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Abstract: In this article, we give a brief review of the origin of the neutrino mass in some interesting
non-linear supersymmetric models with R-symmetry. These models are able to address and solve the
most important problems of particle physics and provide mechanisms for neutrino mass generation
and their mixing parameters in agreement with the current experimental data. Their prediction could
be experimentally tested in the near future by collider experiments.
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1. Introduction

The internal symmetries of the standard model (SM) are described by the gauge group

SU(3)C ⊗ SU(2)L ⊗U(1)Y, (1)

where the subscripts C, L, and Y refer to color, left chirality, and weak hypercharge, respec-
tively. At the weak scale, the electroweak symmetry subgroup

SU(2)L ⊗U(1)Y (2)

is spontaneously broken to
SU(3)C ⊗U(1)em. (3)

This spontaneous symmetry breakdown is driven by an SU(2)L doublet of the scalar
Higgs field defined as

H =

(
h+

h0

)
∼ (1, 2, 1), (4)

with the following vacuum expectation value (vev):

< H > =
1√
2

(
0
v

)
. (5)

The Yukawa coupling
Yf H f̄R fL + hc, (6)

induces Dirac masses for all charged leptons except for neutrinos, which are massless at all
perturbative levels due to the lack of a right-handed neutrino component.

The SM successfully describes the particle phenomenology across the energy scales probed
by the large hadron collider (LHC). However, SM also has some relevant problems such as

1. The coupling constants do not meet at a single definite value.
2. The mass hierarchy problem (MH � MPl).
3. The naturalness or fine tuning problem.
4. The CP-violation and matter anti-matter asymmetry.
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In the field of particle physics, one promising class of theories that could solve the
problems of the SM is formed by the supersymmetric (SUSY) extensions of the SM. More than
30 years ago, the SUSY was discovered in theoretical studies with the minimal supersymmetric
standard model (MSSM) proposed by Pierre Fayet in [1] (see, for more details, e.g., [1,2]).

The arguments in favor of SUSY are based on the belief that more fundamental a
theory is, the higher the internal symmetry it should have [3–5]. This structure is widely
used in string theory where SUSY is promoted to a local symmetry, and the resulting
supergravity demonstrates the unification of gravity with the field theory. But the SUSY
can be used in particle physics without resorting to string theory because it allows for a
simple and natural mechanism to cancel the quadratic divergences. Indeed, since SUSY is a
symmetry between the bosonic states |B〉 and the fermionic states |F〉, there is a negative
sign fermionic contribution at one-loop to the radiative correction of the scalar mass

δm2
s = O

( α

2π

)(
Λ2 + m2

B

)
−O

( α

2π

)(
Λ2 + m2

F

)
= O

( α

2π

)(
m2

B −m2
F

)
. (7)

The cutoff Λ ∼ MP no longer needs fine tuning across a 1032 energy scale. To stabilize
the mass hierarchy, one has to set |m2

B − m2
F| ∼ 1TeV2 (electroweak scale), which is the

main reason to search for masses of superparticles in this range. This has an additional
advantage as it is the mass scale predicted by some dark matter models, where the best
candidates are the lighest neutralinos or sneutrinos. Other useful features of SUSY include
its usefulness in solving the problem of coupling constants within the grand unified theory
(GUT) framework.

As is known, the GUT models based on the gauge group SU(5) and SO(10) do not
have an intersection of the three gauge couplings, display proton instability, and have a GUT
hierarchy problem that involves the electroweak (light) and the GUT (heavy) Higgs bosons.
In the supersymmetric GUT models, the free parameters are tuned to avoid predictions
that are already falsified by data and the GUT hierarchy problem is completely solved.

Regarding CP violation, we know that in SM, CP violation comes from the quark
sector. On the other hand, in the SUSY models, there are several new CP violation phases,
derived from the gluino [6], neutralino [4], and Higgs fields [7,8].

Another reason to look for theories and models beyond SM is that some experi-
mental and observational results have not found a satisfactory explanation within the
SM framework, e.g.,

1. Neutrinos are massive and they oscillate.
2. The muon anomalous magnetic moment.
3. Dark matter.
4. Dark energy.

The shortcomings of the SM invite the construction extensions that can solve its
problems. From another perspective, a fundamental theory must predict the unification of
the gravitational interaction with the other three fundamental interactions and must solve
all of the above puzzles as well as commonly asked questions in general relativity, such as
the dark energy, that can be addressed and solved in SUSY models [9,10].

Recently, the SUSY models have been confronted with experimental data from the LHC.
While no direct evidence of sparticles has been found yet, the weak scale SUSY is supported
by virtual quantum effects (radiative corrections). Let us review the relevant data sets [11]:

1. The precision calculation of mW versus mt has been improved in MSSM to the level of
SM prediction for mW in the decoupling limit where the masses of all supersymmetric
particles are large. Comparing the MSSM result and the SM calculation as a function of
the Higgs-boson mass with the experimental values of mW and mt, a slight preference
for non-zero SUSY contributions was found in [12].

2. The electroweak symmetry is broken correctly in MSSM at a weak scale due to the
large value of the top Yukawa coupling that gives negative values to the soft term m2

H
under the RG run [13–17].
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3. As mentioned above, at the mGUT scale, the SM gauge couplings meet with each
other, which does not happen in the SM.

4. The MSSM predicts the interval 115–135 GeV for the Higgs boson mass, which was
detected at 125 GeV. On the other hand, the best prediction given by the SM is
mH ≤ 1 TeV.

