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Abstract: Isotopic composition measurements of singly charged cosmic rays (CR) provide essential
insights into CR transport in the Galaxy. The Alpha Magnetic Spectrometer (AMS-02) can identify
singly charged isotopes up to about 10 GeV/n. However, their identification presents challenges
due to the small abundance of CR deuterons compared to the proton background. In particular, a
high accuracy for the velocity measured by a ring-imaging Cherenkov detector (RICH) is needed to
achieve a good isotopic mass separation over a wide range of energies. The velocity measurement
with the RICH is particularly challenging for Z = 1 isotopes due to the low number of photons
produced in the Cherenkov rings. This faint signal is easily disrupted by noisy hits leading to a
misreconstruction of the particles’ ring. Hence, an efficient background reduction process is needed
to ensure the quality of the reconstructed Cherenkov rings and provide a correct measurement of the
particles’ velocity. Machine learning methods, particularly boosted decision trees, are well suited for
this task, but their performance relies on the choice of the features needed for their training phase.
While physics-driven feature selection methods based on the knowledge of the detector are often
used, machine learning algorithms for automated feature selection can provide a helpful alternative
that optimises the classification method’s performance. We compare five algorithms for selecting
the feature samples for RICH background reduction, achieving the best results with the Random
Forest method. We also test its performance against the physics-driven selection method, obtaining
better results.

Keywords: feature selection; cosmic rays; isotope identification

1. Introduction

Positive, singly charged nuclei dominate the galactic cosmic ray (CR) spectrum [1].
Cosmic rays can be divided into two main categories based on their production mechanism:
primary cosmic rays, which are produced directly in stellar nucleosynthesis processes at
the sources, and secondary cosmic rays, which originate from the nuclear interaction of
primary CRs with the interstellar medium (ISM) during their propagation in the Galaxy [2].
Although protons dominate the isotopic composition of hydrogen in cosmic rays, a few
percent of deuterons are also present. They are expected to be mostly of secondary origin
since the primary deuterons produced in the first step of the proton–proton chain are
depleted in the next step of the nucleosynthesis reaction [3]. Secondary deuterons are
produced through inelastic interactions between CRs, mainly p, 3He, 4He, and the ISM.
Thus, the identification of deuterons and the measure of their flux is essential for the study
of cosmic ray propagation processes in the Galaxy. In particular, it is possible to factor
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out the source contribution to the spectrum using secondary-to-primary ratios, such as
deuteron-to-proton (d/p) and deuteron-to-helium-4 (d/4He) [2] to constrain the parameters
of the galactic propagation model.

Isotope identification for singly charged particles has already been performed by
magnetic spectrometers such as PAMELA [4], IMAX [5], and CAPRICE [6] for CR energies
up to a few GeV/n. The Alpha Magnetic Spectrometer (AMS-02) [7] will extend the energy
range of isotopic composition measurement [8] to ∼10 GeV/n. However, the analysis
presents challenges due to the intrinsic characteristics of the measurement. Isotopes are
separated through their mass by combining the rigidity (R = p c/Z e, momentum per unit
charge) and the particle’s velocity, as follows:

m =
R Z e
β γ

, (1)

where Ze is the magnitude of the charge, β = v/c is the velocity in speed of light units, and
γ is the Lorentz factor. The mass resolution can be derived from Equation (1):(

∆m
m

)2
=

(
∆R
R

)2
+ γ4

(
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β

)2
. (2)

Due to the dependence on the fourth power of the Lorentz factor, the velocity resolu-
tion’s contribution to the total mass resolution dominates for β → 1, which happens for
energies higher than a few GeV/n. Therefore, efficiently cleaning the initial sample from
events whose RICH velocities have not been accurately reconstructed is essential to identify
singly charged isotopes and extend the energy range of the measurement.

Artificial intelligence (AI) methods, particularly machine learning (ML), are widely
used for particle identification in particle and astroparticle physics [9–14]. In particular,
boosted decision trees (BDTs) have been employed to classify events with misreconstructed
RICH velocities and reject the background for the identification of deuterons [15]. For this
type of classification task, complex data sets containing many variables and parameters
are analysed, and data are often noisy and contain correlated information, which is thus
redundant. Hence, a crucial step in the application of ML methods to classification tasks
is selecting the variables (or features) that constitute the input required for model train-
ing. ML-driven feature selection techniques are emerging as suitable tools to optimise
the performance of ML algorithms for classification tasks in particle [16] and astroparti-
cle physics [17–19]. Furthermore, feature selection has already been used in cosmic ray
identification for ground-based experiments in Herrera et al. [20] to rank the relevance
of features involved in primary particle reconstruction from air shower simulations. The
importance of feature selection lies in its ability to simplify the data analysis process. By
identifying and selecting the most relevant features, it is possible to enhance the efficiency
and accuracy of the classification algorithms, making the results more interpretable and
robust. Moreover, feature selection aids in the avoidance of overfitting, a common pitfall
in complex data sets. Focusing on essential features reduces the risk of models becoming
overly tailored to the training data, thereby increasing their generalisation capabilities.

