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Abstract: Battery systems are one of the most important components for the development of flexible
energy storage for future applications. These comprise energy storage in both the mobility sector and
stationary applications. To ensure the safe operation of multiple battery cells connected in series and
parallel in a battery pack, it is essential to implement state of charge (SOC) equalization strategies.
Generally, two fundamentally different approaches can be distinguished. On the one hand, these are
passive approaches for SOC equalization that are based on including additional Ohmic resistors in a
battery back over which equalization currents flow as long as the correspondingly connected cells
have different voltages. Despite the simple implementation of such equalization circuits, they have
a major drawback, namely wasting stored energy to perform the SOC equalization. This waste of
energy goes along with Ohmic heat production, which leads to the necessity of additional cooling for
batteries with large power densities. On the other hand, active SOC equalization approaches have
been investigated, which allow for an independent charging of the individual cells. Especially, this
latter approach has big potential to be more energy efficient. In addition, the potential for a reduction
of Ohmic heat production may contribute to extending the lifetime of battery cells. To perform
the individual charging of battery cells in an energetically optimal manner, this paper provides a
comparison of closed-form optimization approaches on the basis of Pontryagin’s maximum principle
and approaches for reinforcement learning. Especially, their accuracy and applicability for the
implementation of optimal online cell charging strategies are investigated.

Keywords: Lithium-ion batteries; optimal control; Pontryagin’s maximum principle; reinforcement
learning

1. Introduction

Lithium-ion batteries have become one of the most important enablers for the implemen-
tation of fully electric and hybrid traction systems in all domains of transportation [1–4]. These
include individual transport in terms of electric bicycles [5], motorcycles [6], or cars [7],
but also battery storage for all-electric ships [8], as well as electric and hybrid tramways
and locomotives [9]. Besides the sector of transportation, Lithium-ion batteries are widely
employed as energy storage for systems in consumer electronics, as well as battery storage
power stations [10], in which they are employed as medium-time-scale buffers. Among
others, the latter serve as systems that cover peak-power demands and allow for storing
an excess amount of renewable energy, but can also be employed as equipment covering
ancillary services in the domains of operating reserves, as well as frequency control in
electric power grids and, thus, serving as a means to reduce the risk of power outage.
Depending on the exact area of application, the capacities of these storage systems range
from a few watt-hours up to the gigawatt-hour range.

Regardless of those different storage capacities, a common problem that all of these
systems have to cope with is the equalization of the SOC of individual battery cells that are
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electrically connected in series and in parallel [11]. This SOC equalization is the prerequisite
for the prevention of low discharge of individual cells or over-charging, which both may
lead to irreversible damage of the cells in terms of capacity loss, accelerated degradation,
and in the worst possible case, hazardous situations such as thermal runaway, which may
lead to fires, exposing the technical equipment and the environment to high risks, causing
extreme property and financial damage, and especially threatening the lives of humans [12].

Preventing low discharge and over-charging are typical functionalities of battery
management systems. They are based on passive or active approaches for SOC equal-
ization [11,13–19]. In the passive case, bleeder resistors can be included in battery packs
(which can be activated and deactivated by means of semi-conductor switches) to equalize
the voltage of individual cells that are compared with each other. The use of such resis-
tors has the advantage of simple SOC equalization circuits. However, currents through
these bleeder resistors lead to Ohmic heat production, which needs to be countered by
cooling systems. In addition, wasting stored energy is inevitable by this kind of passive
approach. In contrast, active approaches aim directly at charging (respectively, discharging)
individual cells by decentralized sources. This active approach allows for implementing
energy-optimal charging strategies, which are investigated in this paper from the point of
view of minimizing the overall Ohmic heat production in terms of an energy equivalent
when charging an individual cell from a given initial to a desired final SOC.

To account for the SOC-dependent nonlinearities of the dynamics of battery cells,
this task is solved in this paper by means of two substantially different formulations.
The first option is the derivation of optimal, finite-duration charging profiles with the
help of Pontryagin’s maximum principle as an indirect optimization approach [20–23].
As an alternative, a direct control optimization is presented in terms of a reinforcement
learning formulation [24,25]. The first alternative is further extended toward a predictive
control technique [26,27]. It is additionally compared with a linear-quadratic regulator
design [20,28]. For that purpose, it is assumed that the nonlinear equivalent circuit model
forming the basis for the solution of the maximum principle is approximated by a linear
time-invariant state-space representation for which an infinite time-horizon control is
designed.

This paper is structured as follows. Section 2 gives a summary of an equivalent
circuit representation of Lithium-ion batteries that has been identified experimentally
in previous work [29]. The methodological foundations of the alternative optimization
approaches, namely Pontryagin’s maximum principle and the reinforcement learning
approach, are presented in Section 3 with a focus on energetically optimal battery charging.
Representative simulation results, on the basis of the aforementioned experimentally
validated battery model, are presented in Section 4, before conclusions and an outlook on
future work are given in Section 5.

2. Equivalent Circuit Modeling and Criteria for the Energetically Optimal Charging of
Lithium-Ion Batteries

In this section, the modeling assumptions for the dynamics of Lithium-ion batteries are
described with a focus on the quantification of Ohmic losses occurring during instationary
operating conditions.

2.1. Equivalent Circuit Modeling

As described in a large variety of scientific articles (cf. [30,31]), equivalent circuit
models with lumped, SOC-dependent resistances and capacitances are applicable to model
the dynamics of charging and discharging Lithium-ion batteries. An illustration of the
structure of the corresponding electric network is given in Figure 1.
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Figure 1. Equivalent circuit model of a Lithium-ion battery in which a series connection of two RC
sub-networks is used to represent lag phenomena in the charging and discharging phases.

