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Abstract: This paper presents a statistical steady-state stability analysis for transmission system
planning studies in order to identify operational issues inherent in the integration of offshore
wind power plants. It includes normal and contingency operation. This study considers the
integration of a 1000-MW offshore wind power plant into the FirstEnergy/PJM service territory
in the U.S. Great Lakes region as a case study and uses a realistic computer model of the U.S. Eastern
Interconnection, a 63,000-bus test system. The results show the utility of this statistical analysis
tool and its effectiveness in identification of the operational impacts as a result of the integration of
offshore wind power plant.

Keywords: offshore wind; power system planning; steady-state stability; statistical analysis;
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1. Introduction

Integration of offshore wind power plants into an existing power grid can cause operational
challenges for the grid. This is because of the topological and technological changes that occur as a
result of the wind power plant integration. During the wind integration planning process, steady-state
and dynamic analyses are conducted for the accommodating power system to ensure the system
retains the measures of stability after the wind power plant integration and is able to continue its
secure operation.

Steady-state analysis of electric power systems refers to the study of the system’s behavior while
operating at an equilibrium point [1]. It involves assessment of its performance under two operational
conditions; (1) normal operation and (2) contingency operation. Given the uncertain and variable
nature of wind, injecting electrical power generated from wind into a transmission system can escalate
the complexities associated with the system’s operation and stability. This paper addresses this problem
and introduces a statistical steady-state stability analysis tool that is practical for the planning studies
associated with integration of offshore wind power plants into the transmission system.

The first objective of the current work is to provide a statistical steady-state analysis for large-scale
power systems under normal operating conditions to identify the effects of offshore wind power
plants on transmission system operation. A number of studies have investigated the effects of wind
power plant integration on power system operation and have recommended various techniques for
steady-state analysis, but mainly for land-based wind generation and the integration into distribution
and sub-transmission systems. The authors of [2] introduced an error-based index to measure voltage

Clean Technol. 2020, 2, 311–332; doi:10.3390/cleantechnol2030020 www.mdpi.com/journal/cleantechnol

http://www.mdpi.com/journal/cleantechnol
http://www.mdpi.com
https://orcid.org/0000-0002-9286-7765
http://dx.doi.org/10.3390/cleantechnol2030020
http://www.mdpi.com/journal/cleantechnol
https://www.mdpi.com/2571-8797/2/3/20?type=check_update&version=2


Clean Technol. 2020, 2 312

regulation with implications of how different types of offshore wind generators can impact voltage
regulation in distribution feeders when integrating a wind power plant at the transmission level.
This study suggested that voltage regulation in distribution feeders is a function of location of the
point of interconnection (POI). The authors of [3] investigated the steady-state stability of power
systems with high penetrations of doubly-fed induction generator (DFIG)-based wind generators
using P−V curves. This study suggested that focusing on traditional worst-case operating points does
not necessarily capture the true worst-case scenario in systems that have integrated wind power plants
and that the interconnection of DFIGs at both the transmission and distribution levels has a positive
impact on voltage control of the lines. This work used the 2013 Ireland power system as a case study
and incorporated historical data, power flow, and economic dispatch. The authors of [4] introduced
a tool to assess stability impacts of land-based wind generators on weak grids. They investigated
the impact of land-based wind generation on a sub-transmission network by using a combination
of sensitivity analysis and continuous power flow to look into the sensitivity of the level of power
generation by wind machines and the operation of tap changers. They also examined the effects of
wind machines connected to the sub-transmission lines on transformers that connect sub-transmission
lines to transmission lines. This work used models of a regional power system in Michigan and
considered two wind power plants in the area. The authors of [5] carried out a P−V analysis on the
California Independent System Operator (CAISO) and proposed a method to handle power systems
including renewable energy sources; however, this method was not implemented or verified.

The second objective of this paper is to introduce a statistical tool for contingency operation
assessment of large-scale power systems that include offshore wind power plant integration.
The existing literature mainly addresses the contingency analysis of traditional power systems. In [6],
five continuous power flow methods including the multiple load flow method, test function method,
Q− V curve fitting and generalized curve fitting methods were implemented on a 234-bus power
system and compared. The multiple load flow method, proposed in [7], approximates the security
margin of the system rather than computing the actual bifurcation point using the voltage gradient at
any given point on the stable branch of the P−V curve. The test function method, introduced in [8],
uses a quadratic approximation of the load parameter to determine the voltage margin following a
small perturbation to the load. The Q−V curve fitting method [9] uses three points on the stable branch
of the Q−V curve to identify the bifurcation point. This method is not capable of handling active and
reactive power changes when the load in multiple branches change, simultaneously. The generalized
curve fitting method approximates the stable branch at the nose of the V − λ curve by a second order
polynomial. This allows computing the active and reactive power change, simultaneously. In [10],
a method for AC networks was proposed that includes the effect of voltage regulators and generators
using a voltage sensitivity index with application to the IEEE 24-bus Reliability Test System [11]. In [12],
a method to identify outages that lead to an infeasible operating point using a nonlinear optimization
approach was proposed. Such conditions might occur if minimum values of constraints are greater
than operator-defined thresholds such as bus voltage and load shedding thresholds. This method
was implemented on the IEEE 30-bus test system with 6 generators. In [13], several contingency
ranking and monitoring techniques were surveyed and discussed. In [14], the authors introduced a
fast method for on-line voltage security assessment following large numbers of line outages to identify
the worst case using the relationship between a node voltage and the availability of reactive power in
the local neighborhood of the operating point. Reliability indices of Loss-of-Load Probability (LOLP)
and Expected Energy Not Served (EENS) were used in contingency ranking in IEEE 24-bus Reliability
Test System, in [15]. This work suggests that the reliability indices may not predict the real severity
of the system contingencies. The study presented in [16], outlines the computation of linear and
quadratic estimates of the loading margin to changes in parameters for a given power system such as
reactive power support, generation redispatch, and load changes using the IEEE 118-bus test system.
The focus, however, was on changing a single parameter at a time rather than multiple parameters in
multiple nodes. In [17], the genetic algorithm was used to rank contingency severity with a focuses



