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RT retention time
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1. Materials and Methods 
Study site and sample description. Soil cores (n = 4, organic horizon only, 10 cm 

diameter, ~15 cm depth) were obtained using a push-corer and a long knife from the Bar-
row Environmental Observatory, a continuous-permafrost, polygonal tundra landscape 
on the northern coastal plain of Alaska (71° 16’N, 156° 36’W). Mineral soil was visually 
identified and removed by hand in the field along with any loose vegetative material. To 
examine the relationship between polygon, vegetation, and LWM DOM availability, two 
cores were collected from the center of a low-centered polygon (LCP) and two from the 
center of a high-centered polygon (HCP), where the aboveground vegetation was primar-
ily either Carex aquatilis or Eriophorum angustifolium, two dominant plant species in these 
systems. Triplicate samples from each core were analyzed as biological replicates to en-
sure statistical power and enable comparative analyses. The cores were collected in late-
August when the active layer had reached its maximal depth (~ 34 cm) [1]. There were no 
visible signs of cryoturbation in each of the cores. The mean air temperature for this region 
during August is 4 °C and the mean annual precipitation is 10.74 cm [2]. Additional infor-
mation about the study site and soil types has been described in detail previously [3]. 
Cores were immediately sealed in gallon freezer-bags (Ziplock), stored on blue ice for 
transport to a -20 °C freezer to slow microbial metabolic activity until field work was com-
pleted. Cores were then transported frozen from Alaska to Oak Ridge National Labora-
tory (ORNL) in Oak Ridge, Tennessee using blue ice and a sealed cooler and stored at -80 
°C until processing. 

Soil water content (Equation 1) measurements were made using a gravimetric soil 
moisture technique. Gravimetric analyses were completed by drying a subsample of soil 
(4 g) to constant weight in an oven at 105 °C for 48 hours.  % 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 = 𝐹𝑟𝑒𝑠ℎ 𝑤𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 − 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 100 (1)

To obtain gross estimates of live root biomass (root weight, g), live roots (determined 
visually by color and roundness/diameter) were removed and set aside during homoge-
nization. Homogenization was limited to 20 min to reduce human-derived variation in 
the number of roots removed from each soil. Roots were dried to constant weight at 60 °C 
for 24 hours. Total organic carbon (TOC) and total nitrogen (TN) data were collected in 
triplicate on a Shimadzu TOC-L CSH/CSN analyzer (Columbia, MD). Briefly, a subsample 
of soil (2 g) or soil pore water (24 mL), is introduced to the instrument where it then trans-
ferred to a combustion tube. For TOC analyses, both pure and an acidified sample are 
analyzed to obtain a total carbon (TC) and an inorganic carbon (IC) measurement, respec-
tively, which can then be used to calculate TOC (TOC = TC – IC). A carrier gas (zero-
carbon air) flows at 150 mL/min to the combustion tube, which has been filled with an 
oxidation catalyst (platinum) and is heated to 680 °C. The TC or IC of a sample is com-
busted into CO2 which is then carried to a dehumidifier, where it is cooled, dehydrated, 
and detected using nondispersive infrared gas analysis (NDIR). The analog detection sig-
nal of the NDIR forms a peak which is proportional to the TC concentration of the sample. 
Using a standard TC solution, a calibration curve is generated, and unknown TC concen-
trations may be calculated. For TN analysis, samples are introduced into the combustion 
tube packed with a catalyst (platinum) and the furnace temperature is set to 720 °C, creat-
ing nitrogen monoxide (NO) gas. Zero-carbon air is used to carry NO to the chemilumi-
nescence analyzer where the NO reacts with ozone (O3) creating products that are then 
measured photo-electrically generating a peak proportional to the total nitrogen concen-
tration in the sample. Unknown concentrations are determined using a calibration curve 
as well. 

Chemicals. Mobile phase solvents included degassed LC/MS-grade water (H2O), ac-
etonitrile (ACN), methanol (MeOH), and isopropyl alcohol (IPA) which were obtained 
from EMD Millipore (Billerica, MA, USA). Mobile phase additives included ammonium 
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acetate (NH4Ac), ammonium hydroxide (NH4OH), and formic acid (FA) which were ob-
tained from Sigma-Aldrich (St. Louis, MO, USA).  

