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Abstract: Many randomized controlled trials utilizing resistance training have shown improvements
in muscle activation in older adults. However, these programs lack applicability to community-
dwelling older adults due to several challenges. Therefore, the purpose of this study was to test
the effects of an eight-week community-based resistance training program on muscle activation in
older adults. Eight females (age: 61 ± 4 years, body mass index (BMI): 31.7 ± 5.7 kg/m2) were
enrolled in the study. The surface electromyography (sEMG) activity was evaluated before and after
training for three muscles (biceps brachii, upper trapezius, and rectus femoris). Additional weight
load tests were performed to measure muscle activation in response to the added resistance. After
eight weeks of training, no changes were observed in muscle activation for biceps brachii and upper
trapezius but was decreased for rectus femoris (p = 0.04). Furthermore, in response to weight loads,
biceps brachii and upper trapezius improved muscle activation after training. In summary, eight
weeks of community-based resistance training program non-significantly improved the activation of
upper-body muscles in older adults.

Keywords: Stay Strong Stay Healthy; strength training; elderly; exercise; muscle

1. Introduction

Aging causes neuromuscular deteriorations due to reduced muscle activation and the
selective atrophy of fast-twitch muscle fibers [1,2]. These declines in normal anatomical
and physiological changes result in reduced muscle strength, which eventually increases
the risk of fall, reduces mobility, increases the inability to perform day-to-day tasks, and
reduces the accessibility of a social life in older adults [3,4]. Exercise regimens for older
adults, including strength-based exercises, induce muscle activation [5]. This has been well
established through randomized controlled studies in older adults that have reported bene-
ficial effects of resistance training on muscle function, balance, and delayed neuromuscular
fatigue [6–10]. The primary mechanisms through which these benefits were achieved were
due to increased muscle activation with resistance training. Unfortunately, most of these
studies lack applicability to community-dwelling older adults, because they were con-
ducted in controlled laboratory settings (i.e., a setting in which participants perform tasks
strictly in a facility that have standardized equipment or devices under the researcher’s
supervision) and not in real-world settings such as senior centers or YMCAs. To date, no
study has investigated the effects of a community-based resistance training program for
older adults on muscle activation, assessed by electromyographic (EMG) analysis. One
evidence-based strength-training program for older adults that holds promise is the Uni-
versity of Missouri’s Stay Strong Stay Healthy (SSSH) program [11–14]. Delivered in senior
centers, YMCAs, nutrition centers, churches, and schools, the SSSH program has reached
over 15,000 participants in five states over 12 years. SSSH research supports its efficacy as a
fall reduction program, but little is known about how the SSSH program affects muscle
activation. Therefore, the purpose of this study was to test the effects of an eight-week
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resistance training program on muscle activation in SSSH participants. The data presented
here are pilot data from eight participants.

2. Methods

Eight female participants (age: 61 ± 4 years, BMI: 31.7 ± 5.7 kg/m2) attending the
University of Missouri Extension’s Stay Strong Stay Healthy (SSSH) program were recruited
prior to the start of their training. Participants in this study are a cohort of a larger group
(NCT02677363) who also went under surface EMG (sEMG) testing. The results presented
here are only related to these eight participants. Details about the SSSH program have
been described elsewhere [11–17]. Participants were informed about the study and written
consent was obtained. The study was approved by the Health Science Institutional Review
Board, University of Missouri’s IRB (#2003712), and was registered on ClinicalTrials.gov
(NCT02677363).

2.1. Inclusion and Exclusion Criteria

Participants were required to be enrolled in the Stay Strong Stay Healthy program at
the University of Missouri campus; all completed the required physical activity readiness
questionnaire (PAR-Q, Canadian Society for Exercise Physiology, Ottawa, ON, Canada) [18].
If the participants were found to be physically limited based on their responses, a physi-
cian’s authorization was required. Of the 20 participants in the original study [17], only
8 participants decided to participate in EMG studies due to time commitment issues.

2.2. Study Design

Participants’ anthropometric measurements were performed after consenting and
were scheduled for body composition (via dual X-ray absorptiometry, DEXA, version 13.5.2,
Hologic A, Marlborough, MA, USA) and sEMG analysis, which were conducted within
one week before the start of the program. Follow-up DEXA and sEMG analyses were
performed within one week after the program. Participants performed exercises targeting
both the lower-body and the upper-body muscles for one hour twice weekly for eight
weeks [11–17].