Clean Technol. 2020, 2 313

on a small number of contingency events in relatively small test systems, 30-bus and 57-bus. In [5],
the performance of security assessment platforms in CAISO was presented. This work very briefly
mentions renewable energy handling, but no actual performance was presented. A risk-based method
to assess security of power systems based on sensitivity of load margin to the bifurcation point using a
Poisson model of system uncertainties was presented in [18]. This work assumes the risk calculation
is being done over a short-term time horizon, and consequently, changes in operating conditions are
small. A power system security assessment tool that considers renewable energy units was presented
in [19]. This tool computes the classic P−V curves for every level of penetration of wind power with
testing on a 23-bus system in MATPOWER.

This paper first provides a statistical approach to analyze the data from a large-scale power system
and assess the steady-state stability considering the associated uncertainties. Second, it introduces a
risk-based approach for quantifying the impacts of wind power variability in a single index that
enables comparing and ranking the severity of contingency events to identify the most secure
integration scenario. This research intends to develop insight into the impact of large-scale offshore
wind generation on steady-state operation assuming that the existing operating condition is stable.
The contribution of this paper is to provide a statistical approach for different wind generation
technologies and integration scenarios and topologies that might affect large-scale power system
operation under normal and contingency conditions. This is a major area of concern in wind integration
projects. The advantage of this methodology is its ease and efficiency in implementation with existing
practical power systems models that will inherently include the effects of continuous and discontinuous
system elements.

This work uses a simulation model of the U.S. Eastern Interconnection as the test system and
focuses on the integration of a 1000-MW offshore wind power plant operating in Lake Erie into
the FirstEnergy/PJM service territory as a case study. After wind availability estimation, potential
geographical locations of the offshore plant POIs were identified and, accordingly, integration scenarios
were developed using a 63,000-bus system model that relies on system models that are used by industry.
Databases were developed based on previous work performed by GE Energy Consulting and the
National Renewable Energy Laboratory (NREL) for the 2013 Eastern Frequency Response Study [20];
however, the previous databases were slightly modified to represent the current available generation
in the FirstEnergy system due to retirements. The wind turbines were modeled based on the GE
3.6-MW commercial wind machines [21]. The export cables that transmit offshore power to land-based
substations were designed and modeled based on data available on the ABB High-Density Crosslinked
Polyethylene (XLPE) commercial sea cables [22].

2. Mathematical Formulation

Wind integration projects typically involve adding new wind generation units to an existing
power system. Thus, a wind integration study could be treated as an expansion study. In wind
integration studies, because of the variable nature of power generation from wind, it is necessary
to conduct stability and reliability analyses for all levels of contribution from the wind power plant
within capacity limits.

Steady-state analysis under the normal operational conditions refers to the system’s performance
when all components are intact and in operation. This analysis is associated with two criteria:
(1) voltage regulation at both ends of the lines and (2) thermal rating of the lines [23]. Typically,
the voltage stability margin is much smaller than the thermal stability margin, and therefore the
voltage stability margin determines the system’s overall stability margin [23].

Steady-state analysis under the contingency operational conditions is the assessment of the
system’s performance when contingencies such as the outage of a component or multiple components
occur [1]. In such analysis, the events are ranked based on the severity of their impacts to identify the
worse case scenarios [24] and, therefore, this process is called contingency ranking and monitoring.
The most common approach in power system planning studies considers N-1 security criteria in which



Clean Technol. 2020, 2 314

a system should withstand any single contingency event, such as the outage of a transmission line or
generator [12]. In practice, one way of quickly computing any possible violation of operating limits
during contingency events is to start with a base case and then continue to apply contingency events
and calculate their severity indices in order to evaluate the system’s strength [24].

This research introduces a statistical methodology to assess the steady-state stability of large-scale
power systems for the integration of offshore wind power plants. The first step is to study the base
case with no contingencies to ensure the system is stable for a complete range of loading conditions
and wind power availability. This serves as the steady-state normal operating scenario. The next step
is to evaluate the impact of contingency events, one at a time, and conduct analysis on system variables
such as voltage magnitudes, line flows, active and reactive power of the generation units, etc.