In this work, we study machine learning (ML) algorithms for feature selection in
the context of singly charged cosmic ray isotope identification using the AMS-02 ex-
periment and investigate whether these ML techniques could enhance the efficiency in
reducing the RICH background compared to traditional physics-driven methods, such
as Bueno et al. [15]. Five ML techniques are used to single out, from a sample of 130 features
obtained by the detection and reconstruction of cosmic ray nuclei with the RICH detector
of the AMS-02 experiment, the most promising features to identify the signal and reject
the background. Furthermore, for comparison, the physics-driven approach proposed
by Bueno et al. [15] is used to choose a set of features based on the knowledge of the
detector and of the type of background to be reduced.
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The paper is organised as follows: In Section 2, the AMS-02 detector is presented.
The preparation of the data set and the algorithms used to perform feature selection are
described in Section 3, along with the metrics used to evaluate the performance of the
different methods. In Section 4, the results of the different models and their performance
on the validation basis are followed by a discussion on the features selected by the best-
performing model. We conclude in Section 5.

2. The AMS-02 RICH Detector

The Alpha Magnetic Spectrometer (AMS-02) is a cosmic ray detector operational
aboard the International Space Station since May 2011 [7]. Its unique capabilities allow for
the measurement of deuteron flux in previously unexplored energy ranges, extending it
nowadays above a limit of 4 GeV/n.

AMS-02 consists of several subsystems as follows: A silicon tracker with nine layers,
positioned from the top to the bottom of the detector, in conjunction with a permanent
magnet of 0.15 T. This combination enables the measurement of the magnitude, the sign of
the charge, and the rigidity of the particles; a transition radiation detector (TRD), designed
to distinguish between leptons and hadrons; a time-of-flight (TOF) system, comprising
two pairs of scintillators (upper TOF and lower TOF) located above and below the magnet,
is responsible for measuring the velocity and charge Z of the particles and serves as the
primary trigger for the experiment; a ring-imaging Cherenkov detector (RICH), positioned
below the lower TOF, is used to measure the particle velocity and charge Z; an anti-
coincidence counter (ACC), which identifies and rejects particles with high-incidence
angles; an electromagnetic calorimeter (ECAL), positioned below the RICH, is responsible
for measuring particle energy and enabling differentiation between leptons and hadrons.

The RICH detector [21] plays a crucial role in measuring hydrogen isotope fluxes, allow-
ing for their identification up to 10 GeV/n [22]. However, it is essential to emphasise that this
task presents significant challenges due to the intrinsic nature of the Cherenkov effect. Be-
cause the intensity of the emitted radiation is proportional to Z2 [23], singly charged isotopes
generate a faint signal compared to higher Z particles, making the velocity reconstruction
vulnerable to background disruptions, especially near the threshold of each radiator.

The RICH detector [24–26] (see Figure 1) features a truncated conical shape with a
60 cm top radius, a 67 cm bottom radius, and an expansion height of 47 cm. The detector
comprises a radiator plane, an expansion volume, and a photo-detection plane. The double
radiator plane includes a central radiator consisting of 16 tiles of sodium fluoride (NaF)
measuring 8.5 × 8.5 × 0.5 cm3, with a refraction index of 1.33. It is surrounded by 92 silica
aerogel tiles measuring 11.5 × 11.5 × 2.5 cm3 and having a refraction index of 1.05.

The detection plane is equipped with an array of 680 photomultiplier tubes (PMTs)
arranged in eight grids, four rectangular and four triangular. To minimise lateral losses
of approximately 30% of the radiated Cherenkov photons, the expansion volume is sur-
rounded by a highly reflective mirror that meets roughness specifications of better than
150 nm and exhibits a reflectivity exceeding 90% at λ = 420 nm.

Figure 1. Sketch of the ring-imaging Cherenkov detector of AMS-02. Adapted with permission from
Ref. [7]. Copyright 2011, AMS Collaboration.
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3. Methodology
3.1. Database Description

Six months of data collected by AMS-02 in space (from December 2015 to May 2016)
were used in this work. While this particular choice is arbitrary, we believe it does not
introduce any bias to our analysis, providing us with a statistically relevant sample. The
performance of the AMS-02 detector has been extensively verified in the past years [27]
and no specific time-dependent effect on performance was reported.

A first selection was applied to ensure the quality of the reconstructed tracker track and
of the velocity measured by TOF for the used events. Singly charged isotopes were selected
using TOF and silicon tracker charge measurements. The requirements on the tracker charge
(ZTRK) and upper and lower TOF charge (ZUTOF, ZLTOF) are 0.75 < ZTRK,UTOF < 1.5 and
0.75 < ZLTOF < 1.3, respectively. Then, the selected events were divided into two samples
based on their reconstructed masses, following Bueno et al. [15]: events with a mass within
2σ from the proton mass (0.75 GeV/c2 < m < 1.25 GeV/c2) or a mass above 4σ from the
triton mass (m > 4 GeV/c2) are considered to be signal-like or background-like, respectively.
This preparation is necessary to have a labelled set of events to be used for the training of
the classification method.

