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Abstract: X-ray technology has been recently employed for the detection of the lethal human coro-
navirus disease 2019 (COVID-19) as a timely, cheap, and helpful ancillary method for diagnosis.
The scientific community evaluated deep learning methods to aid in the automatic detection of the
disease, utilizing publicly available small samples of X-ray images. In the majority of cases, the results
demonstrate the effectiveness of deep learning and suggest valid detection of the disease from X-ray
scans. However, little has been investigated regarding the actual findings of deep learning through
the image process. In the present study, a large-scale dataset of pulmonary diseases, including
COVID-19, was utilized for experiments, aiming to shed light on this issue. For the detection task,
MobileNet (v2) was employed, which has been proven very effective in our previous works. Through
analytical experiments utilizing feature visualization techniques and altering the input dataset classes,
it was suggested that MobileNet (v2) discovers important image findings and not only features. It
was demonstrated that MobileNet (v2) is an effective, accurate, and low-computational-cost solution
for distinguishing COVID-19 from 12 various other pulmonary abnormalities and normal subjects.
This study offers an analysis of image features extracted from MobileNet (v2), aiming to investigate
the validity of those features and their medical importance. The pipeline can detect abnormal X-rays
with an accuracy of 95.45 ± 1.54% and can distinguish COVID-19 with an accuracy of 89.88 ± 3.66%.
The visualized results of the Grad-CAM algorithm provide evidence that the methodology identifies
meaningful areas on the images. Finally, the detected image features were reproducible in 98% of the
times after repeating the experiment for three times.

Keywords: deep learning; COVID-19; explainable artificial intelligence

1. Introduction

Deep learning has already demonstrated superiority to conventional methods in a
variety of medical imaging tasks, including the classification of important diseases using
different imaging modalities, such as Computed Tomography (CT), Positron Emission
Tomography (PET), and X-ray [1]. The recent human coronavirus disease (COVID-19)
poses new challenges for deep learning experts, such as the automatic segmentation and
classification of CT or X-ray images that can lead to a timely, accurate, and cost-effective
diagnosis. Limitations related to data scarcity have been a major obstacle in designing deep
and robust frameworks [2]. Since March 2020, the available X-ray image datasets included
no more than 500 images of COVID-19 disease.

Typical imaging findings of COVID-19 lung infection include bilateral, patchy, lower-lobe-
predominant, and peripheral ground-glass opacities and/or consolidation. These are mainly
identified on CT imaging rather than X-ray, which has lower sensitivity for COVID-19 diagnosis
at the level of ≈67–100% [3]. Nevertheless, the scientific community has responded to the
aforementioned challenge and has provided first answers as to whether this disease can
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indeed be detected solely from X-ray images. Several works suggest the utilization of deep
learning models, such as Convolutional Neural Networks (CNNs) for diagnosis [4–10].
In most cases, either handcrafted CNNs, or established CNNs in other domains, yield
precise and promising results, at least in cases where the COVID-19 disease is adequately
visualized in the particular imaging modality. All those networks have been evaluated
utilizing approximately the same image sources.

Deep learning has already demonstrated its effectiveness in distinguishing COVID-19
using the particular image datasets. However, the assumption that through deep learning
it is possible to diagnose COVID-19 solely on the basis of X-ray images is not valid yet.
This is because the available datasets are heavily incomplete due to the following reasons:

a. The samples are too few for deep model training
b. The image information is not accompanied by clinical outcomes.
c. There are few multicenter studies to support the conclusions.
d. The samples commonly illustrate COVID-19 disease of patients showing disease

symptoms. Asymptomatic cases are under-represented.

The above issues motivated the scientific community towards applying data augmen-
tation techniques to expand the training sets, add diversity to the data distributions, and
enable their models to become robust to transformations.. Nevertheless, the data scarcity
issue is not circumvented completely. The question arising at this point is the following:
“Besides their undeniably strong predictive power, are the developed deep learning models
capable of providing explanations regarding their decisions, informing the actual user of
their image findings so as to be trustworthy and accountable?”.

