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Abstract: Several variations of the basic activated sludge process and of the related design procedures
for final clarifiers have been developed, which are frequently based on the well-known solid flux
theory (SFT). In this paper, by using the Lambert W function and a “virtual” solid flux corresponding
to the Vesilind parameters’ ratio, the SFT is reformulated, and dimensionless groups are detected,
which highly reduce the number of parameters that are involved in the final clarifiers’ design
procedure. The derived dimensionless relationships and the corresponding plots have general
validity since they can be applied to all the possible design/verification parameter combinations.
Moreover, it is shown that for any input dataset, the suitable domains of the SS concentration and of
the solid flux can be simply expressed by the two branches of the Lambert W function. By using data
retrieved from the literature, several numerical applications and validations of the dimensionless
relationships are performed. Finally, it is shown that by introducing in the SFT a new reduction
hydrodynamic factor, ρR, to be applied to the modified return flow formula rather than to the limiting
solid flux as in the past, a significant improvement in the comparison between the results by theory
and by experiments can be obtained.

Keywords: solid flux theory; final clarifier; dimensionless groups; reduction hydrodynamic
factor; validation

1. Introduction

The importance of well-designed final clarifiers is fully acknowledged, since they
determine the operating accuracy of the activated sludge (AS) process, the most used
biological process in wastewater treatment plants (WWTPs) [1]. The AS process has been
employed for pollutant removal for more than a century owing to its high nutrient removal
and biomass retention capabilities and toxin degradation [2].

As environmental regulations become more stringent, increased pressure is placed
on WWTPs to enhance their performance [3]. With the water and energy crisis occurring
in our lifetime, various reports have identified that methods of addressing, assessing, and
reducing energy must be explored [4]. The AS process requires energy to transfer the sludge
back to the aeration tank and power the aerators; thus, they need to be properly designed.

The activated sludge wastewater treatment process is based on a multi-chamber
reactor unit, which uses microorganisms as a method to remove nutrients from the water
and uses oxygen to establish and regulate aerobic conditions and to suspend the sludge.
Following the aeration step, the microorganisms need to be separated from the liquid by
sedimentation; thus, a final clarification is necessary. A portion of the biological sludge
extracted by the bottom of the final clarifier is recycled to the aeration tank to maintain
appropriate levels of biomass concentration in the dispersed-growth reactor. The remainder
(excess sludge) is removed from the process and sent for sludge processing to maintain in
the system an almost constant biomass concentration [5]. The appropriate design of the
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final clarifiers is compulsory to assure the quality of the treated effluent according to its
suspended solids (SS) concentration.

Compared to other types of wastewater treatment, activated sludge WWTPs have
several benefits that explain why the activated sludge (AS) process has been widely applied,
investigated, and interpreted [2,5–9].

Recently, Jasim [10] used the GPS-X model, which is the first commercially released
dynamic wastewater treatment plant simulator, for the mathematical modeling, control,
optimization, and management of wastewater treatment plants while designing the Al-Hay
city WWTP in the south of Baghdad, Iraq.

Islam et al. [11] suggested a design procedure of an activated sludge WWTP consist-
ing of an activated sludge reactor and settling tank that includes the growth kinetics of
microorganisms, causing the degradation of biodegradable pollutants, and assuming that
the settling characteristics are fully described by a power law. Moreover, Islam et al. [11]
developed a procedure to calculate the activated sludge concentration corresponding to an
optimal condition, for which the total required area of the plant is minimum, for a given
microbiological system and return ratio.

By applying Vitasovic’s solid flux model [12] to the sewage plant of Siegen (Germany),
Koehne et al. [13] investigated the complex dynamic process of clarification, settling, and
thickening in final clarifiers of wastewater treatment plants, which are very sensitive to
changes in hydraulic and organic loading, and compared the underflow and effluent
suspended solids concentrations with simulation results.

By using the method of radioisotope tracer, Kim et al. [14] made a detailed comparison
of the calculated residence time distribution curves, with measurements performed inside
the clarifier as well as the exhaust, and predicted the characteristics of clarifier flow, such as
the waterfall phenomenon at the front end of the clarifier, the bottom density current in the
settling zone, and the upward flow in the withdrawal zone.

Several variations of the basic activated sludge process, such as extended aeration and
oxidation ditches, are in common use, but the basic principles are almost similar. Most of
the commonly applied models are based on the sedimentation theory first suggested by
Kynch [15], according to the solids flux theory (SFT). A shortcoming of using SFT is that it
does not produce an explicit equation for the representation of limiting solids flux [16]. As
a result, many researchers suggested SFT graphical solutions [17–21].

Diehl [22] stated that the SFT can be described conveniently within a larger theory of
nonlinear partial differential equations (PDEs) [23] with discontinuous coefficients which has
evolved since the 1990s. Diehl [22] showed that concepts such as state point, limiting solid
flux, optimal operation, sludge blanket level, and thickening and clarification failure can be
identified naturally within a first-order PDE model of the clarification–thickening process.

Contrarily to PDE models, it should be noted that the usefulness of simplified ana-
lytical solutions [24], such as those found in many other contexts [25,26], helps the insight
into the problem prior to the application of time-consuming numerical methods. On the
latter is focused this paper, which recalls the common SFT in order to obtain further design
simplification. Thus, a reformulated SFT theory is developed in this work, allowing to
design activated sludge final clarifiers according to a general design procedure that can be
applied for any input dataset, which seems to be not available.