As was pointed out in Bueno et al [15], the residual background for the identification of
cosmic ray deuterons consists mainly of events whose RICH velocity is poorly reconstructed
due to noise disrupting the already weak signal produced by the Z = 1 particles. In
particular, particles produced from the interactions of the incoming cosmic rays with the
AMS-02 detector can induce spurious hits that are not related to the Cherenkov emission of
cosmic rays. These ring-uncorrelated hits consist of additional photons generated as the
particles produced by the interactions in the detector cross the aerogel radiator or while the
same particles cross the PMT plane. These spurious events induce additional photon hits
and consequently affect the reconstruction of the Cherenkov ring. Furthermore, interactions
between particles happening in the region between the lower tracker and the RICH can
modify the direction of the incoming cosmic ray, thus introducing a slight bias in the number
of detected photon hits in the Cherenkov ring with respect to the reconstructed tracker
track. These events whose velocities are poorly reconstructed constitute the background
of this analysis and they are the ones to be rejected to improve mass resolution and
correctly identify singly charged isotopes. They are mainly located in the high mass tail
of the particles’ mass distribution, as outlined in Bueno et al. [15]; for this reason, the
background-like sample comprises events falling within that specific mass distribution
region. Conversely, the mass range selected for the signal-like sample corresponds to the
proton peak of the mass distribution and it is characterised by events whose velocity has
been correctly reconstructed.

A set of 130 features was used for the analysis, including quantities directly measured
by the RICH detector (e.g., the number of crossed PMTs and the number of hits), the
reconstructed quantities (e.g., charge and velocity), and the expected values of the measured
and reconstructed features computed using the reconstruction and input parameters of
the event itself (e.g., expected number of photoelectrons associated with the Cherenkov
ring). As shown in Figure 2, the used features can be divided into six classes: Charge, Track
position, PMT number, Beta, Hit number, and Photoelectrons.

The class “Charge” contains seven features related to the magnitude of the recon-
structed charge: these include two different estimates of the charge based on different
Cherenkov ring reconstruction methods [28,29], the expected charge resolution and its
mean square error, and the value for the Kolmogorov probability associated to the hypoth-
esis of a uniform distribution of signal hits along the particle path [30]. The class “Track
Position” contains 16 features related to the extrapolated tracker track of the particle inside
the RICH, such as the coordinates of the impact point on the radiator plane and the angles
that the reconstructed track forms with it, the distance of the impact point from the border
of the radiator tile, and the information on the radiator tile crossed by the extrapolated
track. The class “Beta” contains 40 features connected to the reconstructed velocity of
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the particle: it includes, for example, the particles’ velocity, reconstructed independently
by two methods [28,29], the values of the velocity resolution, and the mean square error.
The class “Hit number” delivers information about the number of photons detected in the
photodetection plane by means of the number of photoelectron hits registered by the PMTs.
Among these 26 features are included the total number of detected hits, and the number of
hits inside and outside the Cherenkov ring. The class “Photoelectrons” includes 36 features
incorporating different information about the measured number of photoelectrons (p.e.)
deriving from the detection of the Cherenkov photons in the PMTs of the detection plane.
For every event, the number of p.e. in the PMT with the highest number of p.e., the number
of p.e. collected in and out of the ring, and the number of p.e. expected for a singly charged
nucleus or an electron with the reconstruction and input parameters of the current event
are available. Finally the class “PMT number” is related to the number of PMTs crossed
in each event, and includes five features related to the measured and expected number of
PMTs inside and outside of the Cherenkov ring. All the variables used in the analysis are
listed and briefly described in Table A1.

Figure 2. Pie chart showing the breakdown of the 130 features into six classes. The value in each slice
represents the number of features in the corresponding class.

To illustrate the different behaviour that signal- and background-like events display,
Figure 3 shows the distributions of the Kolmogorov probability and the magnitude of the
charge, denoted by Z, for a signal-like (in blue) and a background-like (in red) sample
of events. Both features show different distributions for the two samples; hence, they
discriminate well between background-like and signal-like events. This conclusion derives
from the physical phenomena that these features trace. The left plot shows the distribu-
tion of the Kolmogorov probability [30] that is obtained by performing for each event a
Kolmogorov test on the azimuth distribution of emitted photons along the particle path,
expected to be uniform for well-reconstructed events with a ring-like shape (i.e., signal-like
events), and to be non-uniform for background events, whose rings include noisy hits. The
Kolmogorov test was used to compare the expected cumulative distribution for the azimuth
angle with the measured one. When the discrepancy between these two distributions is
maximal the Kolmogorov probability scores very low values, justifying the behaviour of
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the background-like sample in the left plot in Figure 3. On the other hand, the Kolmogorov
probability is calculated such that it is almost uniformly distributed between 0 and 1 for
ring-shaped events, as shown by the signal-like sample in the same plot. The distribution
of the reconstructed charge is shown in the right panel of Figure 3. In the RICH detector,
the square of the charge Z is proportional to the number of photoelectrons associated
with the Cherenkov ring (i.e., Z2 ∝ Np.e.), with a scaling factor accounting for the ring
acceptance and velocity dependence. We expect signal-like events to have a symmetric
charge distribution peaked at Z = 1, as in Figure 3. Conversely, the background-like sample
mostly contains events whose rings have spurious hits, leading to the characteristic high
charge tail in the red distribution.
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Figure 3. The distributions of reconstructed charge (left) and Kolmogorov probability (right) for the
aerogel radiator for the signal-like (in blue) and background-like samples (in red). The purple regions
represent the overlaps between these two samples.