Instrumentation and LC/MS data collection. Samples and controls were thawed and 
prepared immediately prior to injection by adding either FA or NH4OH (0.1 %) to help 
with ionization in positive- or negative-ion mode, respectively. Each sample was manu-
ally injected directly onto the columns using a 300 nL fused-silica loop, and nano-flow 
rates were achieved using a split-flow setup prior to the injection loop. To control for in-
strument drift, the mass spectrometer was externally calibrated every two days or before 
switching columns or polarities using a mixture of the peptide MRFA, caffeine, and Ul-
tramark 1621 in MeOH, ACN, and acetic acid for positive-ion mode or a mixture of so-
dium taurocholate, Ultramark 1621, and sodium dodecyl sulfate in the same solvents for 
negative-ion mode (Pierce, ThermoFisher Scientific). The ESI source voltage and temper-
ature were optimized to 2.2 kV or 2.8 kV and 225 °C or 275 °C for positive- or negative-
ion mode, respectively. Fragmentation spectra were acquired in a “top ten” data-depend-
ent mode where the ten most abundant precursor ions in each full scan were isolated (2 
m/z isolation width, 15,000 resolving power) for fragmentation by collision-induced dis-
sociation (CID) with He(g) at a normalized CID energy of 30 (unitless). Dynamic exclusion 
of MS1 ions selected for fragmentation was applied for 60 seconds to improve detection of 
low abundant or coeluting features. A charge stage rejection for multiply charged precur-
sors was employed and two microscans were averaged for every full MS1 and MS2 spec-
trum to reduce spectral complexity and improve reproducibility of acquired spectra. 

Untargeted LC/MS data processing. Raw LC/MS data were subjected to peak pick-
ing, alignment, and normalization using MZmine2 (v2.30) [4,5]. This software is open-
source and has a user-friendly graphical user interface (GUI) with separate modules for 
each data processing step, but also includes a batch-processing mode, maximizing the ac-
cessibility of the software’s capabilities to new users or experienced analysts alike. Prior 
to statistical analyses, it is important in untargeted analyses to be able to detect as many 
small, but real analyte signals as possible. Here, differentiating between true and false 
signals was accomplished by first optimizing three parameters in the MZmine peak ex-
traction algorithm—minimum peak height, MS1 tolerance, and RT window. These param-
eters are optimized by manually inspecting the accuracy of the peak assignment for a sub-
set of the data. 

Precursor ions (MS1) that were selected for fragmentation (MS2) and had an intensity 
above a specified noise level (S/N > 3) were identified with the MS/MS peak list builder 
and user-defined parameters (e.g. +/- 0.005 m/z or 10 ppm MS1 window). Next, chromato-
grams were built using the peak extender module which searches for the same peak (MS1 
and MS2) in both directions of the retention time (RT) apex within a given m/z and RT 
tolerance (e.g. +/- 10 ppm, +/- 2 min), resulting in an assigned peak area. Isotopic peaks 
(i.e. 13C natural abundance ion, mass difference of a neutron = 1.0033 Da) were then re-
moved with the isotopic peaks grouper module using a m/z and RT tolerance in order to 
avoid errors with relative quantitation and annotation. A slightly wider than normal iso-
tope RT tolerance was used here in order to adequately account for potential peak width 
widening specifically within HILIC runs. During the ESI process, while less likely than 
with other ionization techniques, in-source fragmentation can occur, along with the for-
mation of non-proton adducts with Na+, K+, or NH4+ for example, or complexes that coe-
lute with analytes of interest. Here, fragments were identified in MZmine by comparing 
peak lists with MS2 scan data (e.g. same m/z within +/- 5 ppm and same RT +/- 0.1 min), 
while adducts were identified in MZmine by the mass difference between the original ion 
and the adduct being equal to the mass selected by the user (+/- 5 ppm from 22.9892 m/z 
for a Na+ adduct) and having a matching RT (+/- 0.1 min). Finally, complexes were identi-
fied in MZmine by searching for peaks with the same RT time (+/- 0.1 min) that add to-
gether to make the ion complex m/z (+/- 5 ppm). To help reduce any chromatogram shifts 
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that would impact annotation, but include features whose RTs had shifted slightly be-
tween extraction replicates, peaks from the same chromatographic phase and ionization 
mode were aligned (+/- 5 ppm, +/- 2 min RT) based on 10 iterations and at least a 25 % 
match score using the nonlinear, random sample consensus (RANSAC) algorithm.[5,6] 
Aligned peak lists were exported to .csv files for data filtering procedures. It’s important 
to note that the adducts, complex, and fragments identified in the identification module 
of MZmine can be removed from the dataset at any point in data filtering process. For the 
sake of evaluating the technique, here, they were not removed in order to evaluate the 
proportion of which may be annotated as LMW DOM metabolites by database searching 
as well.  