Basically, these models can be transferred into a corresponding integer-order state-
space representation, where the SOC σ(t) and the voltages across a series connection of
RC sub-networks serve as the state variables. In addition to the storage of charge carriers,
represented by the SOC, the voltages across the RC sub-models are used to represent
the dynamic phenomena that are caused by electro-chemical polarization effects and
concentration losses with short and large time constants (denoted by the indices TS and TL,
respectively).

Under these considerations, the state vector of the equivalent circuit model is given by

x(t) =
[
σ(t) vTS(t) vTL(t)

]T (1)

with the associated quasi-linear, continuous-time state equations

ẋ(t) = A(σ(t)) · x(t) + b(σ(t)) · u(t)

=

0 0 0

0 −1
CTS(t)·RTS(t)

0

0 0 −1
CTL(t)·RTL(t)

 · x(t) +

−1

CBat
1

CTS(t)
1

CTL(t)

 · u(t),
in which the terminal current is the system input u(t) := iT(t).

The first row of the state Equation (2) represents the integrating behavior

σ̇(t) = − iT(t)
CBat

(2)

between the charging/discharging current iT(t) and the normalized SOC σ(t) ∈ [0 ; 1],
where CBat is the nominal battery capacitance. Throughout this paper, σ = 1 corresponds
to the fully charged battery, while σ = 0 is the operating condition of the completely
discharged one.

The two further differential equations in the system model express the voltages vTS(t)
and vTL(t) with the time constants [30,31]

τι = Cι(t) · Rι(t), ι ∈ {TS, TL}, (3)

which are temporally varying due to the SOC dependencies of the parameters

Rι(t) = Rιa · eRιb·σ(t) + Rιc (4)

and
Cι(t) = Cιa · eCιb·σ(t) + Cιc. (5)
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Further SOC dependencies are relevant for the Ohmic series resistance

RS(t) = RSa · eRSb·σ(t) + RSc, (6)

as well as for the approximation

vOC(σ(t)) = v0 · ev1·σ(t) +
3

∑
i=0

vi+2 · σi(t) (7)

of the battery’s open-circuit voltage.
The latter, as well as the voltage drops vι(t), ι ∈ {TS, TL}, and the voltage drop over

the series resistance RS(t) can be combined with the help of Kirchhoff’s voltage law

vT(t) = vOC(t)− vTS(t)− vTL(t)− iT(t) · RS(t) (8)

to find a relation between the terminal voltage vT(t) and the terminal current iT(t).
All parameters of the system model above can be identified experimentally, either by

means of impedance spectroscopy or by using dedicated identification experiments such as
those summarized in [29]. The parameter values listed in [29] are used in this paper for the
numerical evaluation of the presented optimization approaches.

Remark 1. If the integer-order models mentioned before are not sufficiently accurate for describing
long-term memory effects, they can be replaced with fractional-order differential equation models as
presented, for example, in [32–34].

2.2. Quantification of Ohmic Losses

Ohmic losses in the battery, leading effectively to a change of its temperature, are
caused by the electric currents through all Ohmic resistances in the equivalent circuit in
Figure 1. Summing up the corresponding electric powers leads to the expression

Pel(t) = RS(t) · i2T(t) +
v2

TS(t)
RTS(t)

+
v2

TL(t)
RTL(t)

, (9)

which should be kept as small as possible when charging the battery from an initial SOC
to a desired final one in a given time span. Besides a minimization of this power (in an
integral sense over the complete charging duration), it is desired to limit the maximum
absolute values of the charging currents. This latter aspect is accounted for in the following
section by adding a penalty term to the cost function, which consists of the square of the
control signal.

3. Optimal Control Synthesis

The optimal control design can be classified into indirect approaches (based on Pon-
tryagin’s maximum principle [23]), which compute the optimal system inputs in terms of
an auxiliary boundary value problem for the set of canonical equations, as well as into
direct ones, which directly determine the system inputs (e.g., by using reinforcement learn-
ing [25]). This section summarizes the methodological foundations of these alternatives
and further provides the link between an optimal open-loop control, as well as closed-loop
feedback control techniques.

3.1. Indirect Optimization Using Pontryagin’s Maximum Principle

For the case of using Pontryagin’s maximum principle, we distinguish two different
options for specifying the terminal system states. These are fixed terminal conditions for all
state vector components in Section 3.1.1 and partially free ones in Section 3.1.2.
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3.1.1. Fixed Terminal State

Assume a continuous-time system model

ẋ(t) = f(x(t), u(t), t) (10)

with the state vector x(t) ∈ Rn and the scalar control signal u(t). Assume further that the
initial state is given by x0 = x(t0).

In the case of a predefined terminal state xf = x(tf) at the time instant t = tf > t0, the
cost function to be minimized by the optimal control law

u∗(t) = u∗(x(t), p(t), t) (11)

is given by

J(u) =
tf∫

t0

f0(x(τ), u(τ), τ)dτ. (12)

In (11), the vector p(t) ∈ Rn denotes the co-state vector introduced in Pontryagin’s
maximum principle according to [20–23].