The objective of this paper is to revisit the theory of solid flux, consolidating the high
number of design variables in a much smaller number of dimensionless groups. To this
end, the Lambert W function was introduced, which suggested that the key parameter is
the normalized limiting suspended solids (SS) concentration, which is related to the other
design parameters, thus simplifying and generalizing a lot the design procedure of the
final clarifier. Moreover, for verification purposes, it is shown that the behavior of different
operating scenarios can be predicted easily, which could be useful for the management
stage. Using the detected dimensionless groups, different applications are performed and
discussed. Finally, some of the dimensionless relationships are compared with experimental
data from other researchers.
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The paper is organized as follows. Following this introduction, in Section 2, the
common SFT is briefly summarized with no novelty, but it helps in understanding the
new derivations. In Sections 2.1–2.5, the Lambert W function, a “virtual” solid flux corre-
sponding to the Vesilind parameters’ ratio, and the dimensionless groups are introduced;
the effect of the operating conditions on SS loading variability is focused on; and simple
relationships of the domains of the SS concentration and of the solid flux are derived. In
Section 3, a numerical application of the dimensionless relationships is performed, while in
Section 4, the derived relationships are validated by using experimental data, and a new
reduction hydrodynamic factor, ρR, is introduced. The paper is concluded in Section 5.

2. Theory

Under a steady state, the limiting solids flux, GL (kg m−2 h−1), is commonly evaluated
according to the well-known solids flux theory [15], as applied by many researchers [22,27–29].
The total solids flux to the final clarifier, G (kg m−2 h−1), is given by the following:

G = Gv + Gu = v x + u x (1)

where Gv (kg m−2 h−1) and Gu (kg m−2 h−1) are the solids flux contributions due to gravity
and the activated sludge extraction (underflow flux), respectively, which in turn depend
on the zone-settling velocity of the activated sludge v (m h−1) and on the recycle velocity,
u (m h−1), respectively, and on the suspended solids (SS) concentration, x (kg m−3), also
denoted as biomass concentration.

According to Vesilind [30], who first proposed the relationship among zone-settling ve-
locity, solids concentration, and sludge settleability, the settling velocity, v, can be expressed
by the exponential low well [30]:

v = v0 e−k x (2)

where v0 (m h−1) and k (m3 kg−1) are empirical coefficients expressing the settling velocity
under zero suspended solids concentration (scale factor) and the exponential decay constant
(shape factor), respectively.

It should be noted that other models were also applied in the literature [11,23,31–33].
However, the Vesilind model, which is considered in this work, is the most used since it
works well in most cases [34–36], thus making the following derivations widely applicable.

Substituting Equation (2) into Equation (1) yields the following:

G = x v0 e−k x + x u (3)

Determining the limiting solids flux, GL (kg m−2 h−1), requires putting the first
derivative of Equation (3) with respect to x equal to zero:

∂G
∂x

= u + v0 e−k x (1 − k x) = 0 (4)

which provides the u relationship:

u = v0 e−k xL (k xL − 1) (5)

Equation (5) can also be solved with respect to the SS concentration corresponding to
the limiting condition, xL (kg m−3):

xL =
1
k

(
1 +

u
v0e−k xL

)
(6)
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which is in an implicit form with respect to xL. Contrarily to what will be shown here,
xL has usually been obtained numerically [17], as observed in Section 1. The G value
corresponding to limiting solids flux, GL, is obtained by imposing x = xL into Equation (1):

GL = xL

(
v0 e−k xL + u

)
(7)

By using Equation (5), GL can also be expressed as follows:

GL = v0 k x2
Le−k xL (8)

Dividing GL by u (m h−1) provides the SS concentration of the recycle flow rate,
xr (kg m−3):

xr =
GL
u

(9)

For example, for Vesilind parameters v0 = 17.12 m h−1 and k = 0.452 m3 kg−1, and
by assuming u = 0.5 m h−1, Figure 1a shows the solids flux contributions due to gravity,
Gv, and due to the activated sludge extraction, Gu, and their sum G (Equation (1)), which
admits the minimum GL = 6.8 kg m−2 h−1 for x = xL = 10.82 kg m−3 (Equation (6)). The
corresponding SS concentration of the recycle flow rate xr, which lays on the straight-line
GL = u xr (Equation (9)), is also indicated. The equation of the dashed straight line is
as follows:

G = GL − u x = GL

(
1 − x

xr

)
(10)

Equation (10) is tangent to the Gv curve at the point x = xL, showing that at increasing
GL, the recycle flow rate must increase too, but the corresponding SS concentration will
reduce (the sludge will be more diluted).

Figure 1a also shows the maximum solid flux Gmax associated with the minimum
biomass concentration xmin, which, together with xL, delimits the biomass concentration
domain (xmin ≤ x ≤ xL), which can be analyzed by varying u, as will be shown in Section 2.5.

For the design purpose, by assuming the limiting solid flux GL, the clarifier surface
area, A (m2), is derived by the clarifier mass balance, yielding the following:

A =
Q(1 + R)x0

GL
(11)

where x0 (kg m−3) is the influent SS concentration to the final clarifier; Q (m3 h−1) and Qr
(m3 h−1) are the wastewater and the recycle flow discharges, respectively; and R = Qr/Q is
the return ratio.