3.2. Feature Selection Techniques

Feature selection techniques play a crucial role in the data analysis and the mod-
elling of ML algorithms. The importance of these techniques resides in the fact that not
all attributes contribute equally to constructing an accurate and efficient model [31]. By
selecting the relevant characteristics of the data set, it is possible to improve the gener-
alisation capacity of the model, reducing the chance of overfitting [31–33]. Furthermore,
other benefits obtained when applying feature selection are the reduction in noise and
interference and the acceleration of the training time and computational efficiency, as it
reduces processing resources [34,35]. Therefore, feature selection techniques are essential
in optimising and improving ML models, allowing better interpretability, efficiency, and
accuracy of data analysis.

The most straightforward approach in selecting the relevant features is to test every
possible subset of features, finding the one that minimises the error rate. However, this is
an exhaustive and computationally intractable search for real data sets. In this sense, the
choice of the evaluation metric strongly influences the feature selection technique, and it
is these evaluation metrics that distinguish between the three main categories of feature
selection techniques [36,37], namely:

• Filter: Use a proxy measure instead of an error rate to score a subset of features;
• Wrapper: Use a predictive model to score subsets of features. Each new subset is used

to train a model, which is tested on a validation set;
• Embedded: Is a comprehensive group of techniques that perform feature selection as

part of the model-building process.
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Thus, in order to achieve the project’s objective of verifying the most relevant features
in the database, we selected a technique for each category of feature selection techniques,
namely: SelectKBest (filter), Random Forest - RF (wrapper), and linear regression (embed-
ded). In addition to the mentioned techniques, Pearson’s correlation is applied as a feature
selection technique. We briefly describe the techniques used:

• Kbest: is an approach that selects the k best attributes based on a statistical measure,
such as the analysis of variance (ANOVA) used in this study. By defining a value for
k, it is possible to choose the k most significant features, which have a more relevant
impact on the model’s prediction [38,39];

• Random Forest (RF): is a technique that can be applied not only for building classifica-
tion and regression models but also as a practical feature selection tool [40]. Random
Forest performs several independent decision trees, each using different subsets of
attributes and random samples from the data set. During this process, the algorithm
calculates the importance of each attribute based on its contribution to the overall
accuracy of the predictions [37];

• Linear Regression: the approach considers the coefficients of each attribute as a
measure of the individual contribution in predicting the dependent variable [41].
The magnitude and sign of the coefficient indicate the impact on the target variable.
Thus, features with higher and statistically significant coefficients are considered more
important and can be selected as part of the feature selection process [37,41];

• Pearson’s Correlation (CORR): the approach measures the strength and direction of
the linear relationship between two continuous variables [42]. When calculating the
Pearson correlation between each attribute and the target features, it is possible to
obtain a value ranging from −1 to 1. A value close to −1 indicates a strong negative
correlation. On the other hand, a value close to 1 indicates a strong positive correlation.
A value close to 0 indicates a weak or no correlation. Based on the correlation values,
it is possible to select attributes with a more significant correlation with the target
variable [31,43].

Furthermore, for comparison purposes, the methodology proposed by Bueno et al. [15]
is considered to select the last set of features. This method involves the detailed study of
the events whose mass is incorrectly identified due to the interactions occurring within
the AMS-02 detector and aims to identify the sources of interactions relevant to the RICH
reconstruction background and mitigate this background efficiently. In this work, the
features are chosen following a physics-driven approach based on the knowledge of the
RICH detection mechanism and velocity reconstruction method and they can be combined
to form more effective features. A multivariate estimator is subsequently used to complete
the classification task.

3.3. Performance Evaluation Metrics

Accurately evaluating the performance of the algorithms is essential to guide the
choice of the best classification model [44]. Metrics such as accuracy, precision, F1-score,
and recall play a central role in this evaluation, allowing the effectiveness and usefulness
of the algorithms to be measured [45]. In the following, we will explore the meaning
and calculation of these metrics, highlighting their relevance and providing a general
description to ensure reliable and accurate AI systems:

• Accuracy: this metric provides a general measure of the model’s ability to correctly
predict classes. It is helpful in scenarios where all classes have similar importance.
It considers true positives (correctly classified cases) and true negatives (correctly
classified negative cases) concerning the total number of examples. Accuracy is
defined as follows:

Accuracy =
True Positives + True Negatives

Total Examples
; (3)



Particles 2024, 7 424

• Precision: this metric focuses on the quality of the model’s positive predictions. It
is particularly relevant when false positives have a substantially more significant
impact than false negatives. It provides deeper insight into the model’s ability to avoid
the erroneous classification of negative examples as positive. Precision is defined
as follows:

Precision =
True Positives

True Positives + False Positives
; (4)

• Recall: this metric, also known as sensitivity, focuses on the model’s ability to identify
positive cases while effectively minimising false negatives. The recall metric is defined
as follows:

Recall =
True Positives

True Positives + False Negatives
; (5)

• F1-score: this metric combines the precision and recall metrics to provide a balanced
measure of model performance. It is particularly relevant when the balance between
accurately identifying positive cases and minimising false positives and false negatives
is essential. The F1-score is defined as follows:

F1-score = 2 ×
(

Precision × Recall
Precision + Recall

)
; (6)

In summary, performance evaluation metrics, including accuracy, precision, recall,
and F1-score, play an essential role in evaluating classification algorithms. They provide
valuable insights into the quality and effectiveness of forecasts, adapting to different needs
and contexts.