Therefore, SUSY is a good candidate for SM expansion because it represents a coherent
framework for unifying fundamental interactions based on gauge symmetry and can
explain the origin of the weak scale. Besides these arguments, it is also understood that
SUSY cannot yet be rejected as a fundamental principle of nature since all data obtained
at the LHC are interpreted within the framework of simplified SUSY models and for
low-energy particles. The absence of sparticles at a weak scale could simply indicate
that SUSY exists above the TeV scale, which is most likely correct since the masses of the
sparticles depend on the supersymmetry breaking terms and can have values above the TeV
scale. Models with heavy gauginos have been presented in [18,19]. For a recent discussion
of exact unification at scales above TeV, see [20].

Another interesting feature of SUSY is that it can explain the nature of dark matter.
One exciting avenue to explore involves the lightest and most stable supersymmetric
particles that may be part of the remnants of the early universe. Stability is guaranteed
in supersymmetric models by the R-parity, which is a conserved quantum number that
can take values ±1, and by the fact that there are no states in which the lightest particles
can decay. The R-parity embedded into the larger R-symmetry, and SUSY models with
R-symmetry contain sparticles that are viable candidates for dark matter.

In this paper, we review the relation between neutrinos and R-symmetry in sev-
eral non-minimal SUSY models: MSSM with R-Parity violation, NMSSM, MSSM3RHN,
µνSM, SUSYB-L, SUSYLR, and two SUSYGUTS models. (For a detailed discussion of one
of these models, see [21]). With the recent experimental bounds in the minimal SUSY
models from the LHC, there has been a revival of interest in non-minimal models with
R-symmetry [22,23]. Concerning the neutrino properties and SUSY models, the bounds on
SUSY and new physics calculated by using experimental constraints related to neutrino
decay can be found in [24–27]. Although we do not compare calculations with experi-
mental data, for the interested reader, we mention here that the experiments on the direct
measuring of neutrino mass have been reviewed in [28], with some of new proposals
presented in [29,30]. In addition to addressing neutrino problems, R-symmetric models
also provide an effective framework for modeling dark matter with gaugino mass through
R-symmetry breaking [31]. While our focus here is to review the relationship between
the neutrino masses and R-symmetry, it is worth noting that other phenomenologically
motivated models can be used to discuss the dark matter particles. For example, the
331-models and their supersymmetric extensions, initially develop to solve the number of
families problem [32–34], have been used to calculate neutrinos masses [35,36] and, more
recently, to address the dark matter at TeV scale [37].

When considering phenomenological models of neutrinos, several important ques-
tions need to be clarified. Two important aspects are numerical analysis and data matching,
as well as normal and reversed hierarchical ordering. In the R-symmetry models discussed
here, the approach to these two problems varies from analysis to analysis, and most infor-
mation can be found in the original references. In general, the naturalness principle for
the weak scale is implemented through the specific family dependent pattern of super-
symmetry breaking masses. In the case of the 331-models mentioned above, a description
of the numerical analysis of how the data are exactly matched can be found in [35,36].
Additionally, the first of these two references studies the normal hierarchy, and the second
studies the inverted hierarchy.

2. Neutrinos Mass

Historically, the main phenomenological reason to introduce the neutrinos mass was
the solar neutrino problem, which basically states that the ratio between the flux of electron



Particles 2023, 6 978

neutrinos detected by electron neutrinos predicted is roughly around one half but can be as
low as one third [38] (for a recent review, see e.g., [39]). Several crucial experiments have
supported the idea that there are three neutrino flavors of low masses at eV scale (<0.12 eV)
and that they participate to weak and gravitational interactions. Since the neutrino is a
spin-half electrically neutral particle, it can be described by a Majorana field with the anti-
neutrino characterized by the opposed helicity. The unknown nature of the neutrino that
could be a Dirac or a Majorana spinor is currently the subject of experimental investigations
at CUORE [40], GERDA [41], MAJORANA [42], SNO+ [43], and EXO [44]. The experimental
results suggest that the neutrinos have non-zero masses and oscillations. The best-fit values at
the 1σ error level for the neutrino oscillation parameters in the three-flavor framework are [45]

sin2 θ12 = sin2 θsolar = 0.310+0.013
−0.012 , ∆m2

21 = ∆m2
solar = 7.39+0.21

−0.20 × 10−5 eV2,

sin2 θ23 = sin2 θatm = 0.563+0.018
−0.024 , |∆m2

23| = ∆|m2
atm| = 2.454+0.029

−0.031 × 10−3 eV2,

sin2 θ13 = sin2 θCHOOZ = 0.223+0.066
−0.065 . (8)

3. R-Symmetry

We start off by recalling the important observation that SM has two accidental symme-
tries, U(1)L and U(1)B, specifically the lepton and baryon numbers, in addition to its gauge
symmetries. U(1)L and U(1)B are responsible for the stability of nucleons under decay
into light leptons and for the existence of Dirac neutrinos. In general, the conservation of
U(1)L implies that the neutrinos are Dirac, whereas if U(1)L is broken, the breaking pattern
determines the nature of the neutrinos [46]. In the SM model, all interactions conserve
both discrete symmetries. However, models beyond SM do not need to conserve U(1)L
or U(1)B, as is the case with several SUSY models that contain interactions that violate
either U(1)L or U(1)B, or both. Therefore, it is necessary to impose a discrete symmetry to
obtain a model in which all interactions do not violate L and B conservation. This discrete
symmetry is now called R-symmetry, and it was introduced independently by A. Salam
and J. Strathdee [22] and P. Fayet [23].