Equation (11) also makes it possible to introduce the hydraulic loading rate, Cy, which
is useful for the design purpose, as it is known:

Cy =
Q
A

=
GL

(1 + R)x0
(12)

Once the well-known SFT has been briefly recalled, in the next section, the SFT is
revisited by introducing the Lambert W function and the involved variables consolidated
in dimensionless groups.

2.1. Introducing the Lambert W Function and Dimensionless Groups

The described well-known procedure is easy to apply for a fixed triplet of values (v0,
k, and u), although it does not allow a generalization to any input parameters (v0, k, and
u); moreover, Equation (6) is in an implicit form. To achieve the aim of generalizing the
SFT, dimensionless groups can be suitably introduced. In this section, it is shown that
introducing the Lambert W function helps address this issue and suggests consolidating
input and output parameters in a compacted design procedure. Indeed, dimensionless



Soil Syst. 2022, 6, 91 5 of 21

groups are useful for scaling arguments; for consolidating experimental, analytical, and
numerical results into a compact form; and to delimit the parameters domain of interest.
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Figure 1. Solids flux contributions due to gravity, Gv, and the activated sludge extraction, Gu, and
their sum G (Equation (1)) versus the biomass concentration, x, for (a) u = 0.5 m h−1, (b) u = 1 m h−1,
(c) u = 1.5 m h−1, and (d) u = uth = 2.32 m h−1. The limiting SS concentration, xL; the corresponding
solid flux, GL; and the SS concentration of the recycle flow rate, xr, are also indicated.

By using the branch W−1 of the Lambert W function, also denoted as the omega
function or product logarithm, Equation (6), which is usually solved numerically [17], can
also be expressed in the following form:

xL =
1
k
[ 1 − W−1(−e u∗)] (13)

where u* denotes the u value normalized with respect to v0:

u∗ =
u
v0

(14)

The Lambert W function is a multivalued function [37], namely with two branches
of the converse relation of the function f(y) = y ey, where y is any complex number and
ey is the exponential function, and it has been applied in different contexts [38,39]. When
dealing with real numbers, as in the considered case, only the two brunches W0 and W−1
can be considered, and the general equation y ey = x can be solved for y, if x ≥ −1/e. In
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particular, for x > 0, y = W0(x), and for −1/e ≤ x < 0, the two values W0 and W−1 occur. In
this case, imposing the condition x ≥ −1/e provides:

− e u∗ ≥ −1
e

(15)

meaning that the real solutions can be found under the following condition:

u∗ ≤
1
e2 = u∗th (16)

or in dimensional terms:
u ≤ v0

e2 = uth (17)

For different v0 values, including v0 = 7.4 m h−1 (i.e., uth = 1 m h−1) and 17.12 m h−1

(Figure 1a), Table 1 reports the corresponding uth = v0 e2 values.

Table 1. For different v0 values, threshold u values, uth, and the corresponding u*th, −e u*th, (k xL)th,
(G*L)th, (k xr)th, and for Rc = 1, (C*h)th, for which Equation (21) admits real xL solutions.

v0 (m h−1) uth (m h−1) u*th −e u*th (k xL)th (G*L)th (k xr)th (C*h)th

2.1 0.28

0.1353 −0.3679 2 0.5413 4
0.1353
(Rc = 1)

3 0.41
4 0.54
5 0.68
6 0.81
7 0.95

7.4 1.00
17.12 2.32

By considering the Lambert W function W(−e u*), a graphical illustration of the u*
domain for which Equation (13) provides real solutions can be performed. Figure 2 plots
the two branches of the Lambert W function, W0 and W−1, versus −e u*, together with
the threshold value −e u*th (Table 1) and the vertical dashed line that delimits the physical
circumstance that u* has to be positive (downward), depicting the xL real solutions domain.
Figure 2 also illustrates the W value corresponding to u* = 0.0292 (−e u* = −3.892) that
refers to the application of Figure 1 and to the applications that will be performed later,
which lay on the W−1 brunch.

The corresponding dots that lay on the W0 brunch allow for calculating the minimum
value of the biomass concentration xmin, associated with Gmax (Figure 1a), if replacing W−1
by W0 into Equation (13), as will be recalled in Section 2.5.

For the fixed Vesilind parameters (v0 = 17.12 m h−1 and k = 0.452 m3 kg−1); for u = 1,
1.5; and for the threshold uth = 2.32 m h−1 (Table 1), for which the minimum of Equation (3)
does not occur, the effect of the recycle velocity is shown in Figure 1b–d, where the solid
fluxes vs. the biomass concentration are plotted.

Figure 1a–d highlight what is already known, which is recalled here only because it
helps with deriving the following dimensionless derivations. In particular, at increasing
u, the slope of the straight line increases, whereas the limit biomass concentration x0 and
the SS concentration of the recycle flow rate xr decrease. For u = uth, the minimum does
not occur, but a horizontal point of inflection occurs where the curvature of the G function
changes sign, thus producing a flat tangent line as the double derivate will equal to zero at
its coordinates. This means that for u > uth, x0 itself determines the limiting concentration of
the incoming biomass to the final clarifier. For u = uth, the underflow flux achieves the solid
flux contribution due to gravity (Gu = Gv, Figure 1d). The occurrence u = uth is illustrated
by the red dot in the Lambert W function (Figure 2).
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of the real xL solutions − e u*th ≤ − e u* ≤ 0 and the dots corresponding to the applications are
also reported.