Motivated by our previous studies on the automatic identification of COVID-19 from
X-rays [5,9] and aiming to shed light on the explainability of deep learning, we performed
a deeper analysis on the decision mechanisms of mobile network, a state-of-the-art CNN,
that exhibited promising results in our recent study [5]. In previous work of our group [9],
the effectiveness of training from scratch strategy against transfer learning is demonstrated,
showing that training from scratch may discover potential image biomarkers extracted
from X-ray images. This conclusion is based on the comparison of transfer learning with
training from scratch. The reader should note that with transfer learning, the classification
is mainly based on pre-learned feature extraction knowledge of a particular CNN. This
knowledge is obtained by performing an independent training on large-scale datasets of
a completely different domain task. Although transfer learning also yields good results,
training from scratch improves the classification accuracy. This led the authors to the
conclusion that novel and vital image features were extracted from the latter strategy.

In the present work, the feature extraction capabilities of MobileNet (v2) were further
analyzed by performing extensive experiments and visualizing the output feature maps.
The Grad-CAM algorithm [11] was utilized to reveal the regions where MobileNet (v2)
seeks for important features. In this way, a better understanding of the decision mechanism
of the network is achieved.

The contributions of this paper can be summarized as follows:

• The successful state-of-the-art network (MobileNet v2) was extensively evaluated in
performing multi-class and two-class classification of X-ray images with the aim of
identifying images related to the coronavirus disease. Further, the consistency of the
reported metrics was assessed by running a 25-times 10-fold cross-validation

• The explainability algorithm (Grad-CAM) was employed to inspect the consistency of
the suggested areas of interest across a three-run experiment.

• We present a staged approach for the detection of COVID-19 from X-ray images that
exhibited an accuracy of 89.88 ± 3.66%.

2. COVID-19 Detection Based on X-ray Imaging: Recent Studies

The research community has put an enormous effort in developing deep learning
pipelines for COVID-19 detection from either computed tomography (CT) scans or X-ray
scans. In addition, a large amount of attention has been paid to leveraging explainability
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methods to visualize the suggested areas of interest as proposed by the models. Hence,
model assessment can be based not only on quantitative metrics (such as the accuracy, the
sensitivity, and the specificity scores), but also on qualitative evaluation. In this section, we
briefly describe major findings and trends found in the latest literature.

Hou and Gao [12] proposed a deep CNN-based platform for COVID-19 detection that
could identify COVID-19 cases with an accuracy of 96%. Their model has been trained
using a dataset of 1400 chest X-ray images, which includes 400 normal images, 400 images
of pneumonia infection from bacteria, 400 images of pneumonia infection by other viruses,
and 200 images of pneumonia infection by COVID-19. The authors used the Grad-CAM
algorithm to visualize the suggested areas of interest.

Ahsan et al. [13] proposed the utilization of the state-of-the-art networks named
Virtual Geometry Group (VGG) and MobileNet (v2) to distinguish between COVID-19 and
non-COVID-19 X-rays from an imbalanced dataset of 2191 X-rays. The networks achieved
remarkable accuracy, stretching between 91% and 96% and an AUC score of approximately
0.82. The authors used the local interpretable model-agnostic explanations (LIME) [14]
method for the visualization of important image areas.

Brunese et al. [4] analyzed 6523 X-ray scans and developed a pipeline for an incre-
mental detection of COVID-19. Their framework identifies pulmonary-disease-related
X-rays and then further distinguishes between COVID-19 cases and non-COVID-19 cases.
Their model reached an accuracy of 97%. The authors adopted the Grad-CAM algorithm
to visualize the feature maps and verified that their model did not focus on irrelevant
locations of the image.

In [9], which is a previous study by the authors of this study, a first attempt to evaluate
the extracted features of deep learning methods for COVID-19 detection from X-rays re-
vealed evidence that training MobileNets from scratch can extract problem-specific features
that could be if medical importance. In addition, an accuracy of 99% in distinguishing
between COVID-19 and non-COVID-19 cases from an imbalanced dataset of 3905 scans.

Wang et al. [15] proposed COVID-Net, a tailored CNN trained on a dataset of 13,975 X-ray
scans. They achieved an accuracy of 93.3% in distinguishing between normal, common
pneumonia, and COVID-19-related pneumonia images. The authors employed the GSIn-
quire method [16] to plot the associated critical factors on the image. COVID-Net primarily
leveraged areas in the lungs in the X-ray images as the main critical factors in determining
whether an X-ray image is of a patient with COVID-19.

Thorough interpretation and examination of the explainability methods is missing
from the majority of the related studies, although particular explainability methods have
been employed.

3. Materials and Methods
3.1. Deep Learning with Mobile Networks

The main advantage of CNNs lies in extracting new features from the input data
distributions (i.e., images), thereby bypassing the manual feature extraction process, which
is traditionally performed in image analysis task with machine learning methods [17].