2.1. Power Flow Equations with Wind Variability Model

Behavior of a power system can be described using differential-algebraic equations:

ẋ = f (x, u) (1)

where x is the state vector and u is the input vector. For every equilibrium (x∗,u∗), the steady-state
solution of the system is given by:

f (x∗, u∗) = 0 (2)

To simulate the variability from wind power generation, a variability parameter, λ, can be
introduced as:

0 ≤ λ ≤ λmax (3)

where λ = 0 represents maximum wind power generation and λ = λmax represents minimum wind
power generation. Accordingly, active power dispatch for a system consisting of non-wind generators,
PGi and wind power generators PWi , connected to the i-th bus, can be written as:

PGi (λ) = PGi0
(1 + λKPGi

) (4)

PWi (λ) = PWi0
(1 + λKPWi

) (5)

where PGi0
and PWi0

are the active power generation dispatch by non-wind and wind power plants
at the i-th bus, respectively, when the wind power plant operates at its maximum active power limit
and KPGi

and KPWi
are their active power participation factors. The participation factor for non-wind

generators is positive and for the wind generator is negative.
To investigate the impact of variability of wind power generation on system variables such as

voltage, line flows, etc, the active power generation from wind should be varied by changing λ at
each step. When wind power fluctuates, the non-wind generators react and either compensate for any
active power deficit or reduce their output power to continuously maintain the power balance between
generation and consumption. Consequently, their reactive power output may change accordingly.
Reactive power output of a generator is a function of various factors including active power output of
the generator, the technology used in the generator, the capability of the machine to provide reactive
power support, and the controller settings of the machine. Therefore, the reactive power equations can
be defined by:

QGi (λ) = Q(PGi0
(λ)) · (1 + λKQGi

) (6)

QWi (λ) = Q(PWi0
(λ)) · (1 + λKQWi

) (7)
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where QGi and QWi are the reactive power generation by non-wind and wind power plants, respectively,
at the i-th bus and KQGi

and KQWi
are their reactive power participation factors. Q(PGi0

(λ)) and
Q(PWi0

(λ)) are reactive power outputs when the generators are producing PGi0
and PWi0

and are
determined by the P−Q characteristics of the individual machines.

The voltage magnitude and angle vectors of the system can be described by Equations (4) through
(7) as:

θ(λ) = H−1P(λ) (8)

V(λ) = K−1Q(λ) (9)

where P(λ) =
[

PWi (λ) PGi (λ)
]T

and Q(λ) =
[

QWi (λ) QGi (λ)
]T

and H and K are Jacobian
submatrices. Load profiles are assumed to remain constant. Finally, replacing the voltage magnitude
and angle values into the power flow equations gives the system’s active power flow, P, reactive power
flow, Q, and apparent power flow, S, by:

P(λ) =
n

∑
i
|Vi(λ)||Vj(λ)|Bijsin(θi(λ)− θj(λ)) (10)

Q(λ) = −
n

∑
i
|Vi(λ)||Vj(λ)|Bijcos(θi(λ)− θj(λ)) (11)

S(λ) =
√

P2(λ) + Q2(λ) (12)

2.2. Normal Operation Analysis

As discussed previously, steady-state analysis during normal system operation considers two
criteria: (1) voltage stability and (2) thermal stability [23]. Voltage stability is a function of reactive
power. In a transmission line that delivers a constant active power P and supplies reactive power
Q with supply end voltage magnitude of E, delivery end voltage magnitude of V, and reactance X,
the reactive power can be described by [1]:

Q(V) =

√[EV
X

]2
− P2 − V2

X
(13)

This equation determines the reactive power-voltage characteristics and takes the form of an
inverted parabola as shown in Figure 1. This plot illustrates the effects of wind variability on the
system’s Q − V curve as the wind has the effect of shifting the parabola upwards or downwards.
The voltage stability criterion dictates that operating on the right hand side of the reactive power
characteristic curve ensures steady-state voltage stability of the system [1]; thus, a preliminary indicator
of steady-state voltage instability is voltage drop in the transmission system. This can be assessed
using Equation (9).

The second criterion, thermal stability, pertains to the heat generated by energized conductors
as a result of active power transfer. The active power conditions from power flow, described in
Equation (10) can be used to assess thermal stability, where heavily loaded lines that transfer active
power over long distances can be an indication of thermal instability.
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Figure 1. Voltage stability assessment in the presence of a wind power plant—adapted from [1].

2.3. Contingency Operation Analysis

The severity indices are meant to identify the severity of changes between pre-contingency and
post-contingency operating states of the system. The existing rankings methods for contingency
analysis can be summarized by [13,24,25]:

1. Any index that considers only a single facet of the system’s operation does not provide a
100 percent accurate ranking.

2. A combination of indices should be used to reliably rank and select contingencies.
3. Indices might be computed based on single or multiple methods.
4. If the system is currently operating at maximum generation or maximum scheduled generation,

and none of the pre-contingency or post-contingency analyses leads to instability, then the system
is assumed to be safe.

5. In power system operating centers, using sophisticated algorithms and procedures is
computationally burdening due to the complexity and size of the system and the time requirements.

This research introduces a security index that is capable of (1) identifying the most severe
contingency events for a system with offshore wind power plants and (2) determining the most
secure configurations and locations for integration of offshore wind farms. This index considers
multiple facets of the system’s operation and is computed as described below.

2.3.1. Voltage Regulation Index

Voltage regulation across the system with respect to variability of wind power can be evaluated
using Equation (9). To assess the overall voltage regulation across the system for all levels of wind
power generation, the Voltage Regulation Index (VRI) is defined by:

VRI =

√√√√ 1
n

n

∑
i=1

(
Vimeasured −Vischeduled

Vischeduled

)2

(14)

where Vmeasured and Vscheduled represent actual and scheduled voltages in the transmission lines and n
is the number of transmission lines, respectively. This index measures the error in voltage regulation
across the system and ranges between 0 and 1. As the voltage regulation improves, this index
approaches zero. Higher values of this index indicate considerable error in voltage regulation.
Values greater than 1 are an indication of near voltage collapse conditions that require immediate
corrective action.
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2.3.2. Power Loss Index

Power loss across the system is associated with the active power flow across conductors. Active
power flow across the system with respect to variability of wind power can be evaluated using
Equation (10). To assess the cumulative power loss in transmission lines, for all levels of wind power
generation, the Power Loss Index (PLI) is defined by:

PLI =
1
n

n

∑
i=1

(
Pimeasured

Pirated

)2

(15)

where Pmeasured and Prated represent the actual active power flow and rated active power transfer
capacity of the lines and n is the number of lines, respectively. Power loss in transmission lines and
their heating rate are directly correlated; an increase of active power loading rates results in higher
power loss. Thus, greater values of this index indicate higher active power loading rate in transmission
lines that means higher power loss. Values between 0 and 1 indicate safe and reliable operation.
Whereas values greater than 1 indicate overloaded line(s) in the system that requires corrective action
to prevent a cascading trip.