In addition, the integrand

f0(x(t), u(t), t) = α · i2T(t) + Pel(t) (13)

in Equation (12) corresponds to the electric power according to (9) with an additive penalty,
where α > 0, that allows for limiting the control amplitudes. Note that time arguments
are omitted in the following for the sake of compactness of the notation as long as the
corresponding mathematical expressions are non-ambiguous. To find the candidate for the
optimal control sequence u∗, the Hamiltonian

H(x, u, p, t) = − f0(x, u, t) + pT · f(x, u, t) (14)

needs to be maximized according to

max
u∈R

(H(x, u, p, t)), (15)

where we assume an unbounded control u = u(t) ∈ R. Due to the unbounded control
input and the differentiability of (16), the necessary optimality condition

∂H(x, u, p, t)
∂u

∣∣∣∣
u=u∗

= −2(RS(t) + α)iT(t) + pT(t) · b(σ(t)) = 0 (16)

leads to the unique solution candidate

u∗ =
1

2(RS(t) + α)
· pT(t) · b(σ(t)), (17)

representing the global maximum of the Hamiltonian due to the strict negativity of its
second derivative

∂2H(x, u, p, t)
∂u2

∣∣∣∣
u=u∗

= −2(RS(t) + α) < 0. (18)

To obtain a control law u∗ that minimizes Ohmic losses and penalizes the maximum
control effort, the parameter

α > 0 (19)

is selected by a trial-and-error approach in this paper.



Clean Technol. 2022, 4 1274

With the help of this optimized control, the set of canonical equations

ẋ =
∂H(x, u∗, p, t)

∂p
= f(x, u∗, t)

ṗ = −∂H(x, u∗, p, t)
∂x

=
∂ f0

∂x
−
(

∂f(x, u∗, t)
∂x

)T
· p

(20)

is obtained, which can be simplified according to

ẋ =

0 0 0

0 −1
CTS(t)·RTS(t)

0

0 0 −1
CTL(t)·RTL(t)

 · x +

−1

CBat
1

CTS(t)
1

CTL(t)

 · 1
2(RS(t) + α)

· pT · b(σ(t))

ṗ =


∂Pel(t)

∂σ
2vTS(t)
RTS(t)
2vTL(t)
RTL(t)

−(∂f(x, u∗, t)
∂x

)T
· p.

(21)

For this set of canonical equations, a boundary value problem needs to be solved with
the 2n boundary conditions x(t0) = x0 and x(tf) = xf in the case of fixed terminal states and
perfectly known initial conditions. As shown in the following section, exactly prescribing
all terminal state vector components xf, especially the voltages across the RC sub-networks,
leads to higher Ohmic losses than the case of partially free boundary conditions in the
following section.

The typical choice of boundary conditions in this case is those of equilibria with
different values for the SOC; hence,

x0 =

σ0
0
0

 and xf =

σf
0
0

. (22)

3.1.2. Partially Free Terminal State

To avoid the exact prescription of an equilibrium state for the RC sub-network voltages,
the second and third vector component of xf have to be left undefined. The correspondingly
missing boundary conditions are then obtained after extending the cost function (12) by an
additive term penalizing the final state according to

Jh(u) = h0(x(tf), tf) +

tf∫
t0

f0(x(τ), u(τ), τ)dτ (23)

with the typical choice

h0(x(tf), tf) = β ·
(

v2
TS(tf) + v2

TL(tf)
)

. (24)

The terminal cost term in (24) leads to the transversality conditions [20–23]

p2(tf) = −
∂h0(x, tf)

∂vTS

∣∣∣∣
x=x(tf)

= −2βvTS(tf)

p3(tf) = −
∂h0(x, tf)

∂vTL

∣∣∣∣
x=x(tf)

= −2βvTL(tf)

(25)

for two of the co-state variables to be considered in addition to the exactly defined
terminal SOC

x1(tf) = σf (26)



Clean Technol. 2022, 4 1275

when solving the boundary value problem for the canonical Equation (21).

3.2. Conversion into a Model Predictive Control Task

Both open-loop optimal control formulations from the previous subsection can be
converted into appropriate model predictive control procedures. For that purpose, it is
necessary to perform the optimization of the input sequence for the current state variables
of the equivalent circuit, namely the SOC and the voltages across the RC sub-networks, after
the previous optimization result has already been applied for a certain time interval. To
perform the re-optimization, the equivalent circuit’s state variables are typically estimated
by a suitable observer or filtering approach to provide the state estimates x̂(tk) at the time
instants tk, k ∈ {0, 1, . . . , Kc}. Widely applicable approaches, based on Kalman filters,
neural networks, online estimation error minimization, or learning-type estimators can
be found in [29,31,35–40]. Note that these estimation techniques are still an active field of
research.

Figure 2 visualizes the computation of the optimal open-loop control sequence for the
complete time horizon [t0 ; tf] with either of the formulations of Pontryagin’s maximum
principle from the previous subsection. Due to the fact that this control sequence is
then applied to the dynamic system without any further correction at runtime, it is not
guaranteed that the desired terminal state (obtained perfectly by the prediction model
employed for the offline optimization in the previous subsection) actually corresponds to
the true terminal state. The reasons for this behavior are mismatches in the initial conditions,
as well as imperfectly known system parameters and structural deviations between the
assumed system dynamics and the true battery behavior.

time t
tf

co
nt

ro
lu

(t
)

time t

st
at

e
x i
(t
)

desired terminal state

tf

Figure 2. Computation of the optimal feedforward control u(t) = u∗(r) for the complete optimization
horizon [t0 ; tf] with the predicted optimal state trajectory xi(t), i ∈ {1, . . . , n}.