Each convolution layer in a CNN is processing the output of the previous layer by
applying new filters and extracting new features. Due to the fact that the convolutional
layers are hierarchically ordered, features directly from the original image are only extracted
by the first convolutional layer, whereas the other layers process the outputs of each
other [18]. In this way, a slow introduction to large amounts of filters is achieved, whilst
underlying features may be revealed during the later layers. The general rule of thumb
relates the effectiveness of the network with the number of convolutional layers. This is
why deep networks are generally superior, provided that adequate amounts of image data
are present. In cases where the dataset’s size is not large enough to feed a deep network,
three solutions are commonly proposed:

(a) The selection of a simpler CNN, which contains less trainable parameters and fits in
the particular data well.
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(b) Transfer learning [19], utilizing deep and complex CNNs, but freezing their layers,
thereby decreasing the trainable parameters and allowing for knowledge transfer,
following their training on large image datasets.

(c) Data augmentation methods to increase the training set size, such as geometric trans-
formation (rotation, sheer) and pixel-level transformations (equalizations, grey-level
alterations) [20].

In this study, MobileNet (v2) [21] was selected for the classification task, which is a
state-of-the-art CNN and has been recently employed and evaluated by the authors [9]. In
that particular study, MobileNet (v2) was found to be superior for false negative reduction
in COVID-19 detection, in comparison with a variety of famous CNNs, including Inception
(v3) [22] and Xception [23].

The superiority of MobileNet (v2) in reducing the false negatives for the detection
of COVID-19, compared to other famous CNNs, is demonstrated in [5,9]. Moreover, this
CNN introduces a smaller number of parameters compared to other CNNs, which makes
it appropriate for swift training and portable applications. The inventors of this network
made use of depth-wise separable convolution [22] to drastically reduce the number of
learnable parameters in CNNs, thereby reducing the computational cost.

MobileNet (v2) is employed and trained from scratch, letting it fit in the training
set completely and without making any adjustments to its structure. Every parameter is
made trainable. In essence, the obtained weights from its training on ImageNet challenge
dataset [24] are erased. This methodology is selected to allow for problem-specific feature
extraction. At the top of the network, wherein the final feature maps are produced, a global
average pooling [25] layer is applied to reduce overfitting. This layer connects the final
feature map directly to the dense layer at the top of the CNN, which consists of 2500 nodes.
Another dense layer of two outputs is inserted for the binary classification of the inputs.
Batch normalization and dropout layers aid in the reduction of overfitting and are part of
the densely connected layers at the top of the network.

3.2. Image Dataset
3.2.1. COVID-19, Common Bacterial and Viral Pneumonia X-ray Scans

X-ray images corresponding to confirmed cases infected by the virus SARS-CoV-2
were selected. Through extensive research, a collection of 1281 well-visualized, confirmed
pathological X-ray images was created. The final collection included X-rays from a publicly
available repository [26]. Contributing institutions of this repository include the Indian
Institute of Science, the PES University, the M. S. Ramaiah Institute of Technology, and
Concordia University. The publishers of this data did not include important clinical
information, which could be useful for a more robust analysis.

3.2.2. Pulmonary Diseases Detected from X-ray Scans

The National Institutes of Health (NIH) X-ray repository was accessed and analyzed. It
comprises 112.120 frontal-view X-ray images of 30.805 unique patients with the text-mined
14 disease image labels [27].

Those images were extracted from the clinical PACS database at the National Institutes
of Health Clinical Center in USA. The contents of this archive contained 14 common
thoracic pathologies, namely, atelectasis, consolidation, infiltration, pneumothorax, edema,
emphysema, fibrosis, effusion, pneumonia, pleural thickening, cardiomegaly, nodule, mass,
and hernia. This dataset is significantly more representative of the real patient population
distributions and realistic clinical diagnosis challenges than any previous chest X-ray
datasets. The medical reports were analyzed by an automatic text-mining model that
assigned the corresponding labels according to its text-mining procedure. This method has
been initially adopted by the creators of the dataset and is not part of this work.

The final dataset characteristics are summarized in Table 1. In Figure 1, selected
samples from major classes are presented.
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Table 1. Characteristics of the dataset.

Dataset Name Classes Description Total Number of Images

Multiclass 14 Huge dataset including normal, COVID-19, and
12 categories of abnormal X-ray scans. 11,984

Abnormality detection 2
Huge dataset consisting of normal and abnormal

X-ray scans. In the abnormal class, X-rays
corresponding to COVID-19 were also included.