2.3.3. Transmission Line Loading Index

Total power loading of transmission lines with respect to variability of wind power considering
both active and reactive power was described in Equation (12). To quantify line loading for all levels
of wind power generation, the Transmission Line Loading Index (TLLI) is given by:

TLLI =
1
n

n

∑
i=1

(
Simeasured

Sirated

)
(16)

where Smeasured and Srated represent actual apparent power flow and and rated total power transfer
capacity of the lines and n is the number of lines, respectively. The value of this index changes
proportional to an increase or a decrease in system’s total power loading. Values between 0 and 1 are
indicative of safe operation and values greater than 1 are indicative of overloaded line(s) in the system
that requires a corrective action to relieve line congestion and prevent interruption of power delivery.

2.3.4. Reactive Reserve Support Index

The system’s voltage security depends on the availability of reactive power support in the area.
The system’s reactive power generation with respect to variability of wind power was given in
Equations (6) and (7). Accordingly, the Reactive Capability Index (RCI) is defined by:

RCI =
QavailableArea

Qload
(17)

where QavailableArea and Qload represent total available reactive power and total reactive power
consumption in the system, respectively. Greater values of RCI measure higher reactive power
available for voltage support and is an indicator of higher voltage security, while smaller values
indicate the potential for reactive power deficit that might trigger an event leading to voltage collapse.
Figure 2 illustrates the relationship between available reactive power and voltage security.
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Figure 2. Conceptual visualization of relationship between available reactive power and voltage
security—adapted from [1].

Accordingly, RCI could be rearranged by:

RRSI =
Qload

QreserveArea

(18)

where RRSI is the Reactive Reserve Support Index with values ranging from [0, ∞), where smaller
values of the index (closer to zero) indicate higher availability of reactive power that is an indication
of a greater voltage security margin. As the system begins to move towards the bifurcation point,
this index tends to larger values and, eventually, tends to infinity as the system runs out of available
reactive power.

2.3.5. Security Index

In the process of contingency analysis, contingency events are applied to the system one at a time.
For each contingency event, to quantify the variability of the wind power plant, system variables such
as line flows, voltages, generation data, etc. are collected with respect to increments of wind power
throughout the full operational range of the offshore wind power plant with reasonable shift steps.
Using system variables for each shift step, the four introduced indices can be computed. As a result,
for m-shift steps of wind power and u contingency events, a security matrix can be formed by:

Ψ =

Ψ11 · · · Ψ1k
...

. . .
Ψj1 · · · Ψjk

 (19)

for Ψ = VRI, PLI, TLLI, and RRSI, j = 1, ..., m and k = 1, ..., u. The VRIjk, PLIjk, TLLIjk and
RSSIjk are the indices computed for j-th level of wind power throughout the full span of wind power
variability with m steps of power increment and the k-th operating condition out of the u contingency
events considered.

Then, for each index, a vector that quantifies the variability of wind power can be defined by:

Ψk =
m

∑
j=1

Ψjk k = 1, ..., u (20)

for Ψ =
[
VRI PLI TLLI RRSI

]T
. The final Security Index (SI), defined by a risk function for a

k-th contingency event, SIk, can be defined by:

SIk = s1VRIk + s2PLIk + s3TLLIk + s4RRSIk (21)
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where s1, · · · , s4 are weighting factors and are chosen based on the planner’s preference and the grid
topology. The range of values for this index depends on the values chosen for the weighting factors.
Regardless, greater values of this index represent higher severity of the given operating condition or
contingency event.

3. Case Study

This study considers the integration of 1000 MW of offshore wind power in Lake Erie into
the FirstEnergy/PJM transmission system as a case study to verify the utility of the introduced
methodology. This section describes the details of this case study and the computational
implementation of this methodology.

3.1. FirstEnergy/PJM Power System

This study uses an accurate computer model of the FirstEnergy/PJM system. PJM is
an independent market operator in the Midwestern United States and is part of the Eastern
Interconnection. FirstEnergy is a regional utility company, based in Akron, Ohio, within a geographical
sub-region of PJM and serves 6 million customers in Ohio, Pennsylvania, West Virginia, Virginia,
Maryland, New Jersey, and New York.

3.2. Wind Power Integration Scenario Development

The estimated geographic distribution of available wind power over the surface of Lake Erie was
provided by the NREL, and, based on these estimates, five candidate POIs were identified within the
FirstEnergy transmission system including Ashtabula, Perry, Eastlake, Lake Shore, and Avon Lake.
Accordingly, three scenarios for the integration of a total of 1000 MW of offshore wind generation at a
variety of POIs were developed subject to compatibility with the extant grid infrastructure:

1. Interconnecting a total of 1000 MW of offshore wind generation at a single POI, referred to
as EC01

2. Interconnecting a total of 1000 MW of offshore wind generation through five 200 MW POIs across
the lake, referred to as EC02

3. Interconnecting a total of 1000 MW of offshore wind generation through two 500 MW POIs across
the lake, referred to as EC03

Figure 3 shows the geographical location of the offshore wind power plant and the identified POIs.

