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Abstract: We study order, chaos and ergodicity in the Bohmian trajectories of a 2D quantum har-
monic oscillator. We first present all the possible types (chaotic, ordered) of Bohmian trajectories in
wavefunctions made of superpositions of two and three energy eigenstates of the oscillator. There
is no chaos in the case of two terms and in some cases of three terms. Then, we show the different
geometries of nodal points in bipartite Bohmian systems of entangled qubits. Finally, we study
multinodal wavefunctions and find that a large number of nodal points does not always imply the
dominance of chaos. We show that, in some cases, the Born distribution is dominated by ordered
trajectories, something that has a significant impact on the accessibility of Born’s rule P = |Ψ|2 by
initial distributions of Bohmian particles with P0 6= |Ψ0|2.

Keywords: chaos; Bohmian quantum mechanics; Born’s rule

1. Introduction

Bohmian quantum mechanics (BQM) is a trajectory based quantum theory, which
predicts the same experimental results [1–7] as standard quantum mechanics. In BQM, the
quantum particles evolve according to the so called ‘Bohmian equations of motion’:

M
d~r
dt

= h̄=
(
∇Ψ
Ψ

)
, (1)

where Ψ = |Ψ| exp(iS/h̄) is the wavefunction, i.e. the solution of the Schrödinger equation

− h̄2

2M
∇2Ψ + V(x, y)Ψ = ih̄

∂Ψ
∂t

, (2)

Ψ plays the role of a pilot wave which dictates the motion of the quantum particles in
space. Thus, BQM is characterised as a pilot wave theory [1,2]. A similar approach was the
Madelung hydrodynamic approach [8–10].

The Bohmian equations of motion have some important characteristics:

1. They are deterministic differential equations of first order in time. However, they can
be written as second order in time differential equations:

d2x
dt2 = − ∂

∂x
(V + Q),

d2y
dt2 = − ∂

∂y
(V + Q), (3)

if we introduce

Q = − h̄2

2M
∇2|Ψ|
|Ψ| , (4)

which is the ‘Bohmian quantum potential’ [11–13] and demand that d~r
dt is initially

given by Equation (1). Q remains the same when |Ψ| is multiplied by a constant, i.e., it
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does not depend on the magnitude of Ψ. Moreover, it is not externally controlled as the
classical potential and includes information for the whole setup of the system. Thus,
the Bohmian equations are nonlocal and incorporate, in general, the phenomenon
of quantum entanglement in the wavefunction of the system under study. Finally,
Q does not go, in general, to zero in the limit h̄ → 0. Consequently the Bohmian
trajectories are different from the classical trajectories.

2. They are highly nonlinear. Thus they allow, in principle, the coexistence of both
ordered and chaotic trajectories for any given Bohmian system (chaos refers to the
high sensitivity of the trajectories on slight changes in the initial conditions, as in
classical mechanics). Consequently, in contrast to the standard quantum mechanics
where quantum chaos is not well defined [14,15]), Bohmian quantum mechanics
provides us with a natural way to define quantum chaos and study chaotic phenom-
ena in the quantum world by applying all the techniques of the theory of classical
dynamical systems [16,17].

Chaos in BQM has attracted the interest of many authors in the past [18–31]. The
common conclusion in all these works is that chaos emerges in the close neighbourhood of
the nodal points of the wavefunction, i.e., the solutions of the equations ΨRe = ΨIm = 0
(Ψ is a complex quantity). In general, as a Bohmian particle comes close to a nodal point
N, its direction deviates. Due to the non autonomous character of the Bohmian flow the
positions of the nodal points are, in general, time-dependent.

In our series of works, we studied in detail the mathematical mechanism behind chaos
generation in 2D Bohmian trajectories (for a review up to 2020, see [32] and the references
therein). We found the following:

1. In the frame of reference of the moving nodal point (u = x− xN , v = y− yN), there is
a second critical point of the Bohmian flow, the X-point, which is unstable and scatters
the incoming Bohmian particles. Every nodal point and its accompanied X-point form
a ‘nodal point-X-point complex’ (NPXPC). However, there are also cases where the
positions of the nodal points are fixed [31,33].