The occurrence of the minimum also requires the following condition:

∂2G
∂x2 = v0 k e−k xL(k xL − 2) > 0 (18)

Since the factors out of brackets are positive, Equation (18) requires the following:

xL >
2
k

(19)

Imposing Equation (19) into Equation (5) yields the following:

u < v0 e−2 (20)

which matches Equation (17).
Since in Equation (13) the Lambert W function is dimensionless, Equation (13) suggests

that k is the scale factor of the limiting SS concentration. By consolidating the parameters k
and xL in their dimensionless product, we can write:

k xL = 1 − W−1(−e u∗) (21)

By denoting G0 (kg m−2 h−1) a “virtual” solids flux corresponding to the settling
velocity under zero SS concentration [40,41], we can write the following:

G0 =
v0

k
(22)

Normalizing G and GL with respect to G0 provides the dimensionless G* and G*L
relationships, respectively:

G∗ =
G
G0

= k x
(

e−k x + u∗
)

(23)
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G∗L = ρ
GL
G0

= ρ (k xL)
2 e−k xL (24)

Into Equation (24), a reduction hydrodynamic factor ρ < 1 was introduced to account
for the fact that the maximum permissible solids loading of the settling tank was observed
to be less than the limiting solid flux, GL, derived by the simplified SFT [16]. This occurrence
was ascribed to the hydrodynamics of the final clarifier, which behaves differently to what
the simplified 1D SFT is able to describe [42].

The dimensionless G*L is plotted in Figure 3 (red lines) versus the normalized recycle
velocity, u*, in a log-log scale (Figure 3a) and in a linear scale (Figure 3b), together with
the k xL parameter (Equation (18)) versus u*. The key parameter k xL is useful to derive
since it allows for determining any k and u* values, the limiting SS concentration, xL, and
thus G*L. In dimensionless terms, besides u*, no parameters are required since they are
arranged in the dimensionless groups; thus, Figure 3 covers all the possible combinations
of the design parameters.
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Of course, the limiting u* condition, u*th, does come back to k xL as well as G*L, which
are denoted as (k xL)th and (G*L)th, respectively, as indicated in Figure 3, laying in the vertical
dashed line, u* = u*th (Table 1). In Figure 3, the pairs (u*, k xL) and (u*, G*L) corresponding
to the applications of Figure 1 are also indicated.

The dimensionless k xL (Equation (21)) also allows for inspection of the behavior of
the SS concentration of the recycle flow rate, Qr, corresponding to the limiting condition xr
(kg m−3), the return rate R, and the hydraulic loading rate Ch.

For xr, substituting Equations (5) and (8) into Equation (9) provides the following:

xr =
k x2

L
k xL − 1

(25)

which can also be written in dimensionless terms as a function of k xL as follows:

k xr =
(k xL)

2

k xL − 1
(26)

By using Equation (21), Figure 3a,b also plot Equation (26) versus u*, confirming the
dominant role of k xL in the final clarifier behavior.
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Commonly, the influent SS concentration to the final clarifier, denoted as x0, differs
from the limiting SS concentration, xL, and it can be shown that x0 is related to xL and to
the return ratio, R, even by a dimensionless relationship. To show this, the mass balance
needs to be invoked, as described in the next section, in dimensionless terms.

2.2. The Return Ratio by Dimensionless Groups

Under a steady state, the return ratio R can be derived by making the mass balance
around the final clarifier. By assuming that the sludge blanket level in the settling tank
remains constant and that the SS effluent from the final clarifier is negligible, we can write
the following:

Q x0 = R Q(xr − x0) (27)

where x0 (kg m−3) is the influent SS concentration to the final clarifier. Substituting Equation
(25) into Equation (27) yields the following:

R =
x0(k xL − 1)

k x2
L − x0(k xL − 1)

(28)

which can be written in dimensionless terms as a function of the dimensionless k x0 and k xL:

R =
k x0(k xL − 1)

( k xL)
2 − k x0(k xL − 1)

(29)

For k x0 ≤ 2 and k x0 ≥ 2, by varying k xL, Equation (29) is plotted in Figures 4a and
4b, respectively. The figures show that k xL decreases at increasing R, as could be expected.
For a fixed R, at increasing k x0, k xL increases for both k x0 ≤ 2 and k x0 ≥ 2, with a greater
influence on the latter that could require unsuitable high R > 1 values. Contrarily, it can
also be observed that for k x0 ≤ 2, R is less than one.
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In Figure 4a,b, the limiting condition is also indicated. As already discussed in Table 1,
for k x0 ≤ 2 and for any R ≤ 1, (k xL)th equals 2, whereas for k x0 ≥ 2 and for R ≥ 1, since
the xL minimum does not occur, x0 itself provides the limiting SS concentration. Therefore,
imposing xL = x0 into Equation (29) yields the following:

(k x0)th = Rc + 1 (30)
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where Rc denotes the corresponding limiting return ratio. Figure 4a also indicates the dot
corresponding to the application performed later.

Of course, for u* = u*th, it can also be verified that substituting (k xL)th = 2 into Equation
(30) provides Rc = 1, as indicated in Figure 4a,b. In conclusion, the following limiting
conditions occur:

(k xL)th = 2 f or R ≤ 1 and k x0 ≤ 2 (31)

(k x0)th = Rc + 1 f or any R and k x0 ≥ 2 (32)

Knowing k xL and Equation (29) makes it possible to determine, for any R and k x0,
the limiting solid flux, G*L, and the SS concentration of the recycle flow rate, k xr, by using
Equations (24) and (26), respectively.