Data filtering, normalization, and statistical analyses. Multiple conservative 
LC/MS-based metabolomic data processing techniques were applied here. Integrated LC 
peak areas were obtained from the aligned extracted ion chromatograms (XICs), normal-
ized to per gram dry soil to account for moisture variations between samples, and then 
log2-transformed for ease of data interpretation. To control for systematic variation be-
tween samples and remove intragroup batch effects, the log2-transformed peak areas were 
also normalized to pooled-sample QCs using a common approach—QC-RLSC (robust 
LOESS signal correction) [7] with two scaling factor techniques, LOESS (locally estimated 
scatterplot smoothing) and median-centering, all completed in the freely-available Infer-
noRDN and R environments [8]. By including controls and daily technical blanks, artifact 
signals that originated from sample collection, preparation, or analysis that were above a 
specified noise level could then be readily identified and manually removed, decreasing 
the false discovery rate (FDR) of the technique [9,10].  

While there are many different methods for normalizing metabolomics data, each 
comes with various drawbacks and tradeoffs (i.e. bias-variance trade-off) and no single 
approach perfectly describes all the unwanted variation associated with an experiment, 
which is why it is important to consider the experimental design and aims of the study 
when optimizing a normalization approach [11]. For example, while normalizing to an 
internal standard that is specific to each compound-of-interest (targeted analyses) or to a 
mixed internal standard with compounds from multiple classes for untargeted analyses 
are alternative normalization approaches commonly used in metabolomics analyses, these 
require the introduction of several external compounds to the sample, which not only fur-
ther complicate the chromatogram and mass spectrum, but could also alter the composi-
tion of the sample via chemical reactions. Thus, here we chose to use a pooled quality 
control consisting of equal volumes of all 36 samples and a single internal standard, 4-
amino-6-methyl-8-(2’-deoxy-β-D-ribofuranosyl)-7(8H)-pteridone (6-MAP), that ionized 
well in both positive and negative ion mode.  

After filtering the data set to obtain only the high-quality features (HQFs) and their 
corresponding peak area data, missing values were imputed for statistical analyses by 
randomly selecting numbers from a normal distribution near the limit of detection (width 
= 0.3, downshift = 1.8-2.3) using the freely-available Perseus software [12]. Variation be-
tween replicate extracts to assess reproducibility were analyzed using Pearson’s correla-
tions performed with JMP Pro (v13.1 SAS Institute). To analyze the variation due to poly-
gon type or vegetation, principal component analyses (PCA) were first used to visualize 
the overall variation across the untargeted datasets [13]. PCA is an unsupervised, data 
dimension-reduction technique that plots the weighted-sum of the contribution of a set of 
LMW DOM features within a sample to a principal component and compares that to all 
the other samples. While PCA can be used as a multivariate statistical analysis, it suffers 
from the multi-collinearity problem that is common with metabolomics datasets, in that 
they generally have more dependent variables (i.e. metabolites, in the hundreds or thou-
sands) than independent variables (i.e. biological conditions, in the tens). An alternative 
statistical approach that is frequently applied in metabolomic datasets is that of partial 
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least squares discriminant analysis (PLS-DA) which alleviates the independent-to-de-
pendent ratio issue [14]. However, PLS-DA is a supervised technique, in that it plots the 
variation in the dataset after first considering the correlation between the dependent and 
independent variables. Thus, PCA was used here to first visualize the overall variation 
across the untargeted datasets.  