2. Chaos emerges as the cumulative effect of many close encounters between Bohmian
particles and the X-points of the NPXCs. The detection of chaos is usually made
by calculating the ‘Lyapunov characteristic number’ (LCN). The finite time LCN

is χ(t) =
ln
(

ξ
ξ0

)
t , where ξ0 and ξ are infinitesimal deviations at times t0 = 0 and t

correspondingly. Then, LCN = limt→∞ χ(t). After many such scattering events, LCN
saturates at a positive number, i.e., chaos emerges. On the other hand, when the
Bohmian trajectories do not come close to the NPXPCs, we have LCN = 0, i.e., they
are ordered.

3. The geometry of the NPXCs is, in general, time-dependent: the nodal point changes
in time from attractor to repeller and vice versa.

4. In multinodal systems, there exist, in general, both moving and fixed nodal points. In
these cases, one observes collisions between the moving nodes as well as between the
moving and fixed nodes [33].

5. Beside the X-points, there also exist the Y-points, which are unstable points in the
inertial frame of reference. Their contribution to chaos is not as strong as that of the
X-points, but is not negligible. With the discovery of the Y-points, we practically
understand every contribution to the LCN [34].

6. The X-point is always close to the local maximum of the quantum potential in the close
neighbourhood of the nodal point [13]. The Y-point does not have a distinguished
position on the Q surface [34].

7. There are classically ordered systems whose Bohmian quantum counterparts are
chaotic and vice versa.

8. The chaotic Bohmian trajectories are approximately ergodic: the support of the wave-
function consists, in general, of areas of initial conditions whose chaotic trajectories
fill the same areas with approximately the same distribution. When the area is the
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whole support of Ψ, we have complete ergodicity, and when it is smaller than the
support, we have partial ergodicity.

In Figure 1a, we show a typical NPXPC. By fixing the time t to the right hand side
of the Bohmian equations and using a new time s for the remaining autonomous system
(see [35] for the so called adiabatic approximation), we find two stable (blue) and two
unstable (red) asymptotic curves from the X-point. One asymptotic curve forms a spiral
around the nodal point N. Trajectories of quantum particles approaching the X-point along
paths close to the stable asymptotic curves are deviated along the two unstable directions.
This is the main mechanism behind chaos generation. On the other hand, in Figure 1b,
we observe the asymptotic curves of a Y-point in a system with two nodal points. The
two asymptotic curves spiral around the nodal points N. The Y-points also scatter the
approaching trajectories into two opposite directions and contribute to chaos production.

(a) (b)

Figure 1. (a) The asymptotic curves of the X-point in the coordinate system of the moving nodal
point (u, v). (b) Asymptotic curves from the Y-point in the inertial system (x, y).

Most results in Bohmian chaos have been found by studying the quantum harmonic
oscillator with incommensurable frequencies. In the 2D case, this system corresponds to
the classical potential

V =
1
2
(Mxω2

xx2 + Myω2
yy2). (5)

The choice of working with the quantum harmonic oscillator is based on two facts: (a) It
is the most well studied quantum system since its wavefunctions are analytically known.
(b) Its wavefunctions form a complete basis in Hilbert space, i.e., every quantum state
can be written as a linear combination of the energy eigenstates of the quantum harmonic
oscillator. Thus, there is no loss of generality.

Despite the many results that have been found in the field of Bohmian Chaos, there
are still gaps regarding basic questions in Bohmian Dynamics.

In fact:

1. All the experimental results predicted by the quantum theory are following Born’s rule,
according to which the probability density of finding a particle close to a given point of
space is P = |Ψ|2 [36]. Bohmian quantum mechanics predicts the same results under
the assumption that the Bohmian particles are initially prepared according to Born’s
rule (equilibrium states). However, the Bohmian approach allows us, in principle,
to consider initial distributions of Bohmian particles where P0 6= |Ψ0|2 [37–44]. Such
non equilibrium states can be traced back to the very early times of the Universe,
when there were quantum fluctuations during the inflationary period [45–47]. Born’s
rule was then supposed to be established later by the action of noise perturbations.
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2. As mentioned above, it is well recognised that chaos appears when trajectories ap-
proach the nodal points (Ψ = 0). Our contribution to this problem has been a study of
the necessary conditions for reaching Born’s rule when the initial particle distribution
is different (P0 6= |Ψ0|2) without any external perturbation. In general, chaos becomes
more evident when the number of the nodal points increases. However, here we show
that this is not always true.