The dimensionless groups detected in this section allow an SFT generalization, with
reference to the limiting solid flux and the related return ratio and SS concentration to the
final clarifier; however, they do not help in designing the final clarifier. To this end, in
agreement with the previously introduced dimensionless groups, the normalized hydraulic
loading rate needs to be defined.

2.3. Normalized Hydraulic Loading Rate

By dividing both sides of Equation (12) with respect to v0, the dimensionless hydraulic
loading rate C*h can be expressed as:

C∗y =
Q

A v0
=

GL

(1 + R)x0v0
(33)

Moreover, by dividing and multiplying the right side by k, and using Equation (24),
C*h can also be rewritten as follows:

C∗h =
Q

A v0
=

G∗L

(1 + R) k x0
=

ρ (k xL)
2 e−k xL

(1 + R) k x0
(34)

again showing the important role of k xL in C*h. Equation (34) shows the dependence of C*h
on ρ, R, k xL, and k x0. The normalized influent SS concentration k x0 can be also expressed
by Equation (29):

k x0 =
R (k xL)

2

(1 + R)(k xL − 1)
(35)

Substituting Equation (35) into Equation (34) provides a useful relationship of the
normalized hydraulic loading rate:

C∗h =
Q

A v0
=

ρ e−k xL(k xL − 1)
R

(36)

Equation (36) is of paramount importance for the design purpose since it describes the
possible combinations of the design parameters—i.e., for any SS Vesilind parameters and
influent discharge to the WWTP, Q.

By varying k xL, and thus R (Equation (29)), for k x0 ≤ 2 and k x0 ≥ 2, Equation (36) is
plotted in Figures 5a and 5b, respectively. The figures show that C*h increases at increasing
R, and that for a fixed R at increasing k x0, C*h increases for k x0 ≤ 2 whereas it decreases
for k x0 ≥ 2.

Moreover, to k x0 ≥ 2 correspond low C*h values that of course make this occurrence
not recommended. It can also be observed that for k x0 ≤ 2, R is less than the unity, whereas
for the not recommended condition k x0 ≥ 2, R can also be higher than the unity.
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Based on Figure 4a,b, in Figure 5a,b the limiting C*h condition was also plotted.
Similarly to k xL, two cases can be distinguished: (i) k x0 ≤ (k xL)th (Rc ≤ 1) and (ii) k x0 ≥ (k
xL)th (Rc ≥ 1).

For k x0 ≤ (k xL)th (Rc ≤ 1), by putting k xL = (k xL)th = 2 into Equation (29), the limiting
condition can be written as a function of k x0:

Rc =
k x0

4 − k x0
(37)

which matches with that suggested by d’Antonio and Carbone (1987; see Equation (21)). By
considering (k xL)th = 2 and substituting Equation (37) into Equation (36), the corresponding
limiting C*h, (C*h)th, can be derived (Figure 5a):

(C∗h)th =
Q

A v0
=

e−2

Rc
=

4 − k x0

k x0
e−2 (38)

For k x0 ≥ (k xL)th, since the xL minimum does not occur, x0 itself provides the lim-
iting SS concentration, as previously observed. Putting xL = x0 into Equation (35), and
considering that Rc can be expressed by Equation (30), the limiting C*h condition equals the
following (Figure 5b):

(C∗h)th = e−k x0 = e−(Rc +1) (39)

For Rc = 1, both Equations (38) and (39) yield (C*h)th = e−2 (0.1353), matching u*th, as
reported in Table 1.

For R > Rc (x0 = xL), C*h does not depend on R (Figure 5a,b). The latter can be derived
by substituting Equation (32) into Equation (36), showing that C*h matches the normalized
settling velocity corresponding to x0 (ρ e−k x

0, Equation (2) with ρ = 1).
By monitoring and controlling the final clarifier point of view, it could be interesting

to analyze the final clarifier behavior by varying the influent SS concentration. Indeed, final
clarifiers are usually designed for a fixed x0, but during the operating conditions, e.g., after
heavy rainfalls (storm water influent flow), loading variability can be expected. This issue
is addressed in the next section.

2.4. Varying the Influent SS Concentration

The normalized influent SS concentration, k x0, does not figure into Equation (36)
but of course affects C*h, since xL depends on u (Equation (13)), which in turn depends
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on R (u = RQ/A) and thus x0 (Equation (29)). To express C*h as a function of k x0, which
could be useful in practice, a dimensionless relationship between k xL and k x0 needs to be
determined. From Equation (29), we can write the following:

R (k xL)
2 − k x0(1 + R )k xL + k x0(1 + R) = 0 (40)

where k x0 (1 + R) equals the rate of the amount of volumetric solids to the final clarifier, Qs
(m3 h−1), normalized with respect to the influent discharge to WWTP, Q (m3 h−1).