Then, to determine differentially-abundant LMW DOM features, Student’s t-test was 
used to compare profiles between cores of the same polygon type or vegetation and anal-
ysis of variance (ANOVA) was performed using the Python SciPy library [15]. Tukey’s 
range test was used as a post-hoc analysis to compare all possible pairs and identify abun-
dance differences greater than the expected standard error between the HCP and LCP 
cores or the Carex and Eriophorum cores. Any feature with a log2 fold change > 2 and a p-
value < 0.05 was considered significant, but we also explored tighter parameters (log2 fold 
change > 4, p-value < 0.001) to highlight LMW DOM features that were highly significant. 
Because pairwise comparisons by t-test can lead to a multiple-testing error with metabo-
lomic datasets, volcano plots—which consider the fold change (FC) between two condi-
tions—were used to identify significant features that passed both a p-value threshold and 
a FC threshold. Finally, two-way hierarchically-clustered heat maps using the Ward ag-
glomerative technique were used to visualize these variations and select clusters of fea-
tures that varied similarly across the dataset for annotation. Volcano plots and heatmaps 
were generated in Perseus, and PCAs were produced in the InfernoRDN environment.  

Feature annotation. Annotation of features that were consistently observed and sig-
nificantly differentially-abundant due to polygon type or vegetation was carried out in a 
three-step procedure. First, features  ([M+H]+ or [M-H]- ions) were searched against mul-
tiple freely-available online databases using high mass accuracy measurements (precursor 
mass tolerance of 5 ppm) within MZmine and using the MetaboSearch tool [16]. Databases 
included KEGG [17], METLIN [18], MMCD [19], PubChem [20], HMDB [21], LipidMaps 
[22], or Plant Cyc [23]. While it depends on the database size, this first filter is the most 
powerful and generally can remove up to 99.9 % of false candidates [24]. Second, putative 
chemical formulas were assigned using the MZmine elemental formula assignment mod-
ule and the following criteria established using Kind and Fiehn’s “Seven Golden Rules” 
and parameters modified from Kujawinski and Behn’s compound identification algo-
rithm (CIA) for small molecules [25-27]: mass measurement error of < 5 ppm, taking into 
account the presence of C1-100, H3-100, N0-30, O1-50, P0-3, S0-3, double bond-equivalents (Equa-
tion 2), aromaticity index (AI, Equation 3), and elemental ratio heuristics including 0.1 <= 
H/C <= 6, N/C <= 4, O/C <= 3, P/C <= 2, and S/C <= 3.  𝐷𝐵𝐸 = 1 + 𝐶 − 0.5𝐻 + 0.5𝑁 + 0.5𝑃 (2)𝐴𝐼 = 1 + 𝐶 − 0.5𝑂 − 𝑆 − 0.5𝐻𝐶 − 0.5𝑂 − 𝑆 − 𝑁 − 𝑃  (3)

Van Krevelen plots were used to visualize the formula assignments. Boxes overlaid 
on the plots indicate assigned biochemical classes [28,29]: lipids (O/C < 0.3, H/C > 1.7), 
peptides, amino acids, and amino sugars (0.3 < O/C < 0.7, H/C > 1.5), carbohydrates (O/C 
> 0.7, H/C > 1.5), unsaturated hydrocarbons (O/C < 0.1, 0.7 < H/C < 1.7), lignins (0.1 < O/C 
< 0.7, 0.7 < H/C < 1.7), tannins (O/C > 0.7, H/C < 1.5), and phenolics/condensed aromatics 
(O/C < 0.7, H/C < 0.7). 

When multiple candidate formulas were returned, to ensure that an objective choice 
was made, we consistently chose the formula with the lowest error, lowest number of 
heteroatoms, and if there was a phosphorus present, at least three oxygen atoms must 
have also been present in the formula [30]. Third, compounds that matched to multiple 
hits in a database were manually scrutinized in an iterative approach by assessing high-
resolution mass spectral data for consistent fragmentation profiles, or by using the simi-
larity matching tool in MZmine, to filter out false candidates and annotate unknown (un-
matched) features. 
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It is important to note here that while we included an annotation step, it was outside 
the scope of this study to identify the LMW DOM features by matching to authentic stand-
ards as that would limit our analytical window to only metabolites that have been synthe-
sized. Due to the complexity of this analyte pool, most of the features detected are likely 
“unknowns”, and authentic standards are frequently unavailable. For the aim of distin-
guishing a profile of features (known or unknown) that were differentially-abundant 
across space, with the ultimate goal of linking that chemical profile to biological processes 
(i.e. methanogenesis) or having it act as an indicator of C vulnerability, high-mass accu-
racy MS1 and MS2 annotations and putative identifications by database matching or ele-
mental formula assignment are sufficient.  
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Table S1. Polygon soil core sample summary and corresponding TOC, TN, TC, C:N, and dry root weight results. 