In this paper, we study the role of order and chaos in establishing Born’s rule. We
emphasize, first, that the Born distribution contains, in general, both ordered and chaotic
trajectories. The chaotic trajectories cannot become ordered and vice versa. Therefore,
unless we have the correct proportions of chaotic and ordered trajectories we cannot reach
the Born distribution [48]. As a consequence, the coexistence of order and chaos in the
Bohmian quantum mechanics plays a key role in deriving the same experimental results as
those of standard quantum mechanics.

The basic phenomenology of Bohmian trajectories from the standpoint of dynamical
systems can be explained with simple wavefunctions of the quantum harmonic oscillator
with relatively small number of nodes.

The structure of the present paper is the following: In Section 2, we study linear
superpositions of two terms, and then in Section 3, we consider various cases with a third
term both with commensurable and incommensurable frequencies. Then, in Section 4,
we present the case of entangled Bohmian qubits made of coherent states of the quantum
harmonic oscillator and present new results on the dynamics of the nodal points as we
construct the Poissonian energy spectrum of the coherent states (this section is accompanied
by the Appendix A). In Section 5, we deal with order and chaos in the Born distribution of
some multinodal wavefunctions. There, we show that there are cases where a large number
of nodes does not guarantee the absence of ordered trajectories. Finally, in Section 6, we
draw our conclusions.

2. Superpositions of Two Components

We work, in general, with solutions of the form

Ψ = ∑
i

ciΨmi ,ni , (6)

where the components of Ψm,n(x, y) = Ψm(x)Ψn(y). Ψm(x) and Ψn(y) are the 1D energy
eigenstates the oscillator in x and y coordinates, respectively, i.e.,

Ψm,n =
y

∏
q=x

Nq exp

(
−

ωqq2

2h̄

)
exp

(
− i

h̄
Est
)

Hs

(√
Mqωq

h̄
q

)
, (7)

where s = m, n (integers) for x and y, respectively, and the normalization constant

Nq =
(Mqωq)

1
4

πh̄
√

2ss!
. The functions Hm, Hn are Hermite polynomials in

√
Mxωx

h̄ x and
√

Myωy
h̄ y

of degrees m and n, respectively. The energy of the component Ψm,n is

Em,n = Em + En =

(
1
2
+ m

)
h̄ωx +

(
1
2
+ n

)
h̄ωy. (8)

We consider general solutions of the form (6) with i up to 1, 2, 3 or higher. At the nodal
points (xN , yN), we have Ψ = 0. In the numerical examples, we set Mx = My = h̄ = ωx = 1
and either an irrational ωy =

√
2/2 or a rational ωy (e.g., ωy = 1).

The general case of a superposition of two components is

Ψ = aΨm1,n1(x, y) + bΨm2,n2(x, y), (9)
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where a = |a|N1 exp(iφ1), b = |b|N2 exp(iφ2) with φ1, φ2 are two constant phases. The real
and the imaginary parts of Ψ read:

ΨRe = A cos(E1t− φ1) + B cos(E2t− φ2) (10)

ΨIm = −A sin(E1t + φ1)− B sin(E2t + φ2), (11)

where

A = |a| exp

(
−

ωxx2 + ωyy2

2

)
Hm1 Hn1 , B = |b| exp

(
−

ωxx2 + ωyy2

2

)
Hm2 Hn2 . (12)

If AB 6= 0, then the nodal points appear when

−A
B

=
cos(E2t− φ2)

cos(E1t− φ1)
=

sin(E2t− φ2)

sin(E1t− φ1)
. (13)

In this case the nodes exist only at times when

sin[(E1 − E2)t− (φ1 − φ2)] = 0. (14)

Therefore, in general, there are no such nodal points. On the other hand, we have non
moving nodal points if A = B = 0, which are the solutions of the equation

Hm1(
√

ωxx)Hn1(
√

ωyy) = Hm2(
√

ωxx)Hn2(
√

ωyy) = 0. (15)

This implies that the x-component of the nodal point is a root of Hm1(
√

ωxxN) = 0 or
of Hm2(

√
ωxxN) = 0. In the first case, we must have Hn2(

√
ωyyN) = 0, while in the

second case, we must have Hn1(
√

ωyyN) = 0. For the wavefunction Ψ = aΨ1,2 + bΨ2,1

with ωx = 1, ωy =
√

2/2, we have the roots of H1(
√

ωxxN) = 0, H2(
√

ωyyN) = 0 and
H2(
√

ωxxN) = 0, H1(
√

ωyyN) = 0. Since the Hermitian polynomials have real roots, the
total number of nodes is equal to (m1n2 + m2n1). Thus, in the case Ψ = aΨ1,2 + bΨ2,1 with
ωx = 1, ωy =

√
2/2, we have five nodal points (Figure 2a): (0, 0), (±

√
2/2,±2−

1
4 ).