Therefore, a predictive control setting can be implemented by following the strategies
summarized in Figure 3. There, the open-loop control strategy is re-computed at each point
of time tk in an online manner by using the same optimization approach as in the previous
subsection. The corresponding input signal uk(t) is then applied to the system over the
time interval [tk ; tk+1] before it is re-computed again with the new state estimates x̂i(tk+1).
Note that, in the implementation summarized in this figure, the prediction horizon becomes
shorter after each control update. For noisy state estimates, used for the re-initialization of
the optimization, this may have the drawback of large control variations towards the final
time instant tf. This can be countered by increasing the penalty actor α when increasing k,
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by avoiding an exact specification of the final SOC, but rather penalizing it in the terminal
costs (24), by switching to a constant voltage charging for higher values of the SOC or
by switching to the state-feedback implementation presented in the following subsection
when the time t approaches the final time instant tf.

time t
tf

co
nt

ro
lu

(t
)

t1 t2 t3

t1 t2 t3

time t

st
at

e
x i
(t
)

desired terminal state

tf

x̂i(tk)

u0(t) u1(t)

u2(t)

Figure 3. Re-computation of the optimal control sequences uk(t) for the reduced horizons [tk ; tf],
k ∈ {0, . . . , Kc}, with the associated predicted state trajectories xi,k(t), i ∈ {1, . . . , n}, initialized with
the state estimates x̂i(tk).

3.3. Relations to Feedback Control Based on a Linear-Quadratic Regulator Design

The previous finite-horizon optimization problems can be turned into a closed-loop
control approach by a minimization of the cost function

J̄ =
1
2

∞∫
0

(
(x(τ)− xf)

T ·Q · (x(τ)− xf) + Ru2(τ)
)

dτ. (27)

Here, the vector xf corresponds to the terminal state constraint introduced in Section 3.1.1.
The optimal controller is then given by the expression

u(t) = kT(xf − x(t)), (28)

if the gain vector
kT = R−1bTP (29)

is computed in terms of the positive definite, state-independent solution of the algebraic
Riccati equation

ATP + PA + Q− PbR−1bTP = 0, (30)

where the weighting matrix Q and the scalar weight R are defined according to

Q =


γ 0 0

0
1

R̄TS
0

0 0
1

R̄TL

 (31)



Clean Technol. 2022, 4 1277

with the parameter
γ > 0 (32)

as well as
R = α + R̄S. (33)

Here, the parameter γ is introduced in addition to the parameterization of the fun-
damental cost function in (12) to ensure that the state trajectory approaches the desired
terminal state xf.

Remark 2. State-dependent solutions of the algebraic Riccati equation, as introduced in [41–43],
are not further studied in this paper because they can be interpreted as a refinement of the coarse
state-independent solution of this subsection, which approaches the solution of Section 3.1.1 when
setting the terminal time instant tf to a large value.

Remark 3. A further combination of this state feedback controller with the optimization results
of Pontryagin’s maximum principle is the use of the result u∗ of the open-loop optimization as
a feedforward control signal, and to add a further feedback path that compensates the deviations
between the offline optimized state trajectories and the currently estimated ones, see also Section 4.3.

3.4. Direct Optimization by Reinforcement Learning

Reinforcement learning control approaches [24,25] can be used as an alternative to
the solution techniques of the previous subsections to directly determine optimal control
strategies. The general reinforcement learning environment, adapted to the case of optimal
charging for Lithium-ion batteries, is summarized in Figure 4.

reinforcement learning agent with actor/critic network

desired

terminal SOC

state

estimate

observations:

∫
(·)dt

battery model

ẋ(t) = f(x(t), u(t))

reward function

R(t) = R(x(t), u(t))

measurement noise

ẋ(t) x(t)

action u(t): terminal current iT(t)

Figure 4. Structure of the reinforcement learning environment.

There, the reward function serves as a substitute for the performance criterion J(u),
where the quite commonly used notation is a maximization of the reward, as opposed to the
minimization discussed before. Therefore, the basic constituent of the reward function is
the multiplication of the electric power Pel (respectively, the integrand f0 according to (13))
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with a negative sign. As discussed in Section 4, it is extended by a penalization of the
deviations of the actual SOC from the desired terminal state.

Due to the fact that the reinforcement learning approach avoids the solution of bound-
ary value problems for a specific set of (estimated) initial states, it can be robustified directly
by adding suitably chosen measurement noise (representing also the effect of state recon-
struction errors in an aleatory form) in both the computation of the reward function and in
the observation vector. In the application at hand, this observation vector corresponds to
the full state vector consisting of the SOC and the voltages across the RC sub-networks of
the equivalent circuit model in Figure 1.

The reinforcement learning itself, implemented as a deep deterministic policy gradient
(DDPG) agent in MATLAB within this paper, includes two neural networks:

• The actor network determines the control signal (action) in terms of the observations,
where the individual layers in the network according to Figure 4 are fully connected
layers denoted by FC and layers with ReLu and tanh activation functions;

• The critic network contains both observations and actions as inputs to determine the
reward of the current policy, where the two corresponding input paths are superposed
additively, as shown again in Figure 4.

3.5. Summary of the Properties of the Control Approaches

The fundamental properties of all control approaches presented in this section are
summarized in Table 1. There, the characterization of the capability to minimize the Ohmic
losses during the optimal charging, denoted as optimization efficiency, is based on the
results presented in Section 4.

Table 1. Summary of the algorithmic properties of the considered control approaches.

Approach Offline Effort Online Effort Robustness
against Noise

Generalizability
with Respect to

Initial SOC

Optimization
Efficiency

Maximum
principle medium low independent (pure

offline solution)

low
(recomputation

required)
good

Predictive control — medium–high
depending on cost

function
parameters

excellent excellent

Linear-quadratic
feedback control low low

depending on cost
function

parameters
medium–good low

Reinforcement
learning high low–medium

high for
sufficiently rich

training data
good–excellent excellent

4. Simulation and Optimization Results

In this section, numerical simulation results are presented to illustrate the performance
of the optimization approaches summarized in Section 3. The presentation of these results
focuses on both the capability to transfer the Lithium-ion battery from a given SOC σ0 to a
desired terminal value σf in a fixed time span and to analyze the robustness against senor
(respectively, state reconstruction) noise when adapting the control signal at runtime.