4. Experiments, Results, and Discussion

This section describes the experiments conducted in this study and provides a critical
evaluation of the results obtained. Section 4.1 describes the steps involved in processing
and balancing data to create an equitable and reliable data set. Next, Section 4.2 examines
the strategies employed to identify the most informative features of data sets. Subsequently,
Section 4.4 presents the results achieved through the developed models, highlighting their
performance metrics and predictive capacity. Finally, Section 4.5 explores the role and
contribution of the Random Forest algorithm in achieving the study objectives.

4.1. Preparation of the Database for the Experiments

The data sample used in this work is made of almost 3 million well-reconstructed
singly charged events crossing the RICH detector of AMS-02. This sample primarily com-
prises events whose mass is well reconstructed (signal), with a tiny fraction of about one
percent of events whose mass is misreconstructed (background). The disproportion be-
tween the two samples can introduce significant biases in statistical analysis and modelling,
undermining the effectiveness and reliability of ML algorithms. To solve this issue, we
use the RandomUnderSampler technique available on the Imbalanced-learn Python tool-
box [46], which performs a random and strategic selection of samples from the majority
class, reducing their representativeness and, thus, levelling the data set for subsequent
analyses, lowering the disparity between the interest categories (signal and background).
As a result of this balancing procedure, a final data set consists of 33.234 events, 16.617 of
which are signal and 16.617 background.

In the subsequent stage, after balancing, the data set was divided into two sets to
perform the classification task: training data and validation data. The training data set
(70% of the events) is intended for selecting the most relevant characteristics using feature
selection techniques. In comparison, the validation data set (30% of the events) is reserved
for the evaluation and validation of the results obtained.

The described approach is followed for obtaining solid and reliable models capable
of dealing with unbalanced data, selecting the most informative features, and validating
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their effectiveness in independent test environments, thus contributing to more accurate
analyses and informed decisions.

Table A2 details the parameters used in the employed feature selection techniques,
which include Kbest, Random Forest, linear regression, and correlation. We chose to use
the default values of the respective software libraries to ensure reproducible results.

Figure 4 presents a visual comparison between the selected methods for the identified
classes (Charge, Track Position, Beta, Hit number, Photoelectrons, and PMT number). Each
method is represented in an individual graph: the values on the radial axes represent
the percentage of selected features for each class in relation to the number of features
originally contained in the same class, allowing a quick and comprehensive comparative
analysis of the selected features of each method in the different classes. Furthermore,
Table 1 complements this visual representation by listing the number (and percentages) of
the features selected for each class by each technique.

Figure 4. Fraction of features selected by each method out of the six classes discussed in this work.
See text for discussion.

Table 1. Number (and percentages) of the feature selected for each class by the different methods

Charge Track
Position Beta Hit Number Photoelectrons PMT

Number Total

Kbest 6 (86%) 1 (6%) 30 (75%) 20 (77%) 24 (67%) 5 (100%) 86
RF 7 (100%) 16 (100%) 13 (33%) 7 (27%) 28 (78%) 4 (80%) 75

Linear 0 (0%) 0 (0%) 0 (0%) 1 (100%) 0 (0%) 0 (0%) 1
Correlation 7 (100%) 9 (56%) 31 (77%) 23 (89%) 32 (89%) 5 (100%) 107
Bueno et al. 2 (29%) 2 (13%) 1 (3%) 2 (8%) 2 (6%) 1 (20%) 9

The percentage of variables selected by the ML methods for each class strongly de-
pends on the algorithm itself. Nonetheless, there are some classes with a high percentage
of features selected for all the methods used: this hints towards a connection between the
discrimination power of the features and the physics underlying the detection mechanism,
as will be discussed more in detail in Section 4.5.
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4.2. Analysis of Feature Selection Techniques

In this study, a boosted decision tree algorithm (AdaBoostClassifier) was used, with
the parameter number of estimators (n_estimators) set at 100. In addition, k-fold cross-
validation was used, for training and evaluating the models, with k = 10, with k − 1 for
training and the rest for testing [47,48], thus obtaining the average accuracy rate for each
algorithm. The four panels of Figure 5 show the performance of the classification algorithm
trained with the five sets of features obtained with the methods discussed in Section 3.2. For
comparison, the performance of the classifier trained with all the variables in the database
is also computed and labelled as “All”. Table 2 shows the evaluation metrics (accuracy,
precision, F-1 score, and recall) together with the p-value (Shapiro–Wilks test) for the feature
selection techniques used in this work. The number of significant digits has been chosen
based on the uncertainties reported in Table A3.

Figure 5. Boxplots showing the accuracy, precision, F1-score, and recall for the different selection
algorithms used.

Table 2. Mean value of assessment metrics and p-values for the sets of selected features.