Let us recall the R-symmetry. Consider the commutation relations involving the
fermionic generators of the super-Poincaré algebra{

Qα, Qβ

}
=

{
Q̄α̇, Q̄β̇

}
= 0 ,

[Qα, Pm] = [Q̄α̇, Pm] = 0 ,{
Qα, Q̄α̇

}
= 2σm

αα̇Pm ,

[Mmn, Qα] = i(σmn)α
βQβ ,[

Mmn, Q̄α̇
]

= i(σ̄mn)
α̇

β̇Q̄β̇ . (9)

where m, n are space-time indices and α, β are spinor indices. We denote by Mmn = −Mnm
the generators of Lorentz transformations and by Pm the generators of translations. In the
N = 1 version of SUSY, we have one Weyl conserved charge Qα along with its conjugate Q̄α̇.
Also, σmn = i

4 (σmσ̄n − σnσ̄m), with σm representing the Pauli sigma matrices. A pedagogical
presentation of SUSY geared towards phenomenology can be found in [47].

The R-symmetry U(1)R is a symmetry of the super-algebra (9) defined by the following
commutation relations:

[Pm, R] = [Mmn, R] = 0 , (10)

[Qα, R] = Qα , (11)[
Q̄α̇, R

]
= −Q̄α̇ . (12)

The above commutators imply that

Qα → Q′α = e−iδQα , (13)
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Q̄α̇ → Q̄′α̇ = eiδQ̄α̇ , (14)

which means that the R-charges of Q and Q̄ are −1 and +1, respectively.
In order to construct models with R-symmetry, it is necessary to define the action

of the U(1)R operator on the superspace and superfields. Let us denote the generator of
R-symmetry acting on the superspace functions by R and the superspace coordinates by
{x, θ, θ̄} [48]. Then, the action of R on the fermionic coordinates θ and θ̄ is given by the
following relations:

R : θ → θ′ = e−iδθ , θ̄ → θ̄′ = eiδ θ̄. (15)

Hence, the R-charges of fermionic variables take discrete values R(θ) = −1 and
R(θ̄) = 1. The R-charges of various fields are summarized in the following table:

mathematical objects Q Q̄ θ θ̄ d2θ d2θ̄

R− charges −1 +1 +1 −1 −2 +2 .
(16)

The basic objects of the SUSY models are the superfields that live in the superspace.
The operator R acts on the chiral Φ(x, θ, θ̄), anti-chiral, Φ̄(x, θ, θ̄) and vector superfields
V(x, θ, θ̄) as follows:

RΦ(x, θ, θ̄) = e2inΦδΦ(x, e−iδθ, eiδ θ̄),

RΦ̄(x, θ, θ̄) = e−2inΦδΦ̄(x, e−iδθ, eiδ θ̄),

RV(x, θ, θ̄) = V(x, e−iδθ, eiδ θ̄). (17)

where 2nΦ is the R-charge of the chiral superfield. The vector superfield is inert under
R-symmetry. The above relations show that, in general, the terms of the superpotential
have charges 2, which is two times the charge of dθ. Here and in what follows, we are using
the conventions and basic results from [48].

The relations (17) show that all models with discrete R-symmetries based on ZN

should take into account the allowed values of the R-charges of superfields, which impose
constraints on their components. Consider, for example, the chiral superfield defined
by the equation

D̄α̇Φ = 0 , (18)

which has the following decomposition:

Φ = A(y) +
√

2θψ(y) + θθF(y) . (19)

From the R-symmetry, we obtain the following relations between the charges R(Φ)
and R(A), R(ψ), and R(F):

R(A) = R(Φ) , R(ψ) = R(Ψ)− R(θ) , R(F) = R(ψ)− 2R(θ) . (20)

Thus, the superpotential that corresponds to the θθ factor has a charge of either
0 mod 2 or 2R(θ) mod 2, which prohibits the use of Z2 as the R-symmetry group.

The master Lagrangian of a supersymmetric model has the following general form:∫
d4x
{∫

d4θK(Φ̄ie2gV , Φj) +

[∫
d2θ

(
W(Φ) +

1
4

WαWα

)
+ hc

]}
. (21)

where the first term is known as the Kähler potential and has the general form K(Φ̄, Φ),
W(Φ) is the superpotential, and the last term describes the supersymmetric Yang–Mills
action with

Wα = − 1
8g

D̄D̄e−2gV Dαe2gV , (22)
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W̄α̇ = − 1
8g

DDD̄α̇e−2gVe2gV . (23)

The master Lagrangian is invariant under the R-symmetry. By expanding the action
from the Equation (21) on components, we obtain∫

d4x
[∫

d4θΦ̄iΦi + d2θ

(
λiΦi +

mij

2
ΦiΦj +

gijk

3
ΦiΦjΦk

)
+ hc + . . .

]
, (24)

where mij and gijk are parameters symmetric in all their indices and . . . stands for higher
terms from the Yang–Mills lagrangian. The Equation (24) displays the invariance of the
Kähler potential under R-symmetry. On the other hand, the R-symmetry can be broken by
the superpotential term.

As an example of a supersymmetric model with R-symmetry, we mention here the su-
persymmetric quantum electrodynamics (SQED) model that contains two chiral superfields
that have the following transformation properties under the R-symmetry

Φ′+ = e−2ieΛΦ+, RΦ+ = e2inΦ+,

Φ′− = e2ieΛΦ−, RΦ− = e−2inΦ− . (25)

Here, Λ is another chiral superfield and e is the U(1) charge. The SQED lagrangian is
given by [48]

LSQED =
1
4

(∫
d2θWαWα +

∫
d2θ̄W̄ α̇W̄α̇

)
+
∫

d4θΦ̄+e2eVΦ+ +
∫

d4θΦ̄−e2eVΦ−

+ M
(∫

d2θΦ+Φ− +
∫

d2θ̄Φ̄+Φ̄−

)
. (26)

One can easily verify that LSQED is invariant under R-symmetry defined by
Equations (17) and (25) above.