For all the following simulations, we assumed that the battery model according to
Figure 1 is parameterized with the values listed in [29]. Moreover, the following initial and
terminal conditions hold:

σ0 = 0.5 and σf = 0.9. (34)
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4.1. Indirect Optimization Using Pontryagin’s Maximum Principle

The numerical evaluation in this subsection is based on precomputing a charging
profile for the Lithium-ion battery that transfers the initial SOC (σ0) to the final one (σf)
in 3600 s. This phase is followed by a relaxation phase of again 3600 s with the terminal
current iT ≡ 0 A, which guarantees that the desired final SOC is kept, but that the voltages
across both RC sub-networks approach zero, with a corresponding quantification of the
additional Ohmic losses.

The corresponding results are summarized for two different values of the parameter α
included in the cost function (13) in Tables 2 and 3. It can be seen clearly that the partially
free terminal states (penalized by the terminal cost according to (24)) lead to much smaller
Ohmic losses than the case of setting all voltages exactly to zero at the end of the charging
phase. For that reason, only the case of partially free terminal conditions is investigated
further in the following graphical illustrations in Figures 5 and 6.

Table 2. Ohmic losses (energy) during charging and relaxation phases for fixed terminal states.

α Losses during Charging (t ∈ [0 ; 3600] s) Total Losses (t ∈ [0 ; 7200] s)

1 843.11 Ws 843.16 Ws
0.01 841.26 Ws 841.32 Ws

Table 3. Ohmic losses (energy) during charging and relaxation phases for partially fixed terminal
states with β = 50.

α Losses during Charging (t ∈ [0 ; 3600] s) Total Losses (t ∈ [0 ; 7200] s)

1 690.14 Ws 702.62 Ws
0.01 686.13 Ws 702.52 Ws

The left column of these two figures corresponds to the case with the larger penal-
ization of the charging current (larger value of α) as compared to the right column. It can
be seen that this larger value of α leads to a solution that is close to a constant current
charging policy, which is additionally included in Figure 5a,b. For this constant current
profile, the Ohmic losses in the pure charging phase result in 690.97 Ws, while the overall
losses including also the relaxation phase are 703.05 Ws. It can be seen that these values
are larger than the optimized charging profile, which is characterized (except for the very
beginning and end) by currents that are smaller than the temporally constant alternative.
Moreover, the remaining sub-graphs of Figures 5 and 6 indicate the relaxation processes in
the RC sub-networks after terminating the charging at t = 3600 s. These results indicate
also that too small values for α may lead to large current peaks at the end of the charging
process, which need to be prevented by suitably selecting this parameter.

4.2. Model Predictive Control

As already discussed in Section 3.2, a pure offline optimization of the charging profile
suffers from the disadvantage that it cannot adapt to uncertainty in the initial conditions, as
well as to deviations of the actual battery parameters from the ones assumed for solving the
optimization problem. Therefore, this subsection shows the results of a model predictive
implementation of the optimal control law, where the duration tk+1− tk between two points
at which the control strategy is recomputed was set to 120 s. At these points, knowledge
about the current state vector x̂(tk) is assumed to be known, which deviates, however, in
the simulation by an additive zero-mean Gaussian noise from the true state values x(tk)
with a standard deviation of 0.01 for the SOC and 0.001 for both voltages.

The simulation results in Figure 7, again computed for α = 0.01 with the extended
cost function that includes the terminal state penalization (24), contain in yellow color
the one-standard-deviation bounds for the terminal current and the SOC, respectively, in



Clean Technol. 2022, 4 1280

addition to the corresponding average values. To obtain these one-standard-deviation
bounds, the complete simulation was repeated 100 times.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Offline optimization of the charging profile according to Section 3.1.2. (a) Terminal current
iT(t) for α = 1; (b) Terminal current iT(t) for α = 0.01; (c) SOC σ(t) for α = 1; (d) SOC σ(t) for
α = 0.01; (e) Voltage vTS(t) for α = 1; (f) Voltage vTS(t) for α = 0.01.
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(a) (b)

(c) (d)

Figure 6. Offline optimization of the charging profile according to Section 3.1.2 (continued). (a) Volt-
age vTL(t) for α = 1; (b) Voltage vTL(t) for α = 0.01; (c) Terminal voltage vT(t) for α = 1; (d) Terminal
voltage vT(t) for α = 0.01.

(a) (b)

Figure 7. Model predictive control under the influence of state reconstruction noise. (a) Terminal
current iT(t) for α = 0.01; (b) SOC σ(t) for α = 0.01.

Obviously, as also shown in Figure 8, the noise leads to the fact that the Ohmic losses
in both the pure charging phase, as well as in the longer time span including the charging
and relaxation phases become themselves uncertain; cf. Figure 8a,b. Moreover, also the
desired terminal SOC is not reached perfectly at the final time instant tf = 3600 s according
to Figure 8c. This latter aspect is re-discussed in the investigation of the reinforcement
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learning control approach, where it is shown that a remaining correction of the SOC for
t > 3600 s in a few minutes leads to only small additional Ohmic losses.