Extract Number Site Polygon Type Vegetation Water Content (%) g H2O/g dry soil TOC (%) TN (%) TC (%) OC:N 
Dry Root 

Wt (g) 
1 A LCP Carex 

82.8 4.84 41.415 2.570 48.290 16.117 0.1444 2 A LCP Carex 
3 A LCP Carex 
4 A LCP Carex 

80.3 4.07 42.624 2.228 46.966 19.131 0.1814 5 A LCP Carex 
6 A LCP Carex 
7 A LCP Carex 

79.6 3.91 42.104 2.241 46.016 18.792 0.0778 8 A LCP Carex 
9 A LCP Carex 

10 B HCP Carex 
73.4 2.75 41.521 2.479 46.621 16.750 0.3746 11 B HCP Carex 

12 B HCP Carex 
13 B HCP Carex 

72.1 2.58 43.464 2.567 45.209 16.930 0.0605 14 B HCP Carex 
15 B HCP Carex 
16 B HCP Carex 

73.4 2.76 37.334 2.1915 41.741 17.0358 0.1694 17 B HCP Carex 
18 B HCP Carex 
19 A LCP Eriophorum 

85.1 5.69 34.253 1.931 47.441 17.742 1.0316 20 A LCP Eriophorum 
21 A LCP Eriophorum 
22 A LCP Eriophorum 

83.8 5.16 35.809 2.242 47.098 15.971 0.5866 23 A LCP Eriophorum 
24 A LCP Eriophorum 
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25 A LCP Eriophorum 
76.5 3.26 38.673 2.308 43.615 16.755 0.1730 26 A LCP Eriophorum 

27 A LCP Eriophorum 
28 B HCP Eriophorum 75.6 3.09 39.803 2.189 47.619 18.185 1.1620 
29 B HCP Eriophorum 

75.6 
73.8 

3.09 
2.82 

39.803 
39.554 

2.189 
2.357 

47.619 
46.203 

18.185 
16.782 

1.1620 
0.3173 30 B HCP Eriophorum 

31 B HCP Eriophorum 
32 B HCP Eriophorum 

73.8 
70.4 

2.82 
2.38 

39.554 
41.026 

2.357 
2.431 

46.203 
44.054 

16.782 
16.873 

0.3173 
0.0446 

33 B HCP Eriophorum 
34 B HCP Eriophorum 
35 B HCP Eriophorum 

70.4 2.38 41.026 2.431 44.054 16.873 0.0446 
36 B HCP Eriophorum 

 

Table S2. Optimized mobile phase conditions and additives for each LC phase and MS polarity, injection volume, and flow rates. 

  Solvent A Solvent B 
HILIC (+) 60 % ACN, 40 % 5 mM NH4Ac, 0.1% FA 95 % ACN, 5 % 5 mM NH4Ac, 0.1 % FA 
HILIC (-) 100 % 5 mM NH4Ac, 0.1 % NH4OH 95 % ACN, 5 % 5 mM NH4Ac, 0.1 % NH4OH 

RP (+) 95 % H2O, 5 % ACN, 0.1 % FA 70 % ACN, 30 % H2O, 0.1 % FA 
RP (-) 90 % H2O, 10 % IPA, 1 mM NH4OH 80 % ACN, 10 % H2O, 10 % IPA, 1 mM NH4OH 

Injection Vol-
ume 300 nL Flow Rate at Pump 0.100 

mL/min 
Flow Rate at Tip ~250 nL/min 
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Table S3. Optimized gradient conditions for nano-LC separations, for positive- and negative-MS modes on C18-RP and ZIC-pHILIC columns. 

C18 Reversed-Phase ZIC-pHILIC 
Positive Negative Positive Negative 

time, min % B time, min % B time, min % A time, min % A 
0.0 2 0.0 25 0.0 0 0.0 0 
3.0 2 3.0 25 3.0 0 3.0 0 

23.0 100 23.0 100 23.0 100 23.0 30 
28.0 100 28.0 100 28.0 100 28.0 30 
33.0 2 33.0 25 30.0 80 30.0 60 
40.0 2 40.0 25 35.0 80 35.0 60 

    40.0 0 40.0 0 
    45.0 0 45.0 0 
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Table S4. MZmine parameters used for the peak detection modules applied in the analysis of the polygonal tundra soil organic horizons. 