13,320

Abnormality discrimination 13 Dataset containing 13 classes corresponding to
13 abnormalities, including COVID-19. 8714

COVID-19 detection 2
Dataset containing COVID-19 X-ray scans and a
second class of both normal and abnormal X-ray

scans (selected samples).
2935
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Figure 1. Samples of some classes belonging to abnormalities.

For the normal class in the abnormality detection dataset, we added some more images
to make the classes approximately even in terms of number of images included. All image
sizes were adjusted to 400 × 400 pixels (height, width). The resolution of the images varied
from 72 to 150 pixels/inch, and the bit depth if the image was 8 bits.

3.3. Data Augmentation Techniques

Data augmentation is an important method in deep learning applications and research,
mainly utilized for two reasons. The first reason is the data scarcity, which impedes deep
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learning models adoption to the domain of interest. Few images are usually not enough
for a deep learning framework to train on [28], especially in cases where the classification
should be based on deep features and not obvious and low-level characteristics (e.g., colors).
With data augmentation, the initial training set can be broadly expanded by applying a
variety of transformations on the original images. In this way, the model learns to ignore
irrelevant characteristics and improves its spatial capabilities [29]. For example, applying
random rotations directs the model towards seeking for patterns in moving positions.

In the present research, the following augmentations to the training sets to expand
the available data and to increase the generalization capabilities of the experimental deep
learning network were applied:

a. Random rotations;
b. Horizontal flips;
c. Height and width shifts.

The reader should note that data augmentation was performed on-line. During each
10-fold repetition, the augmented images were supplied to the classification model, whilst
the test sets remained untouched. In this way, each training image was augmented to
produce contextual images by performing the abovementioned augmentations.

Random rotations were restricted to −20 to 20 degrees, and height and width shifts
were restricted to ±20 pixels. The ±20 degree of rotation was empirically selected to avoid
excessive rotations, whilst letting the model develop robustness to spatial discrepancies
between the image findings, for example, the position of the lungs.

3.4. Experiments

The initial dataset included 14 classes. On the basis of this dataset, subsets were
created according to Figure 2 and Table 2. The intention of the experimental phases and the
methods utilized are summarized in Table 2.

Reports 2022, 5, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 2. Overview of the experiments of this study. 

For all the experiments, the parameters of the model were retained. The batch size 
was 16 and the number of epochs varied from 30 to 40 according to the validation loss. All 
experiments were performed in a Python programming language environment making 
use of the Tensorflow library. An Intel Core i5-9400F CPU at 2.90 GHz computer equipped 
with 64 Gb RAM and a GeForce RTX 2060 Super was the main infrastructure for the ex-
periments. In Figure 2, an overview of the study is presented. 

Table 2. Overview of the experiments. 

Experiment Name Aim Classes Utilized 

Multiclass Evaluate the effectiveness of MobileNet (v2) in 
multiclass discrimination 

13 respiratory infections and the class normal. 

Abnormality detec-
tion 

Evaluate the effectiveness of MobileNet (v2) in 
abnormality detection 

All respiratory infection classes, including 
COVID-19, were joined together into a big class. 

Normal X-ray scans constituted the second 
class. 

Abnormality dis-
crimination 

Evaluate the effectiveness of MobileNet (v2) in 
distinguishing between various diseases, in-

cluding COVID-19 

13 classes of X-rays corresponding to 13 respira-
tory infections 

COVID-19 detection 
Evaluate the effectiveness of MobileNet (v2) in 

distinguishing between COVID-19 and  
non-COVID-19 X-ray scans 

Selected samples from the 12 respiratory dis-
eases constituted the first class, whereas the sec-

ond class referred to COVID-19. 

Reproducibility 
Evaluate the reproducibility of features when 
MobileNet is trained distinguishing between 
COVID-19 and non-COVID-19 X-ray scans 

Selected samples from the 12 respiratory dis-
eases constituted the first class, whereas the sec-

ond class referred to COVID-19. 
  

Figure 2. Overview of the experiments of this study.



Reports 2022, 5, 20 7 of 18

Table 2. Overview of the experiments.

Experiment Name Aim Classes Utilized

Multiclass Evaluate the effectiveness of MobileNet (v2)
in multiclass discrimination 13 respiratory infections and the class normal.