Figure 3. Map of Interconnection Scenarios into the FirstEnergy System.
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3.3. Offshore Wind Power Plant Modeling

For computational purposes, the 1000 MW offshore wind power plant is modeled by an
aggregated model that includes a synchronous generator connected to a PV bus through a 34.5 kV
collector and export cables for the offshore system. The wind turbine model parameters used in this
study are based on a Type 3 GE 3.6-MW offshore wind turbine with a variety of capability to provide
reactive power support and the control strategy. Accordingly, the R00 models correspond to a machine
with no reactive support capability, the R01 to a machine with limited reactive support capability
(–7.5%/7.5%), and R02 to a machine with full reactive support capability (–43.0%/+57.8%). The wind
machines were set to cover a complete range of power generation by the offshore wind power plant
from 0 MW to 1000 MW. The substation transformer is rated on the basis of the wind turbine generators
and has a typical impedance of approximately 8% [26].

A static VAR compensator (SVC) with significant compensation capacity was incorporated at
each POI to provide ancillary service (reactive power generated/consumed) as needed by the grid.
The SVC is modeled as a controllable shunt device that allows for automatic voltage control during
load flow simulations and is set to regulate voltage at the POI [26].

3.4. Generation Dispatch Scenarios and Load Assumptions

In this paper, summer 2015 load data from the Eastern Interconnection were used. The system
model contains approximately 63,000 system buses, 9091 generators, with a total of 936,266 MW and
444,200 MVAr of installed generation capacity to serve the load of 685,469 MW and 201,005 MVar.

3.5. Contingency Events

FirstEnergy provided a contingency list that included generation units, transformers,
line segments, complete lines, and synchronous condenser outages. These events were used to
perform the contingency analysis.

3.6. Computer Implementation

The main objective of this case study is to understand the impacts of the integration of 1000 MW
of offshore wind generation into the FirstEnergy/PJM system. The second objective is to assess the
impacts of retirement or loss of one of the largest power plants in the area (Perry, with a capacity
of 1200 MW and 625 MVAr) upon integration of the offshore wind power plant. According to these
objectives, the computational implementation of this study was carried out using 36 cases that were
developed for each of the interconnection scenarios (EC01, EC02, and EC03), for a total of 108 cases.
These cases included three degrees of freedom for the reactive capability of the offshore wind machines
(0 MVAr, –7.5%/+7.5% MVAr and –43.0%/+57.8% MVAr), three degrees of freedom for the point
of voltage regulation (voltage regulation at the machine terminals, voltage regulation at the POI,
and voltage regulation at the collector system), two degrees of freedom for the operation of the SVC
(on and off), and two degrees of freedom for the operation of Perry (on and off). The description of
these cases is shown in Table 1.
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Table 1. List of Studied Cases

Case No. Voltage Control Reactive Capability SVC Perry

1 V00

R00

OFF

ON

2 V01

3 V02

4 V00

R015 V01

6 V02

7 V00

R028 V01

9 V02

10 V00

R00

ON

11 V01

12 V02

13 V00

R0114 V01

15 V02

16 V00

R0217 V01

18 V02

19 V00

R00

OFF

OFF

20 V01

21 V02

22 V00

R0123 V01

24 V02

25 V00

R0226 V01

27 V02

28 V00

R00

ON

29 V01

30 V02

31 V00

R0132 V01

33 V02

34 V00

R0235 V01

36 V02

R00: (0 MVAr), R01: (–7.5%/+7.5% MVAr), R02: (–43.0%/+57.8% MVAr); V00: Voltage regulation at the
terminals of machines; V01: Voltage regulation at the POI; V02: Voltage regulation at the collector system.
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3.6.1. Normal Operation

For normal operation analysis, for each case, the wind generation was shifted across its 100%
capacity with shift steps of 1%. Through every step change in wind generation, other non-wind
generator units in the FirstEnergy area were redispatched to pick up missing generation of the wind
power plant and a power flow calculation was done. For each power flow, system variables from
all transmission lines, generation units, and substations in the FirstEnergy operating territory were
recorded and merged. As a result, two main datasets were produced for each shift step:

• The first dataset contains information about voltage magnitudes;
• The second dataset contains information about power flows.

These datasets contain data that represent all possible voltage magnitude and power flow values
for the system considering variable wind power.

In an ideal stable power system, voltage magnitudes across the system are regulated at 1.0 p.u.
This is realized by voltage regulation data showing identical statistical measures of mode, mean,
and median of 1, with an estimated density function that follows a normal distribution. As the voltage
magnitudes across the system begin to deviate from 1.0 p.u. and spread out with a wider range,
these statistical measures start to vary. As a result, the estimated density function begins to deviate
from a normal distribution. Based on this notion, to analyze each dataset and process them to acquire
meaningful information, the following statistical approach was used:

1. First, kernel density estimation (KDE) was applied to each of the datasets to estimate the density
function of each dataset with an equal weight for all data points. The outcome of KDE shows how
the variability of wind generation would impact voltage regulation and line loading conditions
for each case.

2. The next step was to calculate the dataset maximum, minimum, mode, mean, and median
values for each case. These values provide a sufficient understanding of how the data points are
distributed and how close to a normal distribution their distributions are.