(a) (b)

(c)

Figure 8. Sensitivity of the Ohmic losses and the terminal SOC for the model predictive control.
(a) Variability of the Ohmic losses occurring on the time interval t ∈ [0 ; 3600] s; (b) Variability of the
Ohmic losses occurring on the time interval t ∈ [0 ; 7200] s; (c) Variability of the SOC at the end of
the charging phase.

4.3. Feedback Control Based on a Linear-Quadratic Regulator Design

Besides the use of a model predictive control approach, the design of a linear-quadratic
state feedback controller is a further option to adapt the charging current to the state
estimates of the battery equivalent circuit model at each point in time tk. Using the same
noise model as in the previous subsection and also a control update at integer multiples of
120 s, the feedback controller derived in Section 3.3 with the parameters α = 1, γ = 100, as
well as R̄TS = RTS(0.7) and R̄TL = RTL(0.7) leads to the charging dynamics summarized in
Figure 9.

As in the previous subsection, this simulation was repeated 100 times to quantify
one-standard-deviation tolerance bounds for the terminal current iT and for the SOC σ.
Those tolerance bounds are shown in Figure 9 as the yellow bounds along the complete
trajectory, as well as in the form of histograms in Figure 10 for the Ohmic losses and the
SOC at the points of time t = 3600 s and t = 7200 s.
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(a) (b)

Figure 9. Feedback control under the influence of state reconstruction noise. (a) Terminal current
iT(t); (b) SOC σ(t).

(a) (b)

(c) (d)

Figure 10. Sensitivity of the Ohmic losses and the terminal SOC for the feedback control approach.
(a) Variability of the Ohmic losses occurring on the time interval t ∈ [0 ; 3600] s; (b) Variability of the
Ohmic losses occurring on the time interval t ∈ [0 ; 7200] s; (c) Variability of the SOC at t = 3600 s;
(d) Variability of the SOC at t = 7200 s.

It can be seen clearly that the feedback controller (based on the integral quadratic
cost function) leads to significantly larger Ohmic losses than the previous two approaches.
However, the advantage of this approach, becoming visible in Figure 10d, is the reduction
of the remaining uncertainty of the SOC. For that reason, a practical application of this
approach would be given by determining an optimal reference trajectory according to the
offline evaluation of Pontryagin’s maximum principle (Section 3.1.2) and using the feedback
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controller to compensate the remaining deviations from the optimal (open-loop) charging
profile. This approach will have similar Ohmic losses as the predictive controller presented
in the previous subsection, however with the advantage of less online computational effort.
Its disadvantage, however, will be the fact that the reference trajectory is restricted to a single
initial point with a fixed charging duration, unless these are not pre-computed in a look-
up-table-like manner for various initial SOC values and various process durations. This
disadvantage can be avoided easily by the reinforcement learning approach investigated in
detail in the following subsection.

4.4. Optimized Charging Based on Reinforcement Learning

To implement a fundamental reinforcement learning control approach that is compa-
rable with the previous subsections, assume a given initial SOC and the desired final SOC
σ0 and σf, respectively. In addition, the charging duration is set to the fixed length of 3600 s.

Now, a reinforcement learning environment is set up as shown in Figure 4 according
to the details listed in Appendix A, where all relevant information concerning the numbers
of neurons and the types of activation functions in each layer (both for the critic and actor
networks), as well as the parameters of the learning agent are summarized in terms of
MATLAB code excerpts.

Note that the reinforcement learning control cannot guarantee a perfect SOC of σf at
t = 3600 s. Therefore, this time span is followed by a 120 s period with constant charging
current to exactly achieve the desired SOC before the relaxation phase takes place until
t = 7200 s.

To make sure that the learning is close to the application of Pontryagin’s maximum
principle discussed above, the running costs (included in the reward function) are chosen
as in Equation (13) with α = 1, to which the additive time-dependent penalty term

5 · 103 · (σ(t)− σf)
2 · exp

(
t− 3600

50

)
+ 104 · δ(t) (35)

was added to obtain charging profiles approaching the desired SOC and, by means of

δ(t) =


(σ(t)− 0.05)2 for σ(t) < 0.05
(σ(t)− 0.95)2 for σ(t) > 0.95
0 else,

(36)

preventing the optimizer from using control strategies violating the physical constraints on
the SOC. Note that the scaling parameters in (35) were selected in such a way that undesired
and physically meaningless solutions are penalized at least by one order of magnitude
worse than the optimal control policies according to Sections 3.1.2 and 3.2.

Using these settings, the results summarized in Figure 11 were obtained. In detail,
Figure 11a,b indicate the case that the noise in Figure 4 is deactivated both during training
and application of the trained agent.

Figure 11c,d contain the noise-free training and the evaluation of the learning agent with
the same noise standard deviations that were also used in Section 4.2; finally, Figure 11e,f
show the cases that the noise was active during the training and the application of the
trained agents.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Evaluation of the control optimization by means of reinforcement learning. (a) Terminal
current iT(t) (optimization and evaluation without noise); (b) SOC σ(t) (optimization and evaluation
without noise); (c) Terminal current iT(t) (optimization without noise; evaluation with noise); (d) SOC
σ(t) (optimization without noise; evaluation with noise); (e) Terminal current iT(t) (optimization and
evaluation with noise); (f) SOC σ(t) (optimization and evaluation with noise).