Abnormality detection Evaluate the effectiveness of MobileNet (v2)
in abnormality detection

All respiratory infection classes, including
COVID-19, were joined together into a big
class. Normal X-ray scans constituted the

second class.

Abnormality discrimination
Evaluate the effectiveness of MobileNet (v2)
in distinguishing between various diseases,

including COVID-19

13 classes of X-rays corresponding to
13 respiratory infections

COVID-19 detection
Evaluate the effectiveness of MobileNet (v2)

in distinguishing between COVID-19 and
non-COVID-19 X-ray scans

Selected samples from the 12 respiratory
diseases constituted the first class, whereas the

second class referred to COVID-19.

Reproducibility
Evaluate the reproducibility of features when
MobileNet is trained distinguishing between
COVID-19 and non-COVID-19 X-ray scans

Selected samples from the 12 respiratory
diseases constituted the first class, whereas the

second class referred to COVID-19.

For all the experiments, the parameters of the model were retained. The batch size
was 16 and the number of epochs varied from 30 to 40 according to the validation loss. All
experiments were performed in a Python programming language environment making use
of the Tensorflow library. An Intel Core i5-9400F CPU at 2.90 GHz computer equipped with
64 Gb RAM and a GeForce RTX 2060 Super was the main infrastructure for the experiments.
In Figure 2, an overview of the study is presented.

4. Results
4.1. Results of Multiclass Classification

For the multiclass classification, MobileNet (v2) achieved sub-optimal performance, as
presented in Table 3. The model achieved good classification for the bacterial pneumonia,
normal, mass, COVID-19, and consolidation classes (confusion matrix is available in the
Supplementary Material). Especially for COVID-19, 1095 true positives were recorded
(out of 1281), corresponding to 85.48% accuracy. Moreover, only 12 false negatives were
reported. This observation indicates that, despite the overall sub-optimal performance, the
model correctly captured COVID-19 image characteristics that distinguish these images
from the rest. Moreover, the normal class was adequately predicted, with 2439 true normal
predictions and 36 predictions that were mistakenly identified as normal.

Table 3. Classification results. The mean accuracy for the complete 10-fold and standard deviation
for the performance between the 10-fold are also reported.

Dataset Accuracy (%) AUC Score (%)

Multiclass 73.11 ± 2.21 94.07 ± 1.45
Abnormality detection 95.45 ± 1.54 98.92 ± 0.83

Abnormality discrimination 62.26 ± 4.21 90.93 ± 1.57
COVID-19 detection 89.88 ± 3.66 96.26 ± 2.14

Figure 3 illustrates the results of the multiclass classification and selected samples
from the outputs of the Grad-CAM algorithm. The red areas of the image suggest the
region where the model has captured significant features. Blue areas are considered neutral
regions, where no features, or insignificant features, are found. The reader can observe
that COVID-19 features were mainly discovered in the center of the respiratory system
and that those regions indeed contained COVID-19 findings. Moreover, Figure 3 illustrates
misclassified instances. For COVID-19, it was observed that the misclassified image did
not contain any information in the center of the respiratory system, perhaps leading the
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model to falsely recognize specific patterns. In fact, it was observed that the model looked
for patterns in the upper right of the image, which was a completely irrelevant region. This
issue highlights the flaws of the model and its decision mechanism.
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Taking into consideration both the good classification accuracy in distinguishing the
COVID-19 class from the other classes and the Grad-CAM visualizations, it can be assumed
that in the majority of COVID-19 X-rays, potential biomarkers are discovered. However,
this assumption requires further investigation.

4.2. Results of Abnormality Detection (Two-Class)

Abnormality detection tests produce excellent results. As observed in Table 3, 95.45% ac-
curacy was achieved. The total number of false negatives was 211, as the confusion matrix
of Figure 4 suggests. It is clearly concluded that the model achieved great capability in
distinguishing normal from abnormal X-ray scans. In Figure 4, it is observed that the
Grad-CAM results confirmed the assumption that the model seeks for patterns in the
correct regions of the respiratory system.