• Maximum and minimum measures indicate whether or not any voltage violation occurs,
according to acceptable grid operating standards.

• Mode measure shows the most frequently recorded voltage magnitude. The closer the mode
value is to 1 is an indication of better system performance.

• The last metric is the difference between mean and median. The smaller values for this
measure indicate that the voltage data has a symmetric distribution similar to a normal
distribution. Positive values for this difference show a trend to voltage rise across the system,
whereas negative values indicate a trend to voltage drop across the system. This measure
is similar to kurtosis and skewness in which the heaviness of the tail and shoulders of the
distribution is used for interpretation. But it is easier to compute for datasets from power
systems where the long tails of the probability distribution may not be a concern.

3. The last step was to compare the distribution of datasets to a normal distribution. The outcome of
this comparison provides information about the probability of any voltage or power flow value
with respect to the wind variability.

3.6.2. Contingency Operation

For contingency operation analysis, for each case, the wind power was shifted across its capacity
with shift steps of 10%. Similar to normal operation analysis, through every step change, non-wind
generation was redispatched to meet the load demand and a power flow calculation was performed.
For each power flow, the system variables from all transmission lines, generation units and substations
in the FirstEnergy operating territory were recorded.
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For each case and step shift of wind power, if power flow converged and intact operation was
stable, then a series of contingency events were applied to the system, one outage event at a time.
The outage list was provided by FirstEnergy and consisted of 64 contingency events that included
generation, line segments, entire lines, and synchronous condenser outages. During each outage event,
the system variables were recorded.

By using the proposed contingency ranking method, for each shift step for variable wind, the four
indices, VRIjk, PLIjk, TLLIjk and RRSIjk, were computed (for the j-th level of wind power and the k-th
contingency event). Then, SIk, the security index for the k-th event, was computed by first summing
up the computed Ψjk for all levels of wind power, as given in Equation (20), and then using the risk
function, as given in Equation (21). In this study, the weighing factors for s1, · · · , s4 were assigned,
equally, with the value 1. Finally, the contingency events were ranked in a descending order according
to their security index to identify the most severe events for the offshore wind power plant integration.

4. Results and Discussion

This section presents the results and findings from all cases studied. First, results from analysis of
normal operation are presented and then results from contingency ranking follow.

4.1. Normal Operation

During normal operation all of the generation units and lines are in operation without any
contingency events. This section investigates how variability of the offshore wind power plant can
affect voltage and thermal stability of the FirstEnergy/PJM transmission system and assesses whether
or not the stability of the system is threatened as a result of the offshore wind power plant integration.

4.1.1. Voltage Stability

This section investigates the impacts of offshore wind generation on steady-state voltage stability.
The FirstEnergy/PJM requires that 138 kV to 345 kV transmission and sub-transmission level apparatus
operate within the ranges of 0.92–1.05 pu [27]. Figure 4a,b show the results for voltage regulation
across the base case system (574 lines in total). These curves are the probability density estimates of
simulated voltage data and compare their distribution to the normal distribution.

(a) Probability density function (b) Distribution probability

Figure 4. Distribution measures for the voltage regulation in the FirstEnergy transmission system—base case.

These plots show that no undervoltage condition has been recorded; however, two 138-kV lines
are operating in a slightly overvoltage condition. In addition, 99.6% of the lines operate within the
range of 0.977–1.035 p.u. The mean and mode values of the simulated voltage magnitudes are 1.002 p.u.
and 1.013 p.u., respectively.
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Figure 5. Wind power variability vs. probability density function of voltage regulation curve in
FirstEnergy/PJM transmission system.

Figure 6. Impact of wind generation variability on voltage regulation in the FirstEnergy/PJM
transmission system.

Figures 5 and 6 illustrate how the density function of the voltage magnitude distribution changes
with respect to the variability of the offshore wind power plant. They show that as power generation
by the wind power plant increases, the distribution of voltage data becomes more symmetric and
moves closer to a normal distribution. At 1000 MW offshore wind power generation, the voltage mode,
median, and mean values are 1.014 p.u., 1.003 p.u., and 1.004 p.u., respectively. At 0 MW of offshore
wind power generation, the mode value remains at 1.014 p.u., but the median and mean values move
to 1.006 p.u. and 1.005 p.u., respectively. Clearly, the level of power generation by the offshore wind
power plant has a direct impact on voltage regulation. Overall, across all levels of offshore wind power,
no voltage violations occur.

Figure 7 illustrates the impact of the variability of wind power plant on the distribution of voltage
datasets. This plot consists of a family of curves wherein each represents the voltage regulation across
the system for a certain level of offshore wind generation. These curves compare the distribution of
the voltage data points for varying level of wind generation to a normal distribution. These results
suggest that after integration of the offshore wind power plant, for all levels of offshore wind power,
the voltages are regulated within the standard range. In the base case, there are two data points within
the overvoltage range and they are regulated properly upon operation of the offshore wind power
plant. This is an indication of improved voltage stability.

Figures 5–7 illustrate the results from the EC01 interconnection scenario. The results from EC02
and EC03 are similar and, therefore, are not shown.
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Statistical measures of voltage data for all cases considered are compared in Figures 8–11 show
range, mode, and difference between median and mean of simulated voltage for all interconnections
considered: EC01, EC02, and EC03.

Figure 7. Wind power variability vs. distribution probability of voltage regulation curve in the
FirstEnergy/PJM transmission system.

Figure 8. Voltage range in the FirstEnergy transmission system.