Peak Detection Methods. 
Mass Detection HILIC (+) HILIC (-) RP (+) RP (-) 

RT window: Auto range Auto range Auto range Auto range 
MS level: 1 and 2 1 and 2 1 and 2 1 and 2 
Polarity: + - + - 

Spectrum type: centroided centroided centroided centroided 
MS1 noise level: 1.00E+04 2.00E+05 5.00E+03 1.00E+03 
MS2 noise level: 5.00E+02 4.00E+02 5.00E+02 1.00E+02 

MS/MS Peak List Builder     
RT window: Auto range Auto range Auto range Auto range 

MS level: 2 2 2 2 
Polarity: + - + - 

Spectrum type: centroided centroided centroided centroided 
m/z window 0.01 0.01 0.01 0.01 

Time window 61 min 56 min 41 min 41 min 
Peak Extender     
m/z tolerance: 0.005 m/z or 10 ppm 0.005 m/z or 10 ppm 0.005 m/z or 10 ppm 0.005 m/z or 10 ppm 

Min height 1.00E+04 1.00E+02 1.00E+03 1.00E+03 
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Table S5. MZmine parameters used for the peak list generation modules applied in the analysis of the polygonal tundra soil organic horizons. 

Peak List Generation Methods 
Isotopic Peaks 

Grouper 
HILIC (+) HILIC (-) RP (+) RP (-) 

m/z tolerance: 0.005 m/z or 10 ppm 0.005 m/z or 10 ppm 0.005 m/z or 10 ppm 0.005 m/z or 10 ppm 
RT tolerance: 1.0 min 1.0 min 1.0 min 1.0 min 

Monotonic shape: Y Y Y Y 
Maximum 

charge: 1 1 1 1 

Representative 
isotope: 

Most intense Most intense Most intense Most intense 

Duplicate Peaks 
Filter 

    

m/z tolerance: 0.001 m/z or 5 ppm 0.001 m/z or 5 ppm 0.001 m/z or 5 ppm 0.001 m/z or 5 ppm 
RT tolerance: 0.25 min 0.25 min 0.25 min 0.25 min 

RANSAC 
Aligner     

m/z tolerance: 0.005 mz or 10 ppm 0.005 mz or 10 ppm 0.005 mz or 10 ppm 0.005 mz or 10 ppm 
RT tolerance: 61 min 56 min 41 min 41 min 

RT tolerance after 
correction: 20 min 30 min 20 min 20 min 

RANSAC Itera-
tions: 0 (model optimized) 0 (model optimized) 0 (model optimized) 0 (model optimized) 

Minimum num-
ber of points: 

25% 25% 30% 30% 

Gap Filling     
m/z tolerance: 0.005 m/z or 10 ppm 0.005 m/z or 10 ppm 0.005 m/z or 10 ppm 0.005 m/z or 10 ppm 
RT tolerance: 61 min 56 min 41 min 41 min 

Annotation 
m/z tolerance: 0.005 m/z or 10 ppm 0.005 m/z or 10 ppm 0.005 m/z or 10 ppm 0.005 m/z or 10 ppm 
m/z vs RT bal-

ance: 
0.2 min 0.2 min 0.2 min 0.2 min 
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Max fragment 
peak height: 80% 80% 80% 80% 

Min MS2 peak 
height: 

5.00E+02 1.00E+02 5.00E+02 1.00E+02 

Max complex 
peak height: 50% 50% 50% 50% 

Max adduct peak 
height: 50% 50% 50% 50% 

Online databases 
searched: 

KEGG, PubChem, 
HMDB, LipidMaps, 

PlantCyc 

KEGG, PubChem, 
HMDB, LipidMaps, 

PlantCyc 

KEGG, PubChem, 
HMDB, LipidMaps, 

PlantCyc 

KEGG, PubChem, 
HMDB, LipidMaps, 

PlantCyc 

 

  



Soil Syst. 2021, 5, 10 13 of 27 

 

Table 6. “Cluster 1”, listing the differentially-abundant LMW DOM features found in lower relative abundance in the Eriophorum – HCP core. 

m/z Predicted Formula Mass error 
(ppm) 