Due to the fact that all types of infections were grouped together in one class (abnor-
mal), the model learned global features explaining the presence of any disease and did not
learn the visual differences that each disease may display in the image. However, there
are still images were the Grad-CAM exposed some limitations and flaws of the model. In
essence, there were images where the model was unable to locate the region of interest
correctly, despite the correct classification.
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4.3. Results of Abnormality Discrimination

The abnormality discrimination experiment produced poor performance due to the
presence of many respiratory diseases, many of which produce overlapping X-ray results.
Specifically, 62.26% accuracy was achieved. In the Supplementary Material, the confusion
matrix is provided. It is observed that MobileNet (v2) achieved good classification results
for COVID-19 (1110 true positives, 171 false negatives, 168 false positives), mass (2427 true
positives, 78 false negatives, 14 false positives), and bacterial pneumonia (1108 true posi-
tives, 25 false negatives, 14 false positives). For the rest of the diseases, the discrimination
task performed sub-optimally. As is observed in Figure 5, the validation accuracy did
not improve, despite the improvement in the training accuracy. The same phenomenon
applied to the validation loss. Those results highlighted the inability of the model to capture
and learn discriminant features. Data augmentation has not been beneficial enough to
improve its discrimination ability for the majority of the diseases. However, due to the fact
that the aim of this study was focused on COVID-19, the reason behind the sub-optimal
performance for multi-class classification was not further investigated in terms of the type
of the extracted features. Moreover, the imbalance of the dataset hindered thorough and
extensive evaluation. Several classes were underrepresented. As a result, a deep analysis
on the extracted features of those classes would yield negligible outcomes.
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4.4. Results of COVID-19 Detection

For the COVID-19 detection experiment, top performance was observed, with the
classification accuracy reaching 89.88%. Specifically, as the confusion matrix of Figure 6
suggests, 1154 COVID-19 X-ray images were correctly identified out of 1281. The total
number of false negatives was 127, whilst the total number of false positives was 170.
The Grad-CAM output suggested that the model looked for COVID-19 related features,
focusing on the upper respiratory system. For the non-COVID-19 class, the model based its
predictions on the collection of different features found in various regions of the image.

A significant observation is that in every experiment, COVID-19 images were correctly
classified, either as part of a multiclass dataset or as the major class in a two-class dataset.
There is significant evidence that this stability derives from unique image features discov-
ered by the model in those processes. The results of the upcoming reproducibility test favor
this assumption.

4.5. Results of Feature Reproducibility in COVID-19 Detection

The two-class classification routine has been repeated for 25 times, and the reported ac-
curacy is assessed for statistical significance. A one-sample t-test was performed, assuming
that there is no difference in the mean accuracy score between the 25 runs (i.e., setting the
second variable equal to the first obtained accuracy). Table 4 presents the accuracy of each
run. As can be observed from Table 5, the p-value was greater than 0.05. Hence, there is
no evidence that the mean accuracy obtained from the 25 runs deviated from the expected
values. To summarize, the t-test results suggest that the model is stable in reproducing the
particular results in terms of accuracy.
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Table 4. Classification results of 25-run 10-fold cross-validation when training and testing MobileNet
(v2) using the COVID-19 detection dataset (two classes).

Run Mean Accuracy (%)

1 89.88
2 91.23
3 88.54
4 92.14
5 89.24
6 89.36
7 88.53
8 88.86
9 90.76
10 88.86
11 91.23
12 90.37
13 92.43
14 89.02
15 89.67
16 88.54
17 90.79
18 89.36
19 87.13
20 91.23
21 86.98
22 88.86
24 92.41
24 90.66
25 91.23

Overall 89.89
Std ±1.49



Reports 2022, 5, 20 12 of 18

Table 5. Statistical significance results of 25-run 10-fold cross-validation when training and testing
MobileNet (v2) using the COVID-19 detection dataset (two classes).

Factor Result for Accuracy

Mean 89.89
Variance 2.24

Observations 25
T-statistic 0.0413
p-value 0.4836

It was observed that there was no significant variation of the accuracy over the 25 runs.
As a result, the comparison between the Grad-CAM visualization outputs of the 25 runs
was performed using the outputs of three runs. We performed a case-to-case examination
of the similarity of the produced Grad-CAM images to inspect whether the suggested areas
of interest remained consistent across the three independent trainings. The evaluation was
conducted by two of the authors (J.A. and N.P.) by visually inspecting the suggested areas
in terms of their relative position inside the image. The methodology of this experiment is
better understood in Figure 7. Figure 8 illustrates the Grad-CAM outputs obtained by three
independent trainings of MobileNet (v2). All parameters, hyper-parameters, and image
sets were retained during the three separate trainings.
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Figure 7. Reproducibility of test methodology.