Figure 8 shows the range of simulated voltage magnitudes across the system. The results here
show that the integration of offshore wind into this transmission system improves voltage regulation
for all levels of wind generation. In fact, the maximum recorded voltage in the base case (system
without a wind power plant), shown by the red solid line, were regulated properly and moved closer
to the operator’s standard range. This agrees with the findings from Figures 5–7.

The second point to note is that there are no voltage violations for all EC01 and EC03 cases and
the majority of the EC02 cases. For the EC02 interconnection scenario (5 POIs), in those cases that
represent wind machines with either no or limited reactive support capability, voltage violations
occurred (shown by the red dashed line). Figure 9 shows the distribution of the voltage data for the
EC02 cases with a minimum of one voltage violation.

The results shown in Figure 9 outline that in those cases in which voltage violation occurred,
the probability of the voltage violation is less than 4% for the full operational range of the offshore
wind power plant. Overall, it can be concluded that the location of the POI and the capability of the
wind machine to provide reactive power support are contributing factors in voltage regulation.

Figure 10 shows mode values for voltage data for all cases studied. It can be seen that the system
remained stiff and well regulated upon the integration of the offshore wind power plant as the mode
values did not change significantly.
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Figure 9. Distribution probability of voltage regulation curves in the FirstEnergy/PJM transmission
system for the EC02 cases 1–9 with a voltage violation.

Figure 10. Voltage mode in FirstEnergy transmission system.

Figure 11. Difference between voltage mean and median in the FirstEnergy transmission system.

Figure 11 shows the difference between mean and median values for voltage data for all cases
studied. It can be seen that the symmetry of the voltage magnitudes in the EC01 and EC03 cases with
Perry online remained approximately the same as in the base case. The EC01 cases with Perry offline
showed a slight tendency toward voltage rise, whereas the EC03 cases with Perry offline showed a
slight tendency toward voltage drop. However, neither of these two integration scenarios led the
system to instability (there were no undervoltage violations). The EC02 cases with the SVC operated at
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the POI showed a distribution identical to that of the base case, whereas the EC02 cases with no SVC
operating at the POI showed a tendency toward voltage rise. The contribution of the offshore wind
power plant reactive capability and its voltage control scheme are not significant.

It is noticeable that the EC01 cases deliver the most robust performance in voltage regulation
across this system for all levels of wind generation, with and without Perry. In all cases studied,
no voltage anomaly was observed; thus, it is safe to conclude that the voltage data were nearly
symmetrical and their distributions are very close to that of the base case.

One of the primary indicators for steady-state voltage instability is undervoltage violations at
any given bus across the system as the operating point begins to approach the voltage collapse point.
The results of the voltage analysis reveal that the FirstEnergy/PJM system does not experience this
condition. In addition, in all cases studied, including the base case, the difference between mean and
median was very small; therefore, for all levels of offshore wind generation, the system operates in
stable region. It is safe to say that the integration of the offshore wind power plant in Lake Erie will not
negatively affect the steady-state voltage stability of this transmission system. Additionally, the results
from cases without Perry (cases 19 to 36 of EC01, EC02, and EC03) show that upon integration of
1000 MW wind power plant using all three studied interconnection scenarios, retirement or loss of
Perry does not threaten voltage stability of the system.

4.1.2. Thermal Stability

This section discusses the impacts of offshore wind generation on loading condition of
FirstEnergy/PJM transmission system and its steady-state thermal stability.

Figure 12 presents the base case results from the loading analysis of this transmission system.
The results here indicate that almost 99.5% of the transmission lines in the base case were loaded below
80% of their nominal rating and more than 50% of them are loaded below 25% of their nominal rating.
However, there is a 138-kV line operating in an overloaded condition, exceeding 3.1% of its nominal
loading capacity.

Figure 12. Distribution probability of line loading in the FirstEnergy/PJM transmission system—base case.

Figures 13 and 14 visualize the effect of wind power generation variability on loading of this
transmission system. On these curves, it can be noticed that for higher levels of wind generation,
the mode value moves to 23% from 21%. Nonetheless, there is a very small difference in the distribution
of line loading data after the introduction of the wind power plant and for different levels of wind
generation. This is because this system is very lightly loaded and therefore can easily accommodate
the generated power from the wind power plant.
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Figure 13. Wind power variability vs. probability density function of loading level in FirstEnergy/PJM
transmission system.

Figure 14. Impact of wind power variability on loading level in the FirstEnergy/PJM transmission system.

Figure 15. Distribution probability of loading levels in the FirstEnergy/PJM transmission system.

To investigate how different integration scenarios could impact loading of the lines, Figure 15
compares the distribution of system’s data for all cases studied. The results show that the distribution
plots for all cases follow two main patterns and overlap to form two main plots. The factor that
distinguishes the cases and their corresponding distribution is the operational status of Perry. As shown
in this figure, in all cases, with and without Perry, there is a narrow probability of line overload; in
cases with Perry online it is 0.002% with overload of up to 13% of the line’s nominal rating and in
cases with Perry offline it is less than 0.001% with overload of up to 3% of the line’s nominal rating.
The plots shown in Figure 15 are from EC01. The results from EC02 and EC03 are nearly identical
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and, thus, are not shown. It can be concluded that the location of the POIs does not have a significant
impact on the overall loading of this system, however the operating status of Perry does.

In summary, the primary factor in the loading level of this transmission system is the operational
status of Perry. The second factor is the level of power production by the offshore wind power plant.
Other factors examined have no notable impact on the loading level of the system.