The corresponding Ohmic losses for these three different cases are summarized in
Table 4. It becomes obvious that these values are close to the solutions obtained by means
of the offline control optimization (cf. Table 3) with the help of Pontryagin’s maximum
principle and also the predictive control approach according to Figure 8. The big advantage
of this solution is its small online computational effort (no boundary value problems have
to be solved at runtime) and its simple generalizability to different charging durations and
different initial conditions. To perform this generalization, it is only necessary to provide
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suitable observations to the reinforcement learning agent during the offline training. Future
work concerning this task will especially deal with incorporating information on measure-
ment uncertainty (as well as state reconstruction uncertainty) into the training, not only by
the Gaussian noise processes used in Figure 11e,f, but also by set-valued counterparts. In
addition, it will be investigated how the reward functions can be generalized reasonably to
minimize the sensitivity of the resulting control approximation against such uncertainty,
for example by directly including the noise-induced control signal variances as a further
penalty term in the reward function.

Table 4. Ohmic losses (energy) during the charging and relaxation phases for the different variants of
the reinforcement learning control procedure.

Case According to Losses during Charging (t ∈ [0 ; 3600] s) Total Losses (t ∈ [0 ; 7200] s)

Figure 11a,b 637.62 Ws 683.41 Ws
Figure 11c,d 636.43 Ws 685.61 Ws
Figure 11e,f 467.36 Ws 1163.7 Ws

Remark 4. It is possible that the total Ohmic losses over the complete time span t ∈ [0 ; 7200] s for
the reinforcement learning control approach are smaller than those for the offline-optimized solution
using Pontryagin’s maximum principle. This is foremost caused by the fact that the terminal SOC is
not predefined and that the additional 120 s time interval available for achieving the desired terminal
SOC leads to a reduction of the maximum current, entering the expression for the Ohmic losses in a
quadratic form.

5. Conclusions and Outlook on Future Work

In this paper, a thorough comparison between the use of Pontryagin’s maximum prin-
ciple and reinforcement learning control approaches for the optimization of the charging
strategies of Lithium-ion batteries was presented. This comparison was based on an experi-
mentally validated equivalent circuit model. It was shown that the reinforcement learning
control approach can achieve robust, close-to-optimal solutions despite the presence of
state reconstruction noise if the utilized reward function for the learning agents is extended
in a problem-specific manner.

Future work will especially aim at the consideration of more general uncertainty
models included in the training phase, as well as the derivation of reinforcement-learning-
based SOC equalization strategies when multiple Lithium-ion battery cells are electrically
connected in series and in parallel.
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Appendix A. Parameterization of the Reinforcement Learning Approach

Appendix A.1. Parameterization of the Critic Network

The following code excerpt gives details on the layer configuration of the critic network,
composed of fully connected layers and layers with both the ReLu and tanh activation
functions.

statePath = [
featureInputLayer(numObs,’Normalization’,’none’,’Name’,’observation’)
fullyConnectedLayer(200,’Name’,’CriticStateFC1’)
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reluLayer(’Name’, ’CriticRelu1’)
fullyConnectedLayer(150,’Name’,’CriticStateFC2’)];
actionPath = [
featureInputLayer(1,’Normalization’,’none’,’Name’,’action’)
fullyConnectedLayer(150,’Name’,’CriticActionFC1’,’BiasLearnRateFactor’,0)];

commonPath = [
additionLayer(2,’Name’,’add’)
reluLayer(’Name’,’CriticCommonRelu’)
fullyConnectedLayer(1,’Name’,’CriticOutput’)];

Appendix A.2. Parameterization of the Actor Network
The actor network, parameterized according to the following code excerpt, is parame-

terized in such a way that the maximum absolute value of the charging current iT is limited
to 10 A.

actorNetwork = [
featureInputLayer(numObs,’Normalization’,’none’,’Name’,’observation’)
fullyConnectedLayer(200,’Name’,’ActorFC1’)
reluLayer(’Name’,’ActorRelu1’)
fullyConnectedLayer(150,’Name’,’ActorFC2’)
reluLayer(’Name’,’ActorRelu2’)
fullyConnectedLayer(1,’Name’,’ActorFC3’)
tanhLayer(’Name’,’ActorTanh’)
scalingLayer(’Name’,’ActorScaling’,’Scale’,max(actInfo.UpperLimit))];
% upper limit = 10

Appendix A.3. Parameterization of the Learning Agent
All parameters listed below form the parameterization of the learning agent, where

especially the sampling time of 10 s is of practical importance as it determines the temporal
difference between two subsequent points in time at which the charging current for the
Lithium-ion battery is updated.

agentOpts = rlDDPGAgentOptions(...
’SampleTime’,10,...
’TargetSmoothFactor’,1e-3,...
’ExperienceBufferLength’,1e5,...
’NumStepsToLookAhead’,1,...
’DiscountFactor’,0.99,...
’MiniBatchSize’,128);

agentOpts.NoiseOptions.Variance = 1e-1;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-5;
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24. Buşoniu, L.; de Bruin, T.; Tolić, D.; Kober, J.; Palunko, I. Reinforcement Learning for Control: Performance, Stability, and Deep

Approximators. Annu. Rev. Control 2018, 46, 8–28. [CrossRef]
25. Gosavi, A. Reinforcement Learning: A Tutorial Survey and Recent Advances. Informs J. Comput. 2009, 21, 178–192. [CrossRef]
26. Borrelli, F.; Bemporad, A.; Morari, M. Predictive Control for Linear and Hybrid Systems; Cambridge University Press: Cambridge,

UK, 2017.
27. Maciejowski, J. Predictive Control with Constraints; Prentice Hall: Essex, UK, 2002.
28. Sontag, E. Mathematical Control Theory—Deterministic Finite Dimensional Systems; Springer: New York, NY, USA, 1998.
29. Reuter, J.; Mank, E.; Aschemann, H.; Rauh, A. Battery State Observation and Condition Monitoring Using Online Minimization.