2.3. Exercise Training

As indicated previously [17], participants were required to complete 16 sessions of
incremental RT over eight weeks. Exercises performed by the participants are presented in
Table 1. Participants started with one set of five repetitions without weights and progressed
to two sets of ten repetitions with weights (Table 2). Participants completed two sessions
per week for eight weeks, and each session lasted for 45 to 60 min [11–17]. The hand and
leg weights used during these eight weeks have been described elsewhere [17].

Table 1. Exercises performed during the program.

Upper-Body Exercises Lower-Body Exercises

• Bicep curl
• Overhead press
• Seated row
• Wide-leg squat

• Standing leg curl
• Knee extension
• Side hip raise
• Toe stand

2.4. The sEMG Protocol

The sEMG analysis was performed using the MyoTrac Infiniti System (T9800, Montreal,
QC, Canada), MyoTrac Infiniti Encoder (SA9800, Montreal, QC, Canada), and Uni-Gel
Single Electrodes (T3425, Thought Technology Ltd., Montreal, QC, Canada) on biceps
brachii, upper trapezius, and rectus femoris. The analysis was performed using Biograph
Infinity software (Thought Technology Ltd., Montreal, QC, Canada). The selection of mus-
cles was based on the types of exercises performed and comfortability of the participants,
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i.e., the quadriceps (rectus femoris) were deemed to primarily be affected by most of the
lower-body exercises (wide-leg squat, standing leg curl, and knee extensions). The biceps
brachii and upper trapezius were selected for evaluating upper-body exercises (biceps curl
and overhead press) considering their importance in day-to-day activity.

Table 2. Progression of weights used during eight weeks (16 sessions) for each exercise.

Exercise Class # Sets of Reps Weights Single-Leg Exercises

1 1 set of 5 repetitions (1 × 5) No weights Alternate legs each repetition
(R,L,R,L,R,L,R,L,R,L)

2 2 × 5 No weights Alternate legs each rep
3 2 × 6 No weights Alternate legs each rep
4 2 × 6 Add weights Alternate legs each rep
5 2 × 8 With weights Alternate legs each rep
6 2 × 10 With weights Alternate legs each rep
7 2 × 10 With weights Alternate legs each rep

8 2 × 10 With weights Alternate legs each set
(1 × 10 R; 1 × 10 L, repeat)

9 2 × 10 With weights Alternate legs each set
10 2 × 10 With weights Alternate legs each set
11 2 × 10 With weights No alternating (2 × 10 R; 2 × 10 L)
12 2 × 10 With weights No alternating
13 2 × 10 1–2 adaptations with weights No alternating
14 2 × 10 Same adaptations with weights No alternating
15 2 × 10 1–2 new adaptations with weights No alternating
16 2 × 10 Same adaptations with weights No alternating

Abbreviations: R = Right; L = left.

Pre-test procedures: Tests were performed on the non-dominant hand and leg. The
test areas were cleaned using an alcohol swab in a circular motion from inside out until
redness appeared. This area was cleaned with a cotton ball prior to placing an electrode.
Electrodes were placed just distal of the origin (positive) and on the gaster (negative). A
neutral electrode was placed at least 10 cm away from either electrode, closer to the trunk
of the body.

Testing: No measurements were performed immediately after the exercise sessions.
The tests were performed in response to selected exercises (with and without weights) for
each muscle. For the biceps brachii, participants were asked to perform one set of three
repetitions of bicep curl without weights (0 lb.), with three pounds (3 lb.), and with five
pounds (5 lb.). For the upper trapezius muscle, the participant performed one set of three
repetitions of shoulder press with 0 lb. and 3 lb. added. The 5 lb. weights were not added
because some participants were unable to perform the task correctly with 5 lb. Lastly,
for the rectus femoris muscle, participants performed one set of three repetitions of knee
extensions with no weights. No weights were added for knee extension exercises because
not all participants were able to perform knee extensions with 3 lb. and 5 lb.

2.5. Statistical Analysis

One subject dropped out of the study; therefore, analyses were performed for seven
participants. Two-factor analysis of variance (ANOVA) was performed using IBM SPSS
Software (IBM Corp, Armonk, NY, USA) to test the difference between pre- and post-
analysis for the biceps brachii and upper trapezius muscles. A paired sample t-test was
performed to compare pre- and post-analysis results for the rectus femoris.

3. Results

As shown in Table 3, subjects lost body weight (p < 0.001), which also led to a reduction
in their BMI (p = 0.01). Interestingly, this reduction in body weight was observed without
any significant changes in both absolute lean mass and percent lean mass.
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Table 3. Participant characteristics and body composition.