In approximately 98% of the visualized Grad-CAM maps, the features were repro-
duced and the suggested areas remained the same. It was noted that there was a disagree-
ment between the three independent training–testing results for 2% of the images. The
reader should note that Figure 8 illustrates only true positive (true COVID-19) images,
aiming to investigate whether the features were reproduced for the specific examples and
not for the incorrectly classified instances.
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Figure 8. Results of the reproducibility tests. Each dashed-line box presents Grad-CAM results for
10 images of COVID-19 infection. The visualized maps correspond to the same images for each group.
The green tick mark suggests feature reproducibility and the red arrow suggests failure to reproduce
specific features, leading to misclassification.

It was observed that a few discovered features are not always reproducible (2%).
Figure 8 provides regions of specific images where the discovered features in the first
training were not re-discovered during the second or third training. The classification
accuracy remained top-level (approximately 90%) for each repetition. This is a conflicting
situation. The reasons behind this phenomenon can vary:

(a) Some of the COVID-19 images may contain annotations that are recognized by the
model as features. Although the data were tested, the non-official nature of the
dataset source led us to not be completely sure about the origin of the images and the
pre-processing that may have taken place.

(b) The learning capacity of MobileNet (v2) is not enough to capture all significant
features, leading to the exclusion of some of them.

(c) Data augmentation fails to improve the model’s capability in capturing global and
important features completely, thereby allowing for irrelevant feature discovery.
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5. Discussion

Deep Learning enabled the extraction of a massive amount of low- and high-level
features from medical images. Those features may represent important biomarkers, closely
related to the corresponding diseases. However, deep learning methods lack the ability to
specifically assess these features. The extracted features are not well-defined and usually
refer to combinations of findings inside the image. This issue derives from the millions of
complex mathematical procedures incorporated into deep models. Tracking the extracted
features is not an easy task. The above issue raises concern about the trustfulness of such
models for medical image classification tasks. For the recent COVID-19 disease, deep
learning has been proven to be helpful in early detection, utilizing only X-ray scans. Little
has been yet investigated as to why all deep learning models yield top results in a variety
of scientific papers.

This study was focused on revealing evidence supporting the assumption that COVID-
19 imprints specific pattern-stamps on the X-rays, which testify to its existence. The results
provide strong evidence that MobileNet (v2) can capture those underlying signatures
and reveal them. However, in many occasions, the MobileNet (v2) model was unable to
locate the proper regions of interest, even if the classification was correct. In essence, the
decision outcome was not verified on a correct basis. It is fair to assume that the model was
deceived, and the associated features were irrelevant. This behavior raises many questions
and mandates future research. Nevertheless, the majority of samples demonstrated a
correct model reasoning and require further attention.

The experiments were based on the recently introduced Grad-CAM algorithm, which
kept track of the learned weights in a way similar to backpropagation of a trained model.
The experimental tests have been repeated three times to investigate the reproducibility
of those regions, which contained the suggested features. It was found that in 98% of
the samples, the suggested areas remained consistent. Moreover, the model insists on
suggesting specific regions of the image that helped in distinguishing COVID-19 from both
normal X-rays and X-rays corresponding to other respiratory and lung diseases. With the
aid of those experiments, it is fair to assume that, out of the millions of extracted image
features, there are potential features of medical importance.

Besides the demonstrated effectiveness of MobileNet (v2), this network is also suitable
for mobile applications due to its inherently low computational requirements [21]. In the
present work, it took approximately 70 min for a complete 40-epoch training of MobileNet
(v2) using a dataset of 11,984 images (of size 400 × 400) and whilst performing online
data augmentation. The reader shall recall that the experiments were performed using
an ordinary computer. The trained model can process a new image input and provide
both classification and Grad-CAM generation in less than one second. The latter boosts the
significance of our work because limited computational costs and low model complexity are
highly desirable in modern medical technology solutions, which can operate in real time.