Equation (40) is a quadratic equation in the unknown k xL. The corresponding discrim-
inant, ∆, is as follows:

∆ = [k x0(1 + R )]2 − 4 k x0R(1 + R) (41)

For the discriminant to be positive, so that two distinct real roots exist, it needs the
following:

k x0 >
4R

1 + R
(42)

According to the quadratic formula, the two roots of Equation (40) can be derived:

k xL =
k x0 (1 + R)±

√
k x0 (1 + R)(k x0 (1 + R)− 4R)

2 R
(43)

In Equation (43), because of the condition k xL > 2 (Equation (19)), only the solution
corresponding to the plus sign needs to be taken into account:

k xL =
k x0 (1 + R) +

√
k x0 (1 + R)(k x0 (1 + R)− 4R)

2R
(44)

For any v0, k, and R, Equations (36) and (44) make it possible to determine the normal-
ized hydraulic loading rate, C*h, as a function of k x0, and thus, for any Q, the surface area
clarifier area, A, which would be necessary to cope with the inflow SS loadings’ variability
(k x0).

For different R values, Figure 6 plots k xL (Equation (44)) and C*h (Equation (36)) as a
function of k x0. The limiting conditions (k xL)th = 2 and Equation (38) are also illustrated. As
expected, for any selected SS sample (v0 and k), an increase in the influent SS concentration
(k x0) determines a k xL increase but also requires decreasing C*h—i.e., decreasing Q—or
increasing the clarifier surface area (for the design purpose) or the return ratio. Figures 3,
4 and 6 strongly evidence its general validity for all the design/verification parameters’
combinations.
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2.5. The Domains of the SS Concentration and of the Solid Flux

As observed in Section 2, xmin delimits the biomass concentration domain (xmin ≤ x
≤ xL), which can even be analyzed in dimensionless terms by varying u*. The possible
domain of the biomass concentration, ∆x*, and the corresponding solid flux domain, ∆G*,
are expressed by the following:

∆x∗ = k xL − k xmin (45)

∆G∗ = G∗max − G∗L (46)

After simple algebra, calculating k xmin by replacing W−1 with W0 in Equation (21),
using Equation (24) to calculate G*max and G*L, and substituting into Equation (45) and
Equation (46) provides ∆x* and ∆G* relationships that only depend on W−1 and W0:

∆x∗ = W0(−e u∗)− W−1(−e u∗) (47)

∆G∗ = u∗
[
W−1

−1 (−e u∗)− W−1
0 (−e u∗)− ∆x∗

]
(48)

Figure 7a plots Equations (47) and (48) (secondary axis) versus u*. As expected, both
∆x* and ∆G*, in between which the pairs (k x0, G*) could lay, decrease at increasing u*,
meaning that for high u*, WWTP misoperation could be expected, depending on the
occurring variable influent SS concentration. Of course, for u* = u*th = 0.1353 (Table 1), ∆x*
and ∆G* are equal to zero. In Figure 7a, the black dots correspond to the parameters ∆x*
and ∆G* of the application performed in the next section (Figure 7b).

Table 2. Dimensional parameters and their symbols and values, corresponding to the application of
Figure 7b.

Dimensional Parameters Symbol Value

Settling velocity under zero SS
concentration (x = 0) v0 (m h−1) 8.0

Exponential decay constant k (m3 kg−1) 0.375
Virtual solids flux under zero
SS concentration (x = 0, v = v0) G0 (kg m−2 h−1) 21.35

Influent SS concentration to
the final clarifier x0 (kg m−3) 4.27

Settling velocity for settling
velocity for x = x0

v (x0) (kg m−3) 1.62

Total solid flux for x = x0 G (x0) (kg m−2 h−1) 8.43
Influent discharge to the

treatment plant Q (m3 h−1) 54.0

Return sludge discharge Qr (m3 h−1) 21.6
SS concentration of the recycle

flowrate xr (kg m−3) 14.94

Recycle velocity u (m h−1) 0.359
Limiting SS concentration xL (kg m−3) 11.47

Limiting solids flux GL (kg m−2 h−1) 5.37
Total solid flow to the final

clarifier (Q + Qr) x0 (kg h−1) 322.8

Clarifier surface area A (m2) 60.16
Hydraulic loading rate Ch (m h−1) 0.90
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Table 3. Dimensionless groups and their symbols and values, corresponding to the application of
Figure 7b.

Dimensionless Parameters Symbol Value

Return ratio R 0.40
Recycle velocity, u,

normalized with respect to v0
u* 0.045

Dimensionless influent SS
concentration k x0 1.600

Dimensionless limiting SS
concentration k xL 4.297

Limiting solids flux
normalized with respect to G0

G*L 0.251

Dimensionless SS
concentration of the recycle

flowrate
k xr 5.600

Hydraulic loading rate
normalized with respect to v0

C*h 0.112
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3. Example of Application

In this section, a numerical application of the described procedure is described. The
involved parameters are summarized in Table 2 in dimensional terms and in Table 3 in a
far smaller number of dimensionless terms.

For verification purposes, let us assume that a WWTP is fed by an influent discharge
Q equal to 54 m3 h−1 and operates with a return ratio R = 40%, so that the return sludge
discharge Qr equals 21.6 m3 h−1. The parameters k and v0 of the Vesilind model are equal
to 8 m h−1 and 0.375 m3 kg−1, respectively, and the clarifier surface area A is 60.16 m2. By
assuming ρ = 1 for an influent SS concentration to the final clarifier of x0 = 4.27 kg m−3

(k x0 = 1.6), we want to establish whether the WWTP operates properly—i.e., the solids do
not escape in the supernatant—and how the WWTP operates under R or x0 variability.