3.1. Continuous R-Symmetry in MSSM

MSSM is the simplest SUSY model that extends the field content of the SM by a minimal
set of fields, and it has been used as a main model in the investigations of supersymmetry
(see, for a recent review, e.g., [49]). The superpotential of MSSM has two terms

W2 = µεĤ1Ĥ2 + µ0aεL̂aL Ĥ2,

W3 = f l
abεL̂aL Ĥ1ÊbR + f u

ij εQ̂iLĤ2ÛjR + f d
ijεQ̂iLĤ1D̂jR

+λabcεL̂aL L̂bLÊcR + λ′iajεQ̂iL L̂aLD̂jR + λ′′ijkD̂iRÛjRD̂kR. (27)

The chiral supermultiplet contains three families of left-handed quarks denoted by QiL,
three families of leptons LiL, and the Higgs field H1. The anti-chiral supermultiplet has three
families of right-handed quarks, denoted by uiR and diR; three families of right-handed
leptons liR; and another Higgs field H2.

In order to analyze the R-symmetry of MSSM, one makes the assumption that

for : H1, H2 nH1 = nH2 = 0
for : Q, u, d, L, E nQ = nu = nd = nL = nl =

1
2 ,

(28)

where the R-charges are defined in Equation (17). Then, the R-symmetry acts on the
components of the fields as follows:

H1,2(x) R7−→ H1,2(x) , H̃1,2(x) R7−→ e−iα H̃1,2(x),

f̃L(x) R7−→ eiα f̃L(x) , f̃R(x) R7−→ e−iα f̃R(x),
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Ψ(x) R7−→ Ψ(x). (29)

This shows that the scalars H1,2 and all the standard fermions are invariant under
R-symmetry. One can easily see that the terms from the superpotential that conserve the
R-symmetry are given by

W = µεĤ1Ĥ2 + f l
abεL̂aL Ĥ1ÊbR + f u

ij εQ̂iLĤ2ÛjR + f d
ijεQ̂iLĤ1D̂jR . (30)

It is important to note here that in MSSM all charged fermions receive masses at
tree-level. However, the neutrinos are massless as in the SM.

The neutrinos can be given masses in the presence of the unbroken R-symmetry in
a minimal R-supersymmetric standard model (MRSSM) that generalizes MSSM. In the
MRSSM, the Higgs sector is enlarged by Ru and Rd multiplets, which produce µ-terms with
Hu and Hd. The R-symmetry is preserved due to the vevs of Higgs fields, which break the
electroweak symmetry. More concretely, both H1,2 have nH = 0, and the particle content of
the MSSM is enlarged in the following way:

R̂d ∼
(

1, 2,+
1
2

)
, nRd = 2,

R̂u ∼
(

1, 2,−1
2

)
, nRu = 2, (31)

The adjoint chiral superfields Ô, T̂, and Ŝ, and their R-charge, are zero. The superpotential
of this model is

W = µd
(

R̂d · Ĥ1
)
+ µu

(
R̂u · Ĥ2

)
+ Λd

(
R̂d · T̂

)
Ĥ1 + Λu

(
R̂u · T̂

)
Ĥ2 + λdŜ

(
R̂d · Ĥ1

)
+ λuŜ

(
R̂u · Ĥ2

)
− f l

abεL̂aL Ĥ1ÊbR − f u
ij εQ̂iLĤ2ÛjR − f d

ijεQ̂iLĤ1D̂jR , (32)

where the complex triplet is defined as follows:

T̂ ∼

 T̂0√
2

T̂+

T̂− − T̂0√
2

 . (33)

In MRSSM, the neutrinos acquire Majorana masses [50–53]. The Majorana neutrino
mass term is given by

H1H1LiLj. (34)

Other interesting features of the MRSSM are the absence of gaugino masses, µ-terms,
and trilinear A-terms, which are forbidden by R-symmetry. R-symmetry can also be used
to preserve Dirac gauginos since the massless gauginos and Higssinos are ruled out by
data. For a study of lepton flavor violation, see [54].

3.2. A Problem of Continuous R-Symmetry—Discrete R-Parity

We already mentioned that the vector superfield V is invariant under R-symmetry.
However, the field components of the vector superfield transform as

Am(x) R7−→ Am(x)

λ(x) R7−→ eiαλ(x)

λ̄(x) R7−→ e−iαλ̄(x)

D(x) R7−→ D(x)

. (35)
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In order to break the supersymmetry, Girardello introduced a mass term for gauginos
of the following form [55]:

mλ

(
λλ + λ̄λ̄

)
, (36)

that transforms under the R-symmetry (35) as follows:

mλ

(
e2iαλλ + e−2iαλ̄λ̄

)
. (37)

From the relations (35), one can see that the mass term given by the Equation (36) is
not invariant under the R-symmetry.

The soft breaking of supersymmetry suggests replacing the continuous R-symmetry
by a discrete R-symmetry called R-parity, whose operator on superfunctions is denoted
by Rd. The R-parity solves the above problem by setting α = π. In the supersymmetric
models with R-parity, the gluinos and other gauginos become massive.