This study has a number of limitations. Firstly, due to COVID-19 data scarcity, every
publicly available image dataset related to COVID-19 is incomplete it terms of clinical
data, verification, specific annotations, demographic details, and more. Those issues hinder
the development of models that will approach the problem holistically. For example,
Tartaglione et al. [30] highlight that either missing or imbalanced demographic information
can result in biased models. Moreover, real-life evaluation is mandatory to verify the
validity of the results, due to the above issue. Secondly, the experts’ opinion regarding
each sample of the image involved in this study was also missing from the image datasets.
Hence, it is not possible to compare the model’s decisions with that of the medical experts.
This is an important limitation of the study, and we intend to suggest solutions in future
research. Thirdly, this study used only the Grad-CAM algorithm for visualizing the
suggested areas of interest. Although Grad-CAM is extensively used in related works, its
performance can sometimes be sub-optimal [31]. Future studies can consider employing
more explainability tools, such as saliency maps visualization [31] and the LIME [14]
and the Shapley Additive explanations (SHAP) methods [32]. Moreover, the reader shall
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recall that the model underperformed in abnormality discrimination, failing to provide
acceptable classification metrics for a number of pulmonary defects and diseases. Although
this study is focused on COVID-19 detection rather than abnormality discrimination, the
inability of the model to discriminate other pulmonary diseases is a limitation that cannot
be overlooked.

During the experiments, it has also been revealed that a more accurate diagnosis of
COVID-19 involves a two-stage approach (Figure 9). During the first stage, the input X-ray
is analyzed for pathological findings, with 95.45% certainty. If the image is abnormal, the
second stage takes place. The X-ray is further analyzed for COVID-19 detection, with
89.89% certainty. If the corresponding X-ray is not identified as COVID-19 class, an optional
third stage may take place, where the image is analyzed for other abnormalities. The latter
stage was not further explored in the particular research study.
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The scope of the study is not to present a framework that exhibits classification
metrics superior to the related works but to investigate the extracted image features as to
their validity and importance. Nevertheless, the classification accuracy of the presented
framework competes with the recent literature (Table 6). The reader shall recall that this
work utilizes a large collection of X-ray images that belong to many classes. This poses
additional challenges to the classification model.
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Table 6. Comparison with related studies.

Study Method Test Data Size Classes Accuracy

Hou and Gao [12] Deep CNN 400
4 (normal, bacterial
pneumonia, viral

pneumonia, COVID-19)
96% (COVID-19 vs. ALL)

Ahsan et al. [13] VGG, MobilNet (v2) 518 2 (COVID-19,
non-COVID-19) 95%

Brunese et al. [4] VGG-16 1100 2 (COVID-19, other disease) 97%

Apostolopoulos et al. [5] MobileNet (v2) 1428 3 (normal, pneumonia,
COVID-19) 93%

Apostolopoulos et al. [5] MobileNet (v2) 1428 2 (COVID-19,
non-COVID-19) 93%

Apostolopoulos et al. [9] MobileNet (v2) 3905 2 (COVID-19,
non-COVID-19) 99%

Apostolopoulos et al. [9] MobileNet (v2) 3905 7 (COVID-19, normal,
6 abnormal classes) 87%

Wang et al. [15] tailored CNN
(COVID-Net) 300 3 (normal, pneumonia,

COVID-19) 93%

This study MobileNet (v2) 13,320 2 (COVID-19, other
abnormal X-ray) 90%

This study MobileNet (v2) 11,984 7 (normal, COVID-19,
5 abnormal classes) 73%

6. Conclusions

For the present study, a collection of 11,984 images corresponding to 12 different
respiratory–lung abnormalities, including COVID-19 and normal X-ray scans, was utilized.
Five independent experiments were performed. In the first experiment, the 14-class dataset
is used to evaluate MobileNet (v2) in distinguishing between the complete dataset classes.
MobileNet (v2) was found to be superior to other relative state-of-the-art CNNs in previous
studies conducted by the authoring team [4,8]. In the second experiment, two-class (normal
vs. abnormal) classification was performed. In the third experiment, a 13-class dataset
was utilized to distinguish between abnormal classes. In the fourth experiment, two-class
(COVID-19 vs. non-COVID-19) classification was performed. Finally, the last experiment
was repeated three times in order to investigate the reproducibility of the extracted features
and to assess the explainability of the model. Grad-CAM visualizations and accuracy
metrics yielded strong evidence that COVID-19 image features can be detected with the
deep learning approach, specifically with MobileNet v2. Moreover, it was demonstrated
that MobileNet (v2) is an effective CNN for automatic COVID-19 detection, which could
even be embedded in portable diagnostic systems due to its inherent low computational
cost and its ability to process a new image in less than a second, at least in this particular
study. Finally, a staged classification approach is suggested for diagnosing COVID-19,
which exhibits an accuracy of 89.89%.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/reports5020020/s1, Figure S1: Confusion Matrix for the Multiclass
dataset; Figure S2: Confusion Matrix for the Abnormality discrimination dataset; Table S1: MobileNet
(v2) parameters and hyper-parameters.
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