In Proceedings of the 21st International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland,
29 August–1 September 2016.

30. Erdinc, O.; Vural, B.; Uzunoglu, M. A Dynamic Lithium-Ion Battery Model Considering the Effects of Temperature and Capacity
Fading. In Proceedings of the International Conference on Clean Electrical Power, Capri, Italy, 9–11 June 2009; pp. 383–386.

31. Rauh, A.; Butt, S.; Aschemann, H. Nonlinear State Observers and Extended Kalman Filters for Battery Systems. Intl. J. Appl.
Math. Comput. Sci. AMCS 2013, 23, 539–556. [CrossRef]

32. Hildebrandt, E.; Kersten, J.; Rauh, A.; Aschemann, H. Robust Interval Observer Design for Fractional-Order Models with
Applications to State Estimation of Batteries. In Proceedings of the 21st IFAC World Congress, Berlin, Germany, 11–17 July 2020.

33. Wang, B.; Liu, Z.; Li, S.; Moura, S.; Peng, H. State-of-Charge Estimation for Lithium-Ion Batteries Based on a Nonlinear Fractional
Model. IEEE Trans. Control Syst. Technol. 2017, 25, 3–11. [CrossRef]

34. Zou, C.; Zhang, L.; Hu, X.; Wang, Z.; Wik, T.; Pecht, M. A Review of Fractional-Order Techniques Applied to Lithium-Ion
Batteries, Lead-Acid Batteries, and Supercapacitors. J. Power Sources 2018, 390, 286–296. [CrossRef]

35. Plett, G. Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs—Part 1. Background. J.
Power Sources 2004, 134, 252–261. [CrossRef]

36. Plett, G. Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs—Part 2. Modeling and
Identification. J. Power Sources 2004, 134, 262–276. [CrossRef]

http://dx.doi.org/10.1016/j.epsr.2017.05.009
http://dx.doi.org/10.1016/j.seta.2021.101234
http://dx.doi.org/10.1109/TIE.2020.2972449
http://dx.doi.org/10.1049/pel2.12018
http://dx.doi.org/10.1016/j.arcontrol.2018.09.005
http://dx.doi.org/10.1287/ijoc.1080.0305
http://dx.doi.org/10.2478/amcs-2013-0041
http://dx.doi.org/10.1109/TCST.2016.2557221
http://dx.doi.org/10.1016/j.jpowsour.2018.04.033
http://dx.doi.org/10.1016/j.jpowsour.2004.02.031
http://dx.doi.org/10.1016/j.jpowsour.2004.02.032


Clean Technol. 2022, 4 1289

37. Plett, G. Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs—Part 3. State and
Parameter Estimation. J. Power Sources 2004, 134, 277–292. [CrossRef]

38. Bo, C.; Zhifeng, B.; Binggang, C. State of Charge Estimation Based on Evolutionary Neural Network. J. Energy Convers. Manag.
2008, 49, 2788–2794. [CrossRef]

39. Rauh, A.; Chevet, T.; Dinh, T.N.; Marzat, J.; Raïssi, T. Robust Iterative Learning Observers Based on a Combination of Stochastic
Estimation Schemes and Ellipsoidal Calculus. In Proceedings of the 25th International Conference on Information Fusion
(FUSION), Linkoping, Sweden, 4–7 July 2022; pp. 1–8.

40. Lahme, M.; Rauh, A. Combination of Stochastic State Estimation with Online Identification of the Open-Circuit Voltage of
Lithium-Ion Batteries. In Proceedings of the 1st IFAC Workshop on Control of Complex Systems (COSY 2022), Bologna, Italy,
24–25 November 2022.

41. Friedland, B. Quasi-Optimum Control and the SDRE Method. In Proceedings of the 17th IFAC Symposium on Automatic Control
in Aerospace, Toulouse, France, 25–29 June 2007; pp. 762–767.

42. Mracek, C.P.; Cloutier, J.R. Control Designs for the Nonlinear Benchmark Problem via the State-Dependent Riccati Equation
Method. Int. J. Robust Nonlinear Control 1998, 8, 401–433. [CrossRef]

43. Çimen, T. State-Dependent Riccati Equation (SDRE) Control: A Survey. In Proceedings of the 17th IFAC World Congress, Seoul,
South Korea, 6–11 July 2008; pp. 3761–3775.

http://dx.doi.org/10.1016/j.jpowsour.2004.02.033
http://dx.doi.org/10.1016/j.enconman.2008.03.013
http://dx.doi.org/10.1002/(SICI)1099-1239(19980415/30)8:4/5<401::AID-RNC361>3.0.CO;2-U

	Introduction
	Equivalent Circuit Modeling and Criteria for the Energetically Optimal Charging of Lithium-Ion Batteries
	Equivalent Circuit Modeling
	Quantification of Ohmic Losses

	Optimal Control Synthesis
	Indirect Optimization Using Pontryagin's Maximum Principle
	Fixed Terminal State
	Partially Free Terminal State

	Conversion into a Model Predictive Control Task
	Relations to Feedback Control Based on a Linear-Quadratic Regulator Design
	Direct Optimization by Reinforcement Learning
	Summary of the Properties of the Control Approaches

	Simulation and Optimization Results
	Indirect Optimization Using Pontryagin's Maximum Principle
	Model Predictive Control
	Feedback Control Based on a Linear-Quadratic Regulator Design
	Optimized Charging Based on Reinforcement Learning

	Conclusions and Outlook on Future Work
	Parameterization of the Reinforcement Learning Approach
	Parameterization of the Critic Network
	Parameterization of the Actor Network
	Parameterization of the Learning Agent

	References