Given the following values of R-charges

nH1 = 0, nH2 = 0, nL =
1
2

, nQ =
1
2

,

nE = −1
2

, nU = −1
2

, nD = −1
2

, (38)

the allowed terms in the superpotential are

W = µεĤ1Ĥ2 + f l
abεL̂aĤ1 l̂c

b + f u
ij εQ̂i Ĥ2ûc

j + f d
ijεQ̂i Ĥ1d̂c

j . (39)

The above superpotential defines the known MSSM. As in the Equation (30) above, all
the neutrinos are massless at all orders of perturbation theory. However, by choosing the
following values for R-charges

nH1 = nH2 = nL = nl = 0,

nQ = −nu = −nd =
1
2

, (40)

the allowed terms that define the new superpotential are

WH = µεĤ1Ĥ2 + µ0aεL̂a Ĥ2 + f l
abεL̂aĤ1 l̂c

b + f u
ij εQ̂i Ĥ2ûc

j + f d
ijεQ̂i Ĥ1d̂c

j

+λabcεL̂a L̂b l̂c
c + λ′iajεQ̂i L̂ad̂c

j . (41)

As shown in [56–58], the superpotential (41) generates neutrino masses, which were cal-
culated numerically in [36], and the values of the mixing parameters were obtained in [59].

The R-parity plays an important role in the baryon B and lepton L numbers violation
in the MSSM. The most general superpotential of the MSSM contains interacting terms
that violate the baryon and lepton numbers. In order to remove these terms, which are not
allowed by the SM, the R-parity is invoked. The general form of the R-parity in terms of B
and L numbers is

R = (−1)3(B−L)+2S = (−1)2S M,

where M is the matter parity and takes the following values:

M = +1 for Higgs and Gauge superfields
M = −1 for matter superfields .

(42)

This remark is important for the construction of SUSYB-L models.

3.3. Nelson–Seiberg Theorem

Since the SUSY is not directly observed in nature, one has to consider that it is a broken
symmetry. One important class of models that displays the dynamical SUSY breaking of
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strongly coupled gauge theories at low-energies is the generalized O’Raifeartaigh models,
which are weakly coupled Wess–Zumino models in which the SUSY is broken by vevs
of tree-level F-term [60]. The generalized O’Raifeartaigh models are a particular case of
generic calculable models that obey the following Nelson–Seiberg theorem [61]:

Theorem [Nelson–Seiberg]. The necessary and sufficient conditions for SUSY breaking at the
true vacuum in a Wess–Zumino model with a generic superpotential are:

• Necessary: The model must have an R-symmetry.
• Sufficient: The R-symmetry should be spontaneously broken.

Here, the term generic refers to the property that the superpotential must contain all
renormalizable terms with complex coefficients. The Nelson–Seiberg theorem has been
revisited lately in [62,63], and counterexamples have been found in [64,65].

The theorem relates the global U(1)R group to the SUSY breaking by the following
argument. Since the superpotential R-charge is 2, then it has the following form:

W = φ
2

R(φn)
n g

 φi

〈φi〉
R(φi)
R(φn)

, (43)

where i = 1, 2, . . . , n denotes the fields. However, the SUSY vacuum is a stationary point
of the system

∂W(φi)

∂φj
= 0, (44)

for all i, j. Then, it is easy to see that the effective Equation (44) is reduced to a system of
n− 1 equations with n unknowns, which does not admit a solution, in general. Therefore,
one cannot determine a supersymmetric vacuum, which leads to the conclusion that in the
presence of the R-symmetry, the SUSY must be spontaneously broken.

4. Next to Minimal Standard Model

The SUSY breaking term of MSSM depends on the mass µ of H1 and H2 fields, which,
at its turn, is constrained by phenomenology to be of the order of SUSY breaking scale
µ µ ' mSUSY. This is known as the µ- problem since it links the electroweak scale de-
termined by Higgs fields vevs to mSUSY. In order to solve the µ-problem, the MSSM is
modified by introducing a scalar field, which couples to H1 and H2 through Yukawa cou-
plings and whose vev is determined by the soft SUSY breaking terms. This model is known
as the next-to-minimal supersymmetric standard model (NMSSM), and it was reviewed in
detail in [66].

The scalar field S of the NMSSM is a component of a the new singlet superfield

Ŝ ∼ (1, 1, 0), (45)

which can be written as a chiral superfield [21]

Ŝ(y, θ) = S(y) +
√

2θS̃(y) + θθFS(y). (46)

Here, the vev of the scalar field S is taken to be

〈S〉 ≡ x√
2

. (47)

The fermionic field S̃, defined by the Equation (46), is known as singlino.
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The most general superpotential that contains the singlet extension of MSSM is given
by the following relation: [49]

WGSEMSSM = WH +
(

ξF M2
n

)
Ŝ + λ

(
Ĥ1Ĥ2

)
Ŝ + λi

(
ˆ̃Li Ĥ2

)
Ŝ

+
µ2

2
(
Ŝ
)2

+
κ

3
(
Ŝ
)3, (48)

where WH is defined by the Equation (41). The parameters λ, κ are the Yukave parameters
and, together with ξF, which determines the SUSY mass term, are dimensionless, while the
parameters µ2 and Mn have mass dimensions.