Equation (14), u* = R Q/(v0 A), equals 0.045, which for e u* = 0.122 (W−1 = −3.3,
Figure 2) allows calculating k xL by Equation (21) (Figure 3), resulting to 4.297. Thus, k xL is
properly higher than (k xL)th = 2. Knowing u* makes it possible to calculate G*L = 0.251 and
k xr = 5.6, which are also indicated in Figure 3. The goodness of the WWTP design can also
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be observed in Figure 4a, where for k x0 = 1.6, the pair (R = 0.4, k xL = 4.297) is illustrated,
together with the limiting condition.

The effect of k x0 and R variation can be observed in Figures 4a and 5a, and in Figure 6,
where the considered parameters, k x0 = 1.6 and R = 0.4, match those of this application,
and the corresponding dots are indicated. In Figure 5a, it can be observed that at increasing
R, C*h, which for x = x0 equals 0.112, increases too, meaning that for the fixed clarifier
surface area, A = 60.16 m2, a higher influent discharge, Q, to the WWTP should be required.
Meanwhile, for a fixed R = 0.4 at increasing k x0, Figure 5a shows that C*h decreases, and so
should Q.

Finally, for an influent SS concentration to the final clarifier corresponding to the
limiting condition (k x0 = k xL), the normalized settling velocity, v/v0, highly decreases (from
0.202 to 0.014), and for the imposed Q, the clarifier surface area should be 161.55 m2—thus
2.68 times greater than for x = x0 (Table 2).

The dimensionless parameters of this example application (Table 3) make it possible
to illustrate the normalized solids fluxes G*v and G*u and their sum G* (Equation (1)) versus
the normalized biomass concentration, k x, as graphed in Figure 7b. Figure 7b also shows
the normalized solid fluxes corresponding to both k x0 = 1.6 and k xL = 4.3, in green and red
dots, respectively. The minimum value of the biomass concentration xmin, associated with
Gmax, and the domains ∆x* and ∆G* are also displayed in Figure 7b.

Once the verification problem, or the design problem, is solved in dimensionless terms,
for the considered case, the dimensional variables can be easily derived by calculating G0
= v0/k (Equation (22)), which is equal to 21.35 kg m−2 h−1. In dimensional terms, for the
imposed influent discharge Q = 54 m3 h−1, Figure 8 shows the expected decreasing trends
versus u* of xL, xr, and Gu/Gv in the secondary axis for x = xL and x = x0, A(xL) and A(x0),
respectively, and the increasing trend of GL.
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Figure 7b. The dashed line delimits the real xL solutions domain (u*th = 0.1353).
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By assuming a hydraulic detention time of th = 3 h (i.e., clarifier volume V = Q th = 162 m3),
the height of the final clarifier, H, versus u* is also graphed. For any u* value, the clarifier
surface area corresponding to x0 = 4.27 kg m−3, A(x0), provides lower values than A(xL). The
parameters corresponding to the application of Figure 7b are indicated by black dots.

Figure 8 makes it possible to elucidate the influence of the recycling flow rate on the
design parameters. The ratio Gu/Gv ≥ 1 which matches the ratio u/vL is interesting to
consider since it represents how much higher the involved recycling flow rate, related to
the energy required for recycling, is than the gravitational settling velocity. Of course, for u
= uth, the ratio Gu/Gv ≡ u/vv is equal to the unity. This occurrence is seldom achieved in
practice since it is associated with low xL values and high values of the settling velocity.
Moreover, for u > uth, the energy required for the sludge extraction would be less than
that corresponding to the gravitational hindered settling, but high u values make the
wastewater treatment not efficient from an energetic point of view. In practice, high u
values also need to be checked according to the required cellular residence time, depending
on the wastewater characteristics.

From an economic point of view, the most convenient design choice should be per-
formed by also considering the energy and the investment costs. Since at increasing u the
former increases and the latter decreases, the design choice corresponding to the maxi-
mum economic benefit could be detected. However, the latter issue is beyond the scope
of this work.

4. Comparison with Experimental Data and the New Hydrodynamic Factor

Experimental data retrieved from the literature [34] were used to verify the suitability
of the detected dimensionless groups, as well as for the evaluation of the reduction hydrody-
namic factor. D’Antonio and Carbone [34] verified the SFT by experimental measurements
carried out in a treatment pilot plant (0.4 m in diameter and 1.5 m high) in Bagnoli (IT) for
influent SS concentrations to the final clarifier equal to x0 = 1.8, 2.3, 3.0, and 3.8 kg m−3,
which correspond to k x0 = 0.864, 1.104, 1.440, and 1.840, respectively, for the k = 0.48 m3

kg−1 Vesilind parameter that we considered.
By using power and exponential laws to describe the sedimentation model, d’Antonio

and Carbone [34] identified in the exponential law the best function that interprets the
behavior of the sedimentation tank and concluded that the use of theoretical equations
derived by SFT produced an undersized value of 30% of the surface area on average and of
15% according to the values of the underflow withdrawal velocity.

The experimental limiting solid fluxes and the hydraulic loading rates provided by
d’Antonio and Carbone [34] were considered in this work. First, by varying the reduction
hydrodynamic factor ρ, the standard error on the estimate, SEE, between the experimen-
tal limiting normalized solid fluxes, G*L,m,i, and those calculated by Equation (24) was
determined:

SEE =

√√√√
∑N

i=1

(
G∗L,m,i − ρ (k xL,i)

2 e−k xL,i
)2

N − 1
(49)

where N is the sample size, which is equal to 36 and refers to the runs carried out for u* <
u*th. The SEE values are plotted in Figure 9a, showing that for ρ = 0.836, the minimum SSE,
SSEmin = 0.0856, was obtained (Table 4).
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Figure 9. (a) Standard error on the estimate, SEE, between the experimental limiting normalized
solid flux, G*, obtained by data of d’Antonio and Carbone [34], and the corresponding theoretical
values (Equation (24)) versus the limiting solid flux reduction factor ρ. (b) Comparison between
measured and calculated G*L for the minimum SEE value, SEEmin, obtained for ρ = 0.836, for different
k x0 values.