Anthropometrics (n = 7) Baseline a Change p-Value

Age (years) 61.1 ± 1.5
Height (meters) 1.66 ± 0.03

Weight (kg) 83.5 ± 6.6 −1.8 ± 0.5 0.008
Body mass index (kg/m2) 30.2 ± 2.0 −1.8 ± 0.5 0.013

Body fat b

Total body fat (kg) 33.9 ± 3.6 −0.81 ± 0.36 0.063
Total body fat (%) 40.2 ± 1.5 −0.09 ± 0.04 0.075
Body lean mass c

Total lean (kg) 46.8 ± 2.6 −0.46 ± 0.20 0.058
Total lean (%) 57.0 ± 1.4 −0.60 ± 0.29 0.310
Trunk lean (%) 29.2 ± 1.0 −0.17 ± 0.38 0.757

Left arm lean (%) 2.4 ± 0.1 −0.01 ± 0.03 0.961
Right arm lean (%) 2.8 ± 0.1 −0.08 ± 0.05 0.184

Left leg lean (%) 9.5 ± 0.2 −0.17 ± 0.19 0.360
Right leg lean (%) 9.7 ± 0.3 −0.07 ± 0.20 0.821

a Data are reported as the mean ± SE. b Percentage calculations for body fat: total fat %—[total fat mass (kg)/total body weight (kg)]. c

Calculation shown in b was utilized to calculate the total lean mass percentage.

As shown in Figure 1, before training, the biceps brachii’s RMS (µV) did not change
in response to a 3 lb. load (change of −1.5%); however, with a 5 lb. weight load, RMS
increased by 27% compared to 0 lb. weight load (p = 0.07) and 29% compared to 3 lb.
weight load (p = 0.002). After eight weeks of resistance training, the RMS value with 0 lb.
was 10% lower than the pre-training value. With a 3 lb. weight load, RMS was increased
by 19% compared to the 0 lb. weight load and continued to increase by 31% compared to
the 0 lb. weight load (p = 0.07, increase compared to 3 lb. weight load was 10%). When a
two-factor ANOVA was performed, a significant difference was observed within the group
(p = 0.022), but not between groups (p = 0.625). Similarly, as shown in Figure 2, before
training, upper trapezius’ RMS did not increase significantly with the 3 lb. weight load
(increase of 6%). After completion of the training, the RMS value with 0 lb. weight load was
not different (0%), whereas the 3 lb. weight load tended to increase RMS by 20% (p = 0.10).
When a two-factor ANOVA was performed, a significant difference was observed within
the group (p = 0.023), but not between groups (p = 0.492). Lastly, as shown in Figure 3, a
significantly lower RMS value (decreased by 56%) was recorded for the rectus femoris after
completion of the program (p = 0.04).
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Figure 1. Surface electromyography (sEMG) activity of the biceps brachii before and after the
resistance training program. Data are reported as the mean ± SE. The black line represents sEMG
activity before the resistance training program, and the green line represents sEMG activity after the
resistance training program. Abbreviations: n.s., non-significant; RMS, root mean square.
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Figure 2. Surface electromyography (sEMG) activity of the superior upper trapezius before and after
the resistance training program. Data are reported as the mean ± SE. The black line represents sEMG
activity before the resistance training program, and the green line represents sEMG activity after the
resistance training program. Abbreviations: n.s., non-significant; RMS, root mean square.
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Figure 3. Surface electromyography (sEMG) activity of the rectus femoris before and after the
resistance training program. Data are reported as the mean ± SE. The black bar represents sEMG
activity before the resistance training program, and the green bar represents sEMG activity after the
resistance training program. * p = 0.04.
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4. Discussion

The main purpose of this study was to test the effects of a community-based resistance
training program (SSSH) on muscle activation in older adults. The benefits of resistance
training have been demonstrated previously [17]; however, no study has measured muscle
activation in a community-based resistance training program until now. Eight weeks of the
SSSH program maintained EMG activity for two of the three muscles tested (biceps brachii
and upper trapezius), suggesting the program non-significantly improved or maintained
muscle activation levels in older adults.