The NMSSM can be obtained either from super-GUT models or from superstring E(6)
models [21,49]. To obtain NMSSM, one needs to set

µ = µ0i = ξF = µ2 = λ′′ijk = 0. (49)

Then, the superpotential takes the following form:

WNMSSM =
3

∑
i,j=1

[
f l
ij
(

Ĥ1 L̂i
)
l̂c
j + f d

ij
(

Ĥ1Q̂i
)
d̂c

j + f u
ij
(

Ĥ2Q̂i
)
ûc

j

]
+ λ

(
Ĥ1Ĥ2

)
Ŝ + λi

(
ˆ̃Li Ĥ2

)
Ŝ +

κ

3
(
Ŝ
)3

+
3

∑
i,j,k=1

[
λijk
(

L̂i L̂j
)
l̂c
k + λ′ijk

(
L̂iQ̂j

)
d̂c

k

]
. (50)

The superpotential that generates neutrino masses in NMSSM was given in [67], where
the following function was proposed:

WNMSSM =
3

∑
i,j=1

[
f l
ij
(

Ĥ1 L̂i
)
l̂c
j + f d

ij
(

Ĥ1Q̂i
)
d̂c

j + f u
ij
(

Ĥ2Q̂i
)
ûc

j

]
+ λ

(
Ĥ1Ĥ2

)
Ŝ + µi

(
ˆ̃Li Ĥ2

)
+

κ

3
(
Ŝ
)3

+
3

∑
i,j,k=1

[
λijk
(

L̂i L̂j
)
l̂c
k + λ′ijk

(
L̂iQ̂j

)
d̂c

k

]
. (51)

From WNMSSM, just one massive neutrino is generated as in MSSM with R-parity
violation terms. All of the conclusions presented after Equation (41) still hold in this case.

An important conclusion is that, if we want to generate masses for all neutrinos at
tree level, we need to introduce three right-handed neutrinos. We discuss this case in some
detail below.

5. Minimal Supersymmetric Standard Model with Three Right-Handed Neutrinos

The simplest supersymmetric model to explain the masses of the left-handed neutrinos
is known as the minimal supersymmetric standard model with third generation right-
handed neutrinos (MSSMRH). The particle content of this model is the same as MSSM
with the addition of the right-handed neutrinos N̂i ∼ (1, 0) (see, e.g., [4,68–70]). The
superpotential of the MSSMRH is given by

WMSSMRH = WH +
1
2

Mn
ijN̂i N̂j +

1
3

f n
ij
(
εĤ2 L̂i

)
N̂j + hc, (52)

where WH is defined by the Equation (41). For this model, the R-charges are given by
Equation (40) together with the condition nN = 0.

In this MSSMRH model, the masses of neutrinos are obtained from the following terms:

−
{

1
2

[
µ0i(εH2Li) + Mn

ijNi Nj

]
+

1
3

f n
ij (εH2Li)Nj

}
+ h.c.. (53)
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Here, Mn
ij are the symmetric Majorana mass matrices and f n

ij are the sources of the
Dirac masses. The MSSMRH model is interesting because it can generate mass to all
neutrinos at the tree level and explain all mixing data about neutrinos, as shown in [71].

If we consider Z3-symmetry that acts on the chiral superfields by multiplying them
with a real phase factor

Φ→ exp
(

2πω

3

)
Φ, (54)

where ω is an entire number, then the Majorana masses can be avoided and only the Dirac
mass term survives

1
3

f n
ij (εH2Li)nc

j . (55)

In order to explain the lightness of the neutrino masses, one must have f ≤ 10−12 [72].

6. µ from ν Supersymmetric Standard Model (µνSSM)

The MSSM as well as MSSMRH models suffer from the µ-problem [73], which can
be formulated as the generation of a µ coupling in the µĤ1Ĥ2 term of the order of the
electro-weak scale. The µ-problem is solved by NMSSM, as discussed above. From the
point of view of neutrino oscillations, NMSSM is not interesting because its neutrinos
are massless [4]. Nevertheless, one can construct a non-minimal SUSY model that solves
the µ-problem and at same time gives masses to all neutrinos. This is called µ from ν
supersymmetric standard model (µνSSM), and it was proposed in [74].

The superpotential of µνSSM can be obtained by requiring that it be invariant under
Z3-symmetry; see Equation (54) above. This leads to the following formula:

Wµνsuppot = f l
abεL̂aĤ1Êb + f u

ij εQ̂i Ĥ2Ûj + f d
ijεQ̂i Ĥ1D̂j

+
1
3

3

∑
i,j=1

[
f n
ij
(
εĤ2 L̂i

)
N̂j + hn

i
(
εĤ2Ĥ1

)
N̂i + κn

ijk N̂i N̂jN̂k

]
. (56)

This superpotential is consistent with the phenomenological models derived from the
superstring theory, and it provides the following neutralino mass matrices[

M7×7 m3×7
mT

3×7 03×3

]
(57)

The µνSSM model has Majorana neutrinos. Therefore, several processes as the double
beta decay can take place without neutrinos. More details can be found in [21].

7. Supersymmetric B-L Model

Right-hand neutrinos at the TeV scale can be naturally obtained in the supersymmetric
B-L(SUSYB-L) extension of the SM, which is one of the simplest non-linear class of models
beyond SM that provide a viable and testable solution to the neutrino mass. The SUSYB-L
model can also account for the experimental results of the light neutrino masses and their
large mixing angles.

The emph B-L number defined as the baryon minus lepton numbers can be obtained
from a gauge symmetry that is broken at the TeV scale [75,76], which is the SUSY breaking
scale necessary to explain the hierarchy problem in MSSM. In the SUSYB-L, as in MSSM, the
Higgs potential receives large radiative corrections that induce spontaneous B-L symmetry
breaking at the TeV scale, in analogy to the electroweak symmetry breaking in MSSM [75].
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The SUSYB-L model has new complex phases in the leptonic sector that can generate
lepton asymmetry that is converted to baryon asymmetry [76]. The relevant terms from the
Lagrangian that are responsible for this process are the soft SUSY-breaking terms [77,78]

Lsoft =
m̃2

n
2
(

Ñ
)†Ñ +

B2
n

2
ÑÑ + AnYn

(
εL̃H2

)
Ñ + h.c. (58)

The above Lagrangian describes the mixing between the sneutrino Ñ and the anti-
sneutrino Ñ†. The CP violation phase in this mixing generates lepton asymmetry in
the final states of the Ñ-decay. This is converted into baryon asymmetry through the
sphaleron process [79].