Accuracy Precision F-1 Score Recall p-Values
(Shapiro–Wilk)

Kbest 0.911 0.903 0.912 0.923 0.860
RF 0.918 0.911 0.912 0.927 0.871

Linear 0.572 0.548 0.668 0.854 0.792
Correlation 0.918 0.911 0.919 0.927 0.063
Bueno et al. 0.873 0.860 0.876 0.893 0.977

All 0.918 0.911 0.920 0.927 0.395

The Shapiro–Wilk test was applied to our data set to verify the normality hypothesis
and, therefore, determine suitability for parametric or non-parametric tests.The Shapiro–Wilk
test is a general test designed to detect all deviations from normality. The test rejects the
hypothesis of normality when the p-value is less than or equal to 0.05. Failing the normality
test allows to assert with 95% confidence that the data do not fit the normal distribution. All
techniques yield p-values above the 0.05 threshold (see Table 2), corroborating the hypothesis
of normal distribution of our data. However, a closer inspection reveals differences between
their p-values, highlighting distinct distribution profiles for each feature selection technique,
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and underscoring the importance of considering both statistical normality and performance
metrics in the context of the AMS-02 experiment.

For the parametric test, the t-test was used. The t-test is a hypothesis test that uses
statistical concepts to reject or not reject a null hypothesis. This assumption is usually
accepted when the test statistic follows a normal distribution. This parametric method
allows excellent reliability in data analysis with conformity to the normal distribution.
Paired comparisons with the t-test are shown in Table 3, and values less than 0.05 indicate
a statistically significant difference between group results.

Table 3. p-values of the pairwise comparison performed with the t-test for the feature selection
techniques.

Kbest RF Linear Correlation Bueno et al.

RF 0.001 - - - -
Linear 0.000 0.000 - - -

Correlation 0.027 0.704 0.000 - -
Bueno et al. 0.000 0.000 0.000 0.000 -

All 0.002 1.000 0.000 0.658 0.000

The results demonstrate that the features selected by the RF (75 features) and correla-
tion (107 features) techniques do not present statistical differences if all 130 features are used
since comparisons between pairs of results are more significant than 0.05. Therefore, only
the RF and correlation approaches were considered for the following tests and compared
to the approach including all features.

4.3. Quantitative Analysis of Computational Complexity

As shown in the previous section, the RF and correlation techniques do not show
statistically significant differences compared to using the set including all variables. Hence,
it is crucial to understand how these methods differ in processing time, which can be a
limiting factor in practical applications. In this section, we present a quantitative analysis
of computational complexity, specifically focused on the CPU time required to train a BDT.
We compare the performance of the RF, of the correlation algorithm, and of the approach
that employs all 130 features (All). This analysis is carried out on a computer equipped
with an 11th Gen Intel(R) Core(TM) i9-11900KF @ 3.50GHz, 3.40 GHz processor to provide
a solid basis for evaluation.

Table 4 presents the average CPU times used for each technique and their standard
deviation, based on 100 runs, offering a detailed perspective on the variability and con-
sistency between runs. We observe that the time required to train the BDT using the RF,
correlation, and all techniques are, respectively, 659, 644, and 718 s.

Table 4. Average processing time for the RF, and correlation techniques, compared with the perfor-
mance for all features.

Average Time [s] Standard Deviation [s]

RF 659 8.3
Correlation 644 12.6

All 718 9.4

The similarity in processing times among the three techniques indicates that, despite
minor differences, these variations do not result in a notable advantage or disadvantage
in terms of time performance. In essence, selecting a technique based solely on process-
ing time may not be a decisive factor, as all methods are relatively efficient. Therefore,
the choice between the RF, correlation, and all techniques should be based on a compre-
hensive assessment that considers performance both in terms of evaluation metrics and
computational efficiency.
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4.4. Assessment of Predictive Models

To evaluate the implemented models, the validation database previously separated
was used to evaluate the implemented models. It is worth mentioning that the validation
database contains data that were not used in training and, therefore, are unknown to the
models. Figure 6 presents the ROC-AUC metric of the RF and correlation techniques
compared to the “All” approach, using all features. Additionally, Table 5 provides the
values of all metrics for better cross-technique analysis.

Figure 6. ROC-AUC metric for the Random Forest and correlation techniques compared to the one
obtained using all features.

Table 5. Mean value of assessment metrics of result sets.

Accuracy Precision F-1 Score Recall ROC AUC

RF 0.917 0.917 0.917 0.917 0.917
Correlation 0.916 0.916 0.916 0.916 0.917

All 0.921 0.921 0.921 0.921 0.921

Finally, Figure 7 presents the confusion matrix—a confusion matrix is a tabular repre-
sentation typically used in supervised learning to visualise algorithm performance—where
the rows represent actual labels, and the columns represent predicted labels generated by
the analyzed techniques. Classes 0 and 1 correspond to background and signal, respectively.

Figure 7. Confusion matrices for the Random Forest and correlation techniques compared to the one
obtained using all features.
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The comparison of different techniques reveals that the performance metrics ob-
tained for the set of features including all the features available are marginally higher than
the ones obtained for the other two methods. However, detailed analysis in Section 4.2
and Section 4.3 indicates that the set of variables selected by the Random Forest (RF)
and correlation techniques do not exhibit statistical differences compared to the set com-
posed by all features while resulting in lower CPU time. Therefore, employing the set of
75 variables selected by the RF technique can achieve statistically similar outcomes to using
all 130 characteristics while enhancing model generalisation, reducing overfitting risks,
slightly decreasing training time, and boosting computational efficiency.