The Bohmian equations of motion are

dx
dt

=
1
G

((
∂A
∂x

B− ∂B
∂x

A
)

sin[(E1 − E2)t− (φ1 − φ2)]

)
(16)

dy
dt

=
1
G

((
∂A
∂y

B− ∂B
∂y

A
)

sin[(E1 − E2)t− (φ1 − φ2)]

)
, (17)

with

G = A2 + B2 + 2AB cos[(E1 − E2)t− (φ1 − φ2)]. (18)

From Equations (16) and (17), we derive

dy
dx

=

∂A
∂y B− ∂B

∂y A
∂A
∂x B− ∂B

∂x A
. (19)

This equation is time-independent and thus it gives y as a function of x, i.e., it rep-
resents a curve on the inertial x− y plane. Furthermore, the Equations (16) and (17) give
dx/dt = 0, dy/dt = 0 when θ = (E1 − E2)t− (φ1 − φ2) = 0, π, 2π, etc., i.e., a particle has
zero velocity at the initial point θ = 0 and at the final point θ = π. After θ = π, it retraces
the trajectory in the opposite way and comes back to the original point at θ = 2π. Thus,
the motions are periodic with period T = 2π/(E1 − E2). This is equal to T = 21.452 when
ωx = 1, ωy =

√
2/2 m1 = 1, n1 = 2, m2 = 2, n2 = 1.
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(a) (b)

Figure 2. The case of Ψ = aΨ1,2 + bΨ2,1 with a = 1, b =
√

2: (a) The flow on the inertial plane (x, y),
the nodal points and the Y-points with their asymptotic curves (b) Some periodic trajectories. The
green dots refer to the initial conditions and the red dots refer to the time T/2.

The fact that the trajectories are periodic does not depend on the values of ωx, ωy, φ1, φ2.
Thus, it is also true when φ1 = φ2 = 0, i.e., when a and b are real. For example, in Figure 2a,
we show the Bohmian flow when a = 1, b =

√
2, ωx = 1, ωy =

√
2/2. Besides the

five nodal points, there are also four Y-points. These are found by setting the Bohmian
velocities (16) and (17) equal to zero. Thus, the Y-points are at (0,±2−

1
4 ) and (±

√
2

2 , 0). The
asymptotic curves from the upper and lower Y-points for t = 0 have the shape of ∞. The
stable and unstable asymptotic curves coincide and there are no homoclinic intersections.
This form is consistent with the fact that no chaos appears in this case. The left and right
Y-points also generate two stable and two unstable coinciding asymptotic curves, but these
curves join two Y-points. The nodal points satisfy the equations

aΨm1,n1

cos(E1t− φ1)

sin(E1t− φ1)
+ bΨm2,n2

cos(E2t− φ2)

sin(E2t− φ2)
= 0. (20)

Therefore, the nodal points are fixed and do not move.
Some trajectories are shown in Figure 2b. The outermost trajectory AA′ (black) starts

at A(2, 0), reaches a point A’ at a time T/2 and returns along the same path to A after time
T. Similar results are found for larger values of m and n if the differences in the m′s and the
n′s in the three terms are equal to 2 and in some more general cases. But in any case, all
these cases are exceptional (see Section 6).

The second trajectory (brown) starts at B(0.2, 1.5) and makes almost a complete turn
moving counterclockwise. It reaches the final point B′ after a time T/2 and returns along
the same path to the original point B.

The third trajectory (red) starts at C(0, 1) counterclockwise. It makes first a complete
turn and it comes again close to C (a little below it). Then, it makes a little more than half of
a rotation, a little inside the original points of the curve, reaches the final point C’, and then
returns along the same path.

The fourth trajectory (green) starts at D(0.65, 0.65) and makes about seven rotations
clockwise, each time slightly inside the previous one. It terminates at a point D’ and then it
returns to D along the same path.