The Minimal B-L Supersymmetric Model

The light neutrino masses can be obtained from the minimal gauged U(1)B−L that is
invariant under the following gauge group:

SU(2)L ⊗U(1)Y ⊗U(1)B−L. (59)

This model violates the R-parity [80]. The matter chiral supermultiplets for leptons
and their SU(2)L, U(1)Y, and U(1)B−L quantum numbers are given by

L̂i ∼ (2,−1,−1), Êi ∼ (1, 2, 1), N̂i ∼ (1, 0, 1). (60)

Given the above matter content, the superpotential takes the following form:

WBL = f l
abεL̂a Ĥ1Êb + f u

ij εQ̂i Ĥ2Ûj + f d
ijεQ̂i Ĥ1D̂j +

1
3

3

∑
i,j=1

f n
ij
(
εĤ2 L̂i

)
N̂j. (61)

Once the R-parity is broken, the neutralinos and neutrinos can mix as in MSSM. Due
to this mixing, all neutrinos masses are generated via the see-saw mechanism. The main
arguments for the generation of light neutrino masses are given in [80]. Let us briefly recall
them. By breaking the R-parity, the neutralinos and neutrinos mix. The relevant fields are(

ν, νc, B̃, B̃′, W̃0
L, H̃0

d , H̃0
u

)
.

One particular simple case is given by the vev vL → 0 and YD
ν << 1 . Then,

Mν = MI
ν + MR

ν ,

where the vevs of the Higgs doublets are〈
H0

u

〉
=

vu√
2

.
〈

H0
d

〉
=

vd√
2

,

Here, MI
ν is the see-saw contribution and MR

ν is obtained from the R-parity violation
term. These two contributions have the form

MI
ν =

1
2

YD
ν M−1

νC

(
YD

ν

)T
v2

u , MR
ν = mM−1

χ̃0 mT

where

MνC ≈
(

MBL +
√

4M2
Z′ + M2

BL

)
/2 , m = diag

(
0, 0, 0, 0, YD

ν vR/
√

2
)

.

In the above formula, Mχ̃0 is the neutralino mass matrix, which is calculated as in
the MSSM. The main conclusion is that the light neutrino masses are obtained from the
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R-symmetry breaking in the minimal SUSYB− L model. For more details, we refer to the
original paper [80].

8. Supersymmetric Left–Right Model

The minimal SUSYB-L model discussed in the above section is not the only one that
can explain the light neutrinos. The SUSYLR model represents a different proposal, which
can also solve the strong CP problem [81]. In the SUSYLR model, the gauge symmetry
group is

SU(2)L ⊗ SU(2)R ⊗U(1)B−L. (62)

The lepton content of SUSYLR is different from the lepton content of MSSM, where the
left-handed fermions belong to the doublet representation, while the right-handed fermions
are singlets of SU(2)L. Here, both left-handed and right-handed leptons are doublets in the
corresponding SU(2) gauge groups

L̂i ∼ (2, 1,−1), L̂c
i ∼ (1, 2, 1). (63)

In the literature, two different SUSYLR models have been discussed: the first one uses
SU(2)R triplets (SUSYLRT) [82], and the second one has SU(2)R doublets (SUSYLRD) [83].
Since the neutrinos in SUSYLRD are massless, we will not discuss the details of this
model here.

The scalars of the triplet model (SUSYLRT) are

∆̂L ∼ (3, 1, 2), ∆̂′L ∼ (3, 1,−2),

δ̂c
L ∼ (1, 3,−2), δ̂′cL ∼ (1, 3, 2),

Φ̂ ∼ (2, 2, 0), Φ̂′ ∼ (2, 2, 0). (64)

The most general superpotential W is given by [82]

W = M∆Tr(∆̂L∆̂′L) + Mδc Tr(δ̂c
L δ̂′cL ) + µ1Tr

[
(iσ2)Φ̂(iσ2)Φ̂

]
+ µ2Tr

[
(iσ2)Φ̂′(iσ2)Φ̂′

]
+ µ3Tr

[
(iσ2)Φ̂(iσ2)Φ̂′

]
+ fabTr

[
L̂a(iσ2)∆̂L L̂b

]
+ f c

abTr
[
L̂c

a(iσ2)δ̂
c
L L̂c

b
]

+ hl
abTr

[
L̂aΦ̂(iσ2)L̂c

b
]
+ h̃l

abTr
[
L̂aΦ̂′(iσ2)L̂c

b
]
, (65)

where hl , h̃l are the Yukawa couplings for the leptons. This model can be embedded in
a supersymmetric grand unified theory (SUSYGUT) with SO(10), some of which will be
briefly discussed in the Section 9.

The masses of neutrinos in the SUSYLRT are given by the following matrix [84]:

Mν
ab =

1√
2

[
k1hl

ab + k′2h̃l
ab

]
(νaνc

b + hc) +
υR√

2
f c
ab(ν

c
aνc

b + hc)

− υL√
2

fab(νaνb + h.c.). (66)

This result is in agreement with the one given in [85] for υL = 0.

9. Supersymmetric Grand Unification Theory

In the standard minimal SUSYGUT scenario, the models have both the supersymmetry
and the unified gauge symmetry at the unification scale. The main properties of a finite
SUSYGUT are [86]

1. The number of generations is fixed by the requirement of finiteness.
2. There are various realistic possibilities given by the gauge groups SU(5), SU(6),

SO(10), and E(6).