4.5. Discussion on Performance of Random Forest Algorithm

All the ML feature selection algorithms apart from the linear regression perform
better than the physics-driven selection presented in Bueno et al. [15] both in terms of
evaluation metrics (see Table 2) and in terms of statistical compatibility with the complete
set of variables (see Table 3). In particular, the values of recall, precision, and F1-score
in Table 2 demonstrate improvements in the classification of AMS-02 data compared to
the physics-driven selection approach proposed in Bueno et al. [15]. The higher values
scored for recall for the Kbest, Random Forest, and correlation methods with respect to
the approach of Bueno et al. [15] should be interpreted as a more accurate classification of
signal events (true positives), while the higher precision values mark a reduction in the false
positives. The efficiency in the classification of signal and background events is confirmed
in Figure 6, illustrating that a true positive rate (i.e., signal efficiency) of 92% is achieved
with a false positive rate (i.e., background efficiency, denoted as ϵbkg) of 0.1%. These results
imply a background rejection, defined as 1 − ϵbkg, of 90%, showcasing the impact of the
implemented methods on the data. This performance translates into an efficient separation
of the signal and background events, allowing for a cleaner data sample and, hence, a more
accurate mass reconstruction and identification of deuteron isotopes.

Since the Random Forest method is the best-performing selection technique among
the ML algorithms compared in this work, the set of features selected by this method will
be described in more detail. As shown in Figure 4 and in Table 1, all features in the “Charge”
and “Track Position” classes were selected by the Random Forest algorithm. A fraction of
80% of the features was chosen for the “PMT number” class, and a similar percentage of
77.8% was selected from the “Photoelectrons” class. The classes “Beta” and “Hit number”
had the lowest feature selection percentages, with 32.5% and 26.9%, respectively.

It is worth noting that the classes “Charge”, “Photoelectrons”, and “PMT number”
present minor variability when the results of the different selection methods are compared,
confirming that the power of separation of the variables belonging to these classes is
independent of the underlying characteristics of a particular selection method and is closely
linked to the physical phenomena underlying the RICH detection mechanism.

The features in the classes “Photoelectrons” and “PMT number” are related to the
number of photons detected and used to reconstruct the ring. Because the signal detected
in the PMT plane originates from the Cherenkov photons created by the cosmic ray particle
that hits the radiator plane, the higher the number of photons, the less likely the signal will
be disrupted by noise (Section 3.1). Therefore, variables from these two classes are expected
to behave differently for background and signal events, resulting in a good classification
performance. In particular, events with lower detected “Photoelectrons” or “PMT number”
are more prone to be poorly reconstructed and are expected to be part of the background.

Variables belonging to the “Charge” class are indirectly influenced by the same pro-
cesses. For example, the charge of the reconstructed particle is often higher for background
events than for signal events (see Figure 3) due to the inclusion of additional hits in the
reconstructed Cherenkov ring and the feature’s distribution for background events is more
shifted towards high charge values. Likewise, the Kolmogorov probability, which also
belongs to the class ”Charge”, shows values for background events on average lower than
for signal events since the charge distribution along the ring is not uniform (see Section 3.1).
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Finally, the percentage of features selected for the “Track Position” class has higher
variability, but it is still possible to trace its discrimination power back to the RICH structure.
In particular, the impact point of the extrapolated tracker track on the radiator plane is a
sensitive observable for this study, as also discussed in Bueno et al. [15]. Particles impact-
ing some radiator areas (e.g., tile borders) tend to produce fewer detectable Cherenkov
photons. They are, therefore, more likely to produce a weaker signal subject to incorrect
reconstruction, making it possible to separate background and signal events.

5. Conclusions

An efficient reduction in the background consisting of events whose velocities are
misreconstructed in the RICH detector is needed to identify positive singly charged cosmic
ray isotopes with the AMS-02 detector. ML methods that can be used for this purpose,
such as BDTs, are often trained on a set of features selected on the basis of the knowledge
of the detector and of the classification task. However, ML algorithms can be used to
perform automated feature selection improving the efficiency and accuracy of the analysis.
In this paper, we applied automated feature selection methods to the background reduction
analysis for the identification of cosmic ray deuterons with six months of data collected by
the AMS-02 detector. The aim of the study was twofold: to choose among 130 variables
associated with the RICH detector the best set of features to reject background events
due to misrecontruction of the velocity measured by the RICH detector, and to assess the
potential of these ML techniques in improving the background reduction efficiency in
RICH compared to a traditional physics-driven approach. We used five feature selection
algorithms widely used in the literature, namely Kbest, Random Forest, linear regression,
and correlation, together with the method described in [15] which has the same scope but
uses a set of physically motivated features. We used a boosted decision tree to perform the
classification task and a K-fold cross-validation to validate our results.

We assessed the performance of the six methods with different evaluation metrics and
found that the methods Kbest, Random Forest, and correlation outperform the approach
described in Bueno et al. [15] in terms of accuracy, precision, F-1 score, and recall. More-
over, it is worth noting that only the set of variables selected by the Random Forest and
correlation methods do not present statistical differences when compared to the complete
set of 130 variables. Hence, the Random Forest method stands out as the best-performing
algorithm, since it shows similar performance metrics compared to the complete set of
130 variables while reducing the risk of overfitting and training time and increasing the
computational efficiency. The results obtained from the ML algorithms demonstrate that
there is still some potential for improvement, which is crucial for deuteron identification
due to the critical need to reduce the background composed by events with poorly recon-
structed RICH velocity, as explained in Section 1. We conclude by investigating whether
this ML method also maintains the connection between selected variables and the underly-
ing physical phenomena related to RICH detection mechanisms, finding that the Random
Forest algorithm maintains a meaningful link between selected variables and the physics
of isotope identification.