From the results shown in this section, it can be concluded that this transmission system is
sufficient, in terms of capacity, to accommodate 1000 MW of offshore wind generation, as introduced in
this study. Additionally, the retirement or loss of Perry does not threaten the transfer capability of this
system upon integration of the wind power plant, for all three integration scenarios. Overall, thermal
stability is a concern when the transmission lines operate in a heavily loaded condition; however,
in this study, it was found that the FirstEnergy/PJM transmission system does not experience this
operating condition.

4.2. Contingency Operation

This section describes the results from the steady-state contingency analysis using the proposed
security index and outlines the findings. The main application of the proposed security index is to
conduct contingency ranking and monitoring in power systems with variable generation units and to
provide an assessment of how their variability effects the security of the system.

Figure 16a–c shows the security index for all cases and contingency events studied. Interestingly,
the results intrinsically form two distinct surfaces and the decisive factor appears to be the operation
of Perry. As a reminder, higher values of the security index indicate a lower security for the system.
Having this in mind, in each of the figures, the upper surface represents the cases with Perry offline
while the lower surface represents the cases with Perry online. Accordingly, these figures reveal
that the loss of Perry has an adverse impact on the security of the system that includes the offshore
wind farm. But it does not interrupt the power delivery in the system. Understandably, loss of a
1200 MW power plant adversely influences the security of the system. This shows the effectiveness of
the contingency ranking method introduced in this paper.

This index can be used for contingency ranking as the SI contains the information necessary to
identify the severe events. The greater the index, the more severe the contingency event, for all cases.
Table 2 provides a list of the top 10 severe contingencies for six selected cases studied. For comparison
purposes, the cases with and without Perry are also shown.

Table 2. List of Top 10 Most Severe Contingency Events and Their Ranking for Selected Cases.

Case 1, EC01 Case 7, EC01 Case 1, EC02 Case 7, EC02 Case 1, EC03 Case 7, EC03

Event Rank SI Rank SI Rank SI Rank SI Rank SI Rank SI

40 1 1.280 2 1.530 1 1.287 2 1.564 1 1.362 1 1.593
24 3 1.276 1 1.544 2 1.285 1 1.576 2 1.348 2 1.582
39 4 1.247 6 1.488 5 1.255 6 1.521 5 1.322 7 1.534
18 5 1.247 3 1.521 4 1.258 3 1.561 4 1.323 3 1.574
41 6 1.244 7 1.486 7 1.248 9 1.505 6 1.319 8 1.528
30 7 1.243 8 1.484 6 1.251 7 1.516 7 1.311 9 1.522
17 8 1.240 34 1.446 12 1.241 43 1.470 10 1.300 40 1.480
9 9 1.236 25 1.451 13 1.237 42 1.471 17 1.296 44 1.479

22 10 1.234 9 1.479 9 1.237 8 1.512 8 1.304 10 1.522
62 11 1.232 14 1.460 8 1.243 13 1.492 15 1.297 23 1.490

The results shown inTable 2 reveal a consistent ranking for the contingency events among all EC01,
EC02 and EC03 cases. For instance, Events 24 and 40 are consistently ranked 1st or 2nd regardless of
the interconnection scenario and operational status of Perry. However, ranking of event 17 significantly
changes for the cases with and without Perry. The SI of this event for Case 1, EC01, is 1.240 placing it
in the 8th position in the severity ranking while for Case 7, EC01, the SI is 1.446, ranking this event at
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34th. In fact, this contingency represents loss of a 345 kV transmission line that is transmitting power
directly from Perry. Hence, the offline status of Perry reduces its outage severity. This also verifies the
utility and accuracy of the contingency ranking method introduced in this paper.

The results indicate that the EC01 interconnection provides the highest security during
contingency operation. The SI values for the EC01 interconnection are the smallest among the three
interconnection considered here. It is also noticeable that the SI values for cases in which Perry is
offline, are significantly higher than the same cases in which Perry is online, demonstrating that the
loss of Perry reduces the security of this system. This agrees with the finding evidenced in Figure 16a
through Figure 16c.

(a) Contingency Ranking of EC01 Cases
(b) Contingency Ranking of EC02 Cases

(c) Contingency Ranking of EC03 Cases
Figure 16. Contingency ranking in the FirstEnergy transmission system.

5. Conclusions

This study present a statistical approach for the steady-state stability analysis of large-scale power
systems and addresses normal and contingency operation. This method is practical for offshore wind
integration planning studies and is easy and efficient to implement. The normal operation relies on
statistical measures within the system’s recorded data and their distribution. The contingency analysis
relies on a risk-based security index to identify the most severe contingency events and most secure
interconnection scenario by considering variability of the offshore wind power plant.

This study focused on the investigation of steady-state operational impacts of integration of
1000 MW of offshore wind in the U.S. Great Lakes region. Specifically, this study focused on the
FirstEnergy/PJM transmission system by considering its current configuration and operational status.
In particular, operational issues including voltage regulation and power transfer capability were
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investigated. Feasible offshore wind integration scenarios were examined to identify vulnerability of
the system. The 63k-bus U.S. Eastern Interconnection was used for the case study.

The results showed that the integration of offshore wind power plants could improve voltage
stability across the system. The results also showed that in a lightly loaded power system, such as the
FirstEnergy system studied in this paper, line congestion is not a concern when adding wind generation
capacity. Additionally, in this particular case study, retirement or loss of Perry can negatively impact
the steady-state stability of the system.

Although this study focused on integration of an offshore wind power plant, this methodology is
applicable for integration of all types of variable generation units.
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