Compound 
Class 

Database  
Annotation 

Database For-
mula 

Database Com-
pound Class MW 

321.0933 C11H18N2O9 -2 carbohydrate - - - - 
275.9782 C11H3NO8 -1.3 tannin - - - - 
247.9740 C11H6N4O19 0 tannin - - - - 
325.1183 C12H19N6O3P -0.1 lignin - - - - 
191.5355 C12H19NO13 -0.1 carbohydrate - - - - 
380.0831 C13H19NO12 -0.6 tannin - - - - 

265.0606 C15H10N2O3 -3.5 aromatic 6-acetophenazine-1-car-
boxylic acid C15H10N2O3 aromatic 266.069 

281.0920 C16H14N2O3 -3 lignin - - - - 
311.1029 C17H16N2O4 -1.6 lignin - - - - 
110.9824 C17H36N2O3 0.7 lipid - - - - 
511.4389 C17H50N16O2 2.6 lipid, aliphatic - - - - 
337.0826 C18H14N2O5 0.1 lignin - - - - 
145.0889 C18H27N15O6 -0.3 lignin - - - - 
225.9641 C19H2O14 -3.6 tannin - - - - 
226.9553 C2H4N4O5S2 1.3 carbohydrate - - - - 
272.9246 C2H4N4O6P2S -2.8 carbohydrate - - - - 
214.8694 C2HO4PS3 -3.5 tannin - - - - 

267.0913 C3H12N10O5 -0.8 carbohydrate, al-
iphatic - - - - 

253.1114 C3H14N10O4 -1.8 carbohydrate, al-
iphatic - - - - 

223.9617 C3H3N3O7S -0.8 tannin - - - - 
246.9834 C3H4N8O2S2 3.4 lignin - - - - 

243.0215 C3H8N4O9 0.3 carbohydrate, al-
iphatic - - - - 

268.9273 C4H3N2O8PS -0.6 tannin - - - - 
231.9430 C4H3N5OS3 1.4 lignin - - - - 
145.0621 C5H10N2O3 -3.7 protein alanine-glycine C5H10N2O3 protein 146.069 

117.0561 C5H10O3 3.4 protein 2-hydroxy-3-methyl 
butyric acid C5H10O3 metabolite 118.063 

240.0767 C5H15N5O4S -3.6 carbohydrate, al-
iphatic 

(3Z)-3-(1H-imidizol-5-
ylmethylene)-5-meth-

oxy-1H-indol-2(3H)-one 
C13H11N3O2* aromatic, protein 241.085 
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206.9522 C5H5O5PS -0.1 tannin - - - - 
279.0931 C5H8N14O 2.3 lignin - - - - 
206.0707 C6H14N3O3P 3.5 protein - - - - 

429.1308 C6H18N14O9 0.7 carbohydrate, al-
iphatic - - - - 

415.1512 C6H20N14O8 0.4 carbohydrate, al-
iphatic - - - - 

231.9466 C6H4NO5PS -3.8 tannin - - - - 
211.0028 C6H5N4O3P 0.8 lignin - - - - 
204.9729 C6H7O4PS -0.3 lignin - - - - 
350.8737 C6HN4O6PS3 4 tannin - - - - 
191.0535 C7H13NO3S -4.3 protein - - - - 
253.0968 C7H18N4O4S -2.7 protein, aliphatic - - - - 
400.8702 C7H2N2O12S3 1.3 tannin - - - - 
400.8711 C7H2N2O12S3 3.5 tannin - - - - 
192.0527 C7H7N5O2 0.1 lignin glucuronamide C6H11NO6* carbohydrate 193.059 
347.8884 C7HN3O8P2S -0.7 tannin - - - - 
367.8842 C8H3NO10S3 -1.1 tannin - - - - 
416.8452 C8H3O12PS3 0.2 tannin - - - - 
416.8453 C8H3O12PS3 0.4 tannin - - - - 
180.0653 C9H11NO3 -3.8 lignin - - - - 
440.8636 C9H2N2O13S3 -2.3 tannin - - - - 

76.0592 C9H9N2O2 0.6 lignin 4-ethoxy carbonyl ben-
zenediazonium C9H9N2O2 aromatic 177.066 

89.0358 no hit - - N-(hydroxy methyl)urea C2H6N2O2 metabolite 90.0429 
128.0724 no hit - - 6-carboxypiperdine C6H11NO2 protein 129.079 