Finally, the study focuses exclusively on feature selection for BDTs within the context
of the AMS-02 experiment. This approach provides a direct and relevant comparison with
the previous work of Bueno et al. [15]. However, feature selection techniques can also be
applied to a broader spectrum of ML models. Therefore, future work will investigate their
performance across different ML paradigms, thereby seeking to expand the results obtained.
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Appendix A.

Table A1. List of the features used in the analysis.

Class Feature Description

Photoelectrons

Maximum number of p.e. in a PMT including or excluding crossed PMTs
Number of expected p.e. in the absence of a reconstructed Cherenkov ring
Number of p.e. collected inside the Cherenkov ring
Photoelectrons associated to the ring for different windows sizes
Expected number of p.e. for a Z = 1 Cherenkov ring with reconstruction and input parameters of the
current event
Expected number of p.e. for a Z = 1 Cherenkov ring with reconstruction and input parameters of the
current event and β = 1
Number of photons inside the Cherenkov ring
Number of photons outside the Cherenkov ring
Number of p.e. detected in the first 5 PMTs by number of p.e.
Total number of p.e. for β = 1 hypothesis
Total number of p.e. out of the ring for a particle with β = 1

Charge

Reconstructed charge (CIEMAT reconstruction) [29]
Kolmogorov test of the distribution of charge along the ring
Statistical test to check if the hit-by-hit charge is consistent PMT-by-PMT
Expected charge resolution
Expected charge resolution RMS
Reconstructed charge (LIP reconstruction) [28]

PMT number

Number of crossed PMTs
Number of PMTs inside the Cherenkov ring
Expected number of PMTs for a Z = 1 Cherenkov ring with reconstruction and input parameters of
the current event

Hit Number

Total number of hits
Number of hits in the first 5 PMTs by number of p.e.
Total number of hits compatible with β = 1 hypothesis (direct and reflected)
Number of hits out of the Cherenkov ring compatible with β = 1 hypothesis (direct and reflected)
Number of hits inside the Cherenkov ring
Number of hits which are consistent with reflected photons
Distribution for unused hits which do not belong to the PMTs crossed by a charged particle
Number of hits outside the Cherenkov ring

Track Position

Distance from the tracker track [cm] for the first 5 PMTs by number of p.e.
PMT number for the first 5 PMTs by number of p.e.
Tile ID for the tile crossed by the particle
Impact point of the tracker track to the radiator entrance [cm]
Theta of the tracker track to the radiator entrance [rad]
Phi of the tracker track to the radiator entrance [rad]
Distance of the tracker track impact point on the radiator to the border of the radiator tile
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Table A1. Cont.

Class Feature Description

Beta

Reconstructed particle velocity β (CIEMAT reconstruction) [29]
Expected velocity resolution
Expected resolution RMS
Raw β
Refit β
β corrected for impact point and direction
Clusters of signal used for the reconstruction of the (particle) velocity β.
Size of first 10 clusters
Average beta of first 10 clusters
RMS of first 10 clusters
Reconstructed particle velocity β (LIP reconstruction) [28]
β estimated from rigidity

Table A2. Parameters used in each feature selection technique used in this work, together with the
corresponding Python library/method used to implement them.

Techniques Parameters Library/Method

Kbest
score_fun=f_classif, k=10, X=sparse matrix of
shape (n_samples, n_features), y=array-like of
shape (n_samples,)

sklearn.feature_selection.SelectKBest

RF

n_estimators=100, crite-
rion=gini, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weigh_fraction_leaf=0.0,
max_features=sqrt, max_leaf_nodes=None,
min_impurity_decrease=0.0, bootstrap=True,
oob_score=False, n_jobs=None, ran-
dom_state=None, verbose=0, warm_start=False,
class_weight=None, ccp_alpha=0.0,
max_samples=None, monotonic_cst=None

sklearn.ensemble.RandomForestClassifier

Linear

estimator=LinearRegression(), fit_intercept=True,
copy_X=True, positive=False, step=1,
min_features_to_select=1, cv=10, scor-
ing=None, verbose=0, n_jobs=None, impor-
tance_getter=auto

sklearn.feature_selection.RFECV

Correlation method=pearson, min_periods=None, nu-
meric_only=False, threshold=0.005 pandas.DataFrame.corr

Table A3. Uncertainties on assessment metrics for the selected features.

Accuracy Precision F-1 Score Recall ROC AUC

Kbest 0.004137 0.005627 0.004245 0.008718 0.003883
RF 0.006519 0.005536 0.006671 0.010665 0.003592

Linear 0.008393 0.005494 0.006611 0.010761 0.008763
Correlation 0.006291 0.007005 0.006229 0.008382 0.003002
Bueno et al. 0.005628 0.007487 0.005734 0.010649 0.005049

All 0.006056 0.005169 0.006127 0.008921 0.003326
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