Table 4. Sum square error, SSE; sample size, N; and standard error of the estimate, SEE, for different
values of the reduction hydrodynamic factor.

Correction
Factor

ρ Estimation
Method SSE N SEE

ρ = 1
no correction in

the SFT,
Figure 10a

0.2492 35 0.0856

ρ = 0.836
by minimizing

SSE (GL),
Figure 10b

0.0862 35 0.0448

ρ = 0.809
by minimizing

SSE (C*h),
Figure 11a

0.0640 35 0.0434

ρR = 0.796
by minimizing

SSE (C*h),
Figure 11b

0.0688 49 0.0378

For ρ = 0.836, the comparison between the observed and calculated G*L values is
plotted in Figure 9b, with k x0 as a parameter. The obtained ρ values almost agree with
the results found by other researchers such as Ekama and Marais [42] and Gohle et al. [43],
who suggested ρ = 0.8. Watts et al. [32] also found ρ values in the range of 0.55–0.94, with
an average of ρ = 0.73.

The consistency of the detected ρ values can also be observed by comparing Fig-
ure 10a,b, where the normalized hydraulic rate C*h versus R is graphed (Equation (36))
together with the corresponding experimental values derived by d’Antonio and Carbone
(1987) for ρ = 1 (Figure 10a, no correction) and for ρ = 0.836 (Figure 10b), with k x0 as
a parameter.
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Figure 10. Relationship between the normalized hydraulic loading rate, C*h (Equation (36)), versus
R (a) for ρ = 1 and (b) for ρ = 0.836 for the k x0 values (k x0 ≤ 2), corresponding to the experimental
measurements carried out by d’Antonio and Carbone [34]. The corresponding values derived by
d’Antonio and Carbone [34] are also plotted.
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Figure 11. Relationship between the normalized hydraulic loading rate, C*h (Equation (36)), versus R
(a) for ρ = 0.809 and (b) for ρ = 1 and ρR = 0.796 for the k x0 values (k x0 ≤ 2), corresponding to the
experimental measurements carried out by d’Antonio and Carbone [34]. The corresponding values
derived by d’Antonio and Carbone [34] are also plotted.

A slight improvement in the results displayed in Figure 10b was obtained by minimiz-
ing the SSE for the whole dataset provided by d’Antonio and Carbone (1987), including
the 36 Ch measurements carried out for u* < u*tk and the 18 measurements carried out for
u* > u*th (Figure 11a), yielding ρ = 0.809.

Based on the rationale that the hydrodynamic factor applied to G*L only partially
corrects the simplified SFT, another attempt was made to improve the accuracy of the
predictions derived by the SFT because according to Equation (24), k xL, which affects the
other design variables, certainly also requires correction.

Differently from the above-mentioned researchers [32,42,43], who applied the correc-
tion factor ρ to the limiting solid flux, it is opinion of these authors that the correction could
be applied to the return ratio R. This is because the dependence of G*L on k xL is not linear;
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applying a correction to R by introducing a new reduction hydrodynamic factor, ρR, into
Equation (29) would overcome this issue:

R = ρR
k x0(k xL − 1)

( k xL)
2 − k x0(k xL − 1)

(50)

The results obtained by applying Equation (50) with ρR = 0.796 and Equation (36)
with ρ = 1 strongly improved the fitting of the experimental measurements to the new
dimensionless SFT (especially for k x0 = 0.864), as can be observed in Figure 11b. The
corresponding SEE values seem to validate the new ρR hydrodynamic factor to be applied
to Equation (50) since for this scenario, the lowest SEE = 0.0378 was obtained (Table 4).

5. Conclusions

Activated sludge processes are the most widely used biological processes in wastewa-
ter treatment plants (WWTPs) and are based on the well-known solid flux theory. In this
paper, by adopting the widespread Vesilind sedimentation model, the solid flux theory has
been reformulated according to a “virtual” solid flux corresponding to the Vesilind parame-
ters’ ratio and dimensionless groups that consolidate the parameters that are involved in a
far smaller number of parameters.

The Lambert W function, which helps detect the limiting solid flux and the domains
of the normalized biomass concentration and the solid flux, was applied and suggested
that the key parameter is the limiting dimensionless SS concentration, which was found to
be related to the other design parameters, thus greatly simplifying the design procedure of
the final clarifier.

It was shown that the plots obtained by the derived dimensionless relationships have
general validity and describe all the possible design parameter combinations. Numerical
applications and validations of the dimensionless relationships using data retrieved from
the literature were performed.

Finally, it is suggested that by introducing in the solid flux theory a reduction hydro-
dynamic factor to be applied to a new return flow formula rather than to the limiting solid
flux as in the past, a significant improvement in the comparison between results by theory
and those by experiments can be obtained, since the standard error on the normalized
hydraulic loading rate estimate moved from 0.0856 to 0.0378.
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