138.0572 no hit - - 3-amino-2,3-dihydro 
benzoic acid C7H9NO2 protein 139.063 

218.1063 no hit - - 
(2Z)-2-methyl-4-(9H-

purine-6-ylamino)-2-bu-
ten-1-ol 

C10H13N5O plant hormone 219.112 

94.9664 no hit - - - - - - 
94.9666 no hit - - - - - - 

102.0569 no hit - - - - - - 
103.0540 no hit - - - - - - 
110.9594 no hit - - - - - - 
110.9765 no hit - - - - - - 
112.0741 no hit - - - - - - 
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119.9483 no hit - - - - - - 
124.9858 no hit - - - - - - 
127.0539 no hit - - - - - - 
133.0065 no hit - - - - - - 
134.9178 no hit - - - - - - 
147.0638 no hit - - - - - - 
148.0022 no hit - - - - - - 
149.9970 no hit - - - - - - 
176.0906 no hit - - - - - - 
196.9030 no hit - - - - - - 
216.9125 no hit - - - - - - 
236.8647 no hit - - - - - - 
294.8031 no hit - - - - - - 
324.7715 no hit - - - - - - 
416.7706 no hit - - - - - - 
488.8209 no hit - - - - - - 
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Figure S1: Percent aligned peaks that were annotated my MZmine as an adduct, complex, or fragment of another peak 
within 10 ppm and +/- 0.1 min RT for each core grouped by LC/MS condition. C = Carex, E = Eriophorum, A = Site A or 
Low-Centered Polygon (LCP), and B = Site B or High-Centered Polygon (HCP). 
 



Soil Syst. 2021, 5, 10 17 of 27 

 

 (a) (b)

 
Figure S2: Box plots of raw log2 abundance values for HILIC (-) dataset which had a systematic shift in quantitative 
values (a) due to experimental variation (i.e. instrumentation, ionization efficiency, extraction efficiency). Plot (b) 
shows how the normalization procedure removes this systematic error. 
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          HILIC (+)              HILIC (-) 

                             
 

RP (+)       RP (-) 

                
Figure S3: PCA plots of raw log2 abundance values from the blank, controls, and samples before normalization, impu-
tation, and filtering procedures.  
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(a) 

 
(b) 

 
Figure S4: (a) Histogram of the frequency of observations for each aligned peak (RT, MS1, and MS2) across the entire 
dataset (all 4 cores), including blanks and controls (55 total runs), before any data quality filtering steps and (b) a his-
togram of the HQFs across the 36 samples, after filtering out zeros, duplicates, and signals that were observed in the 
blanks or controls. 
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       HILIC (+)          HILIC (-) 

   
    
       RP (+)              RP (-) 

   
Figure S5: Venn diagrams showing the overlap of features between cores for each LC/MS condition. C = Carex aquat-
ilis, E = Eriophorum angustifolium, A = Site A or low-centered polygon (LCP), and B = Site B or high-centered polygon 
(HCP). 
 
  



Soil Syst. 2021, 5, 10 21 of 27 

 

 
Figure S6: Venn diagram (top) showing the overlap of HQFs between LC/MS conditions across all four cores obtained 
by calculating the neutral molecule from the MS1 data, [M+H]+ and [M-H]- ions (+/- 0.005 Da), excluding isomers and 
isobars. Bar graphs (bottom) show the total number of unique HQFs observed by each LC/MS condition and the num-
ber of LMW DOM features that were observed only once or multiple times across the four conditions. 
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Figure S7: PCAs of HQFs by LC/MS condition. 
 
 

 
Figure S8: Pie chart with the results from a coefficient of variance analysis for peak areas of the differentially abun-
dant LMW DOM features. 
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Figure S9: Distribution of molecular weight (m/z) and retention time (RT) for differentially abundant features, de-
tected across the 36 extracts, separated by LC/MS condition. 
 

 
Figure S10: Distribution of molecular weight (m/z) against fold change for LMW DOM features that were differen-
tially-abundant due to polygon (E-HCP_E-LCP and C-HCP_C-LCP) or vegetation type (C-HCP_E-HCP and C-LCP_E-
LCP). 
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Figure S11: Distribution of m/z by core and depth; solid color = top, stripes = middle, dots = bottom, C = Carex aquatilis, 
E = Eriophorum angustifolium 
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Figure S12: Fragmentation spectrum of [M-H]- ion at 192.0527 m/z showing characteristic neutral losses used for putative annotation. 
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