations are used in this manuscript:

RES Renewable Energy Sources
NWP Numerical Weather Prediction
ANN Artificial Neural Networks
AMA Autoregressive Moving Average
ARIMA Autoregressive Integrated Moving Average

GARCH
Generalized Autoregressive Conditional
Heteroskedasticity

KF+ANN Kalman filter-ANN
WT-SVM-
GA

Wavelet-Support vector machine optimized by genetic
algorithm

IF Isolation Forest
SES Single Exponential Smoothing
DES Double Exponential Smoothing
2-SMA Two-Period Simple Moving Average
3-SMA Three-Period Simple Moving Average
2-DMA Two-Period Double Moving Average
3-DMA Three-Period Double Moving Average
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