The last point above leads to a series of models that are compatible with SUSYGUT. Below,
we will give a very brief overview of the two supersymmetric grand unification models
that provide masses for neutrinos SU(5)RN and SO(10)M.
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9.1. SU(5) Grand Unified Model with Right-Handed Neutrinos SU(5)RN

There are some very good reviews of the SU(5) SUSY model on [87,88]. The SUSYGUT
model with the SU(5) gauge group solves observational difficulties arising from the proton
decay channel [89]

p −→ K+νc.

Additionally, neutrinos are massless, and the lepton region must be modified to
provide a mechanism capable of giving mass to neutrinos. For a discussion of the challenges
posed by the SU(5) model, see [90].

In SU(5) grand unification model with right-handed neutrinos SU(5)RN , we can
introduce a charged lepton similarly to the minimal SU(5) model, in the form Φi ∼ 5̄
(5∗ representation of SU(5), and the indices i, j, as usual, represent generations, and A is
the SU(5) index that runs from 1 to 5). Additionally, we need to introduce right-handed
neutrinos in the representation ηi ∼ 1. The scalars of the model are given by H ∼ 5 and
H ∼ 5̄. Then, the superpotential is given by [91,92]:

WSU(5)RN
= f n

ij ηiΦjAHA +
1
2

Mijηiηj . (67)

Here, we only explicitly give terms that generate the neutrino mass. Also, Mij is the
Majorana mass matrix for right-handed neutrinos, and f n is the Dirac mass. Both masses
are generated via the see-saw mechanism.

9.2. Minimal SO(10) Supersymmetric Model SO(10)M

Supersymmetric SO(10) models are discussed in detail in [93,94]. Since our goal is
to present the generation of neutrino mass, we can illustrate the SO(10) group using the
model presented in [95,96]. In this case, the lepton is in ψi ∼ 16 representation of SO(10)
and the Higgs fields are in the representations H10 ∼ 10 and ∆ ∼ 126∗ of SO(10). The
terms of the superpotential that are responsible for the lepton masses are given by

WSO(10)M
= hijψiψj H10 + fijψiψj∆ , (68)

where h and f are symmetric matrices in (i, j) that denote generation indices. The neutrino
masses can be calculated in this model from

MνD =
(

h∗ cos αu − 3 f ∗eiγu sin αu

)
sin β , (69)

where αu is a new parameter of the model responsible for non-null CKM mixing angles [95].
SO(10) supersymmetric model has a second mass generating mechanism that pro-

duces the neutrino masses from the scalar of the 126 representations of SO(10). A large
mass mixing in the νµ − ντ channel gives the following form to the low energy Majorana
neutrino mass matrix [97]

MνLL ∼

 0 0 t
0 1 1
t 1 1

Λ , (70)

with eigenvalues in Λ units

|m1| '
t√
2
− t2

8
− 3t3

64
√

2
, |m2| '

t√
2
+

t2

8
− 3t3

64
√

2
, |m3| ' 2 +

t2

4
. (71)

By making assumptions about the texture of the Dirac mass matrix (similar form to
the up-quark mass matrix), the other Majorana mass matrices take the form

MνLR =

 0 0 α
0 β γ
α γ 1

η
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with α ' β� γ� 1, and

MνRR =

 0 0 δ1
0 δ2 δ3
δ1 δ3 1

MR

with
δ1, δ2, δ3 � 1 .

The following relations hold:

δ1 =
α2

2α− 2αγ + γ2t
, δ2 =

β2t
2α− 2αγ + γ2t

, δ3 '
α(γ− β) + βγt
2α− 2αγ + γ2t

.

The see-saw mechanism imposes the following constraint on the Majorana matrices

MνLL = −MT
νLR

M−1
νRR

MνLR .

R-symmetry can be used to solve the µ problem since the latter can be connected to
supersymmetry breaking and allows one to construct viable models with neutrinos. The
fermion mass hierarchy can be explained by constructing models with pseudo-anomalous
U(1)R symmetry. Discrete non-abelian symmetries based on ZN can be used to obtain
neutrino mixing. These models solve fermion mass hierarchies and the hierarchy problem
without fine-tuning while modeling neutrino mixing using non-abelian flavor symmetry.
For more details on these models, see [98].

10. Conclusions

In this paper, we examined the connection between neutrino mass and R-symmetry in
several interesting nonlinear SUSY models. Interest in these ideas, some older and some
new, has been revived by results obtained in recent collider experiments and atmospheric,
astronomical, and cosmological observations. More importantly, all the models presented
here can be tested by high-energy experiments.

It is important to note that data related to neutrino oscillations alone are not sufficient
to impose many restrictions on the extended parameters of the SM. For example, in the case
of the R-parity-violating MSSM, the mixture of regular fermions with Higgsinos allows a
neutrino to acquire a mass at tree level, via a type I see-saw mechanism, and we use it to
explain atmospheric neutrinos. To produce the mass of another neutrino, we do calculations
at 1-loop and with a type III see-saw mechanism and explain the solar data. Therefore, the
comparison between calculated neutrino masses and experimental data takes into account
different model-dependent mechanisms.

In summary, nonlinear extensions of SUSY with R-symmetry can solve key problems
in particle physics beyond SM and are viable theories for solving other fundamental
problems in quantum field theory and gravity, such as dark matter and dark energy. These
models can be tested experimentally, making them attractive for both theoretical and
experimental explorations.
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