Regarding weight load in biceps brachii, a non-significant decrease in EMG activity
(by 1.5%) observed with 3 lb. weight load before training has previously been observed
in young adults [19]. Warren et al. [19] suggest that this decrease in EMG is due to a
decrease in the activation of fast-motor units with a simultaneous increase in the activation
of slow-motor units. The participants in that study were healthy young adults (26.7 ±
4.8 years), although their previous training status was not mentioned. A massive increase
observed in EMG activity with a 5 lb. weight load in the present study suggests that a
greater weight load was required before training to recruit more fast-motor units [20].
Interestingly, after training, a progressive linear increase in EMG activity with 3 lb. and
5 lb. workloads suggests increased responsiveness in muscle recruitment. Additionally,
previous studies have shown better muscle activation and recruitment in resistance-trained
individuals compared to untrained individuals [21]. Another study conducted by Fiebert
et al. [22] has also reported a progressive increase in EMG activity with workload in healthy
adult men and women [22]. However, previous studies reported these benefits in young
adults, whereas the present study was focused on community-dwelling older adults and
reported similar benefits. These data suggest that for biceps brachii, the resistance provided
during the SSSH program was sufficient to maintain (or non-significantly improve) muscle
activation levels. Weight load data support the notion that resistance training can also
improve the muscle efficiency (recruitment) of biceps brachii in response to weight load in
older adults.

With regard to weight load tests conducted for the upper trapezius muscle, the lack of
increase in EMG activity observed before training in response to a 3 lb. weight is similar
to the response observed for biceps brachii muscle and can be attributed to the fact that
the participants were untrained [21]. After training, a drastic increase in EMG activity
(20%, p = 0.10), in response to 3 lb., is consistent with a previous study conducted by
Lane et al. [23] in fire-fighters, in which trapezius muscle EMG activity increased with
the workload. Similar to outcomes observed for biceps brachii muscle, these data suggest
that resistance training provided in real-world settings can maintain (or non-significantly
improve) upper trapezius muscle activation levels. Although the lack of significance in the
current study can be attributed to a small size, EMG analysis can also be influenced during
an overhead press exercise by the type of instructions, stability during the test, and training
status [21,24–26]. However, in the present study, participants were clearly instructed on
how to perform the exercise. Moreover, only a 3 lb. weight load was used during the test;
the 5 lb. weight load was avoided because some participants were unable to stably perform
the exercise using this weight. Therefore, we believe that the results observed in the current
study are representative of the participant’s actual muscle activation.

Furthermore, consistent with previous research conducted in a well-controlled laboratory-
based environment, EMG activity was decreased in the rectus femoris muscle after eight
weeks of training [6,8–10,27]. Although the muscle activation levels were deceased in the
rectus femoris muscle, others have postulated two plausible explanations for this decrease.
First, with training or continuous bouts of exercises, muscle recruitment switches more
towards slow-motor units and less towards fast-motor units [19,20]. The participants in
this study trained for eight weeks; therefore, their muscles may have shifted predomi-
nantly toward the recruitment of slow-motor units during the non-weight load tests [20].
Therefore, the rectus femoris’ EMG activity was decreased by more than 50%; these data
suggest that the number of motor units required to perform a knee extension after training
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was reduced by half. Second, the eight weeks of exercise may not have been sufficient
to observe increased muscle activation. In this study, we did not perform weight load
tests for the rectus femoris muscle, which could have provided greater insights into the
actual activation potency of the rectus femoris muscle. Furthermore, we did not report any
changes in EMG activity for the other two muscle groups (biceps brachii and upper trapez-
ius), which suggests that resistance training provided in a real-world setting may benefit
specific muscle groups based on their location (upper body vs. lower body). However, the
present study was not designed to test these differences; therefore, further investigation is
needed in this area.

Lastly, some of the benefits of improved EMG activity include preventing falls and
improving the day-to-day activity of older adults, leading to independence. The inability
of muscles to activate appropriately may result in falls, which is why older adults with
weaker muscles are at greater risk of falls [3,28]. Additionally, in the day-to-day activity of
older adults, it is important that the muscles activate appropriately in response to specific
weight loads. Before training, both upper muscles under investigation were misaligned
with weight load, whereas, after training, activation observed for both upper muscles
aligned in response to different weight loads, suggesting improved muscle activation.
These findings implicate that the changes in EMG observed after eight weeks of the SSSH
program are beyond muscular health in older adults.

5. Conclusions

In summary, eight weeks of community-based resistance training improved the EMG
activity of upper-body muscles in older adults. The outcomes suggest that real-world
community-based strength training programs such as SSSH can maintain muscle activation
in older adults in eight weeks. Therefore, resistance training programs such as SSSH should
be incorporated in communities, and older adults should be encouraged to participate in
such programs. Participation in such programs can help to improve muscle activity in
older adults and can help them remain active and independent longer.
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