All the trajectories have the same period, but those starting close to the nodal point
make several rotations around the nodal point before reaching the final point.

In other cases of Ψ = aΨm1,n1 + bΨm2,n2 , we may have many nodal points, e.g., in
the case Ψ = aΨ4,5 + bΨ5,7, we have 59 nodal points and many Y-points between them
(Figure 3). But the asymptotic curves coincide and do not intersect at homoclinic or
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heteroclinic points. The trajectories are all periodic, although in some cases, they look very
complicated.

Figure 3. The Bohmian flow with the nodal points and the Y-points along with their asymptotic
curves of the wavefunction Ψ = aΨ5,6 + bΨ4,7 with a = 1, b =

√
2. Both nodal points and Y-points

do not move. All trajectories are ordered in this case.

This last example is surprising because in this case, there are many nodal points, and
one may expect that trajectories starting close to any one of them should be chaotic. But no
periodic orbit can come arbitrarily close to any nodal point.

As a conclusion, in the case of two components of the wavefunction, all the trajec-
tories are ordered (periodic) and there is no chaos, although the system of Equation (9)
is entangled. A particular subcase is when a 6= 0, b = 0, i.e., if we have only one component,
where again there is no chaos.

3. Superpositions of Three Components

The superpositions of the form

Ψ = aΨm1,n1 + bΨm2,n2 + cΨm3,n3 (21)

have been studied extensively up to now [25,28,34,35], since they are the simplest choice
for the observation of chaos, as already pointed out in [25].

3.1. Incommensurable Frequencies

Most significant results in the study of Bohmian chaos have been found by using (21)
with irrational frequencies [30]. In the general case of (21), the values of ΨRe and ΨIm read

ΨRe
ΨIm

= ±A
cos
sin

[(
m1ωx + n1ωy +

ωx + ωy

2

)
t
]
± B

cos
sin

[(
m2ωx + n2ωy +

ωx + ωy

2

)
t
]

± C
cos
sin

[(
m3ωx + n3ωy +

ωx + ωy

2

)
t
]

, (22)

where A, B are as in (12) and C = |c|N3 exp(−ωx x2+ωyy2

2 )Hm3 Hn3 . The corresponding
Bohmian equations of motion are
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dx
dt

=
1
G

((
A ∂B

∂x − B ∂A
∂x

)
sin[(m1 −m2)ω1t + (n1 − n2)ω2t]

+
(

A ∂C
∂x − C ∂A

∂x

)
sin[(m1 −m3)ω1t + (n1 − n3)ω2t] (23)

+
(

B ∂C
∂x − C ∂B

∂x

)
sin[(m2 −m3)ω1t + (n2 − n3)ω2t]

)
,

where

G = A2 + B2 + C2 + 2AB cos[(m1 −m2)ωxt + (n1 − n2)ωyt]

+2AC cos[(m1 −m3)ωxt + (n1 − n3)ωyt]

+2BC cos[(m2 −m3)ωxt + (n2 − n3)ωyt]. (24)

The form of dy
dt is similar with replacement of x with y. Similar equations are found

if we have more than three terms of the form (7). Then, we have extra terms in dx/dt
and dy/dt with sines of the form sin

[
(mi −mj)ωxt + (ni − nj)ωyt)

]
in the numerator and

cos
[
(mi −mj)ωxt + (ni − nj)ωyt)

]
in the denominator G.

In general, the systems with three components has both chaos and order. However, there
are exceptional cases without chaos. A particular case is when m1 = 0, n1 = 1, m2 = 2, n2 = 3,
m3 = 4, n3 = 5. Then, since the Hermite polynomials in y are of odd order, y is a common
factor in the defining equations of the nodal points, i.e.,

ΨRe
ΨIm

= Lye−
ω1x2−ωyy2

2

(
2
√

5c
15 (ω2

2y4 − 5ω2y2 + 15
4 )(ω1

2x4 − 3ω1x2 + 3
4 )

cos
sin

(
− t(9ω1+11ω2)

2

)
+ 2b

√
3

3 (ω1x2 − 1
2 )(ω

2
2 −

3
2 ) cos( t(5ω1+7ω2)

2 ) + a cos
sin (−

t(ω1+3ω2)
2 )

)
, (25)

with L =
√

2√
π

ω
1
4
1 ω

3
4
2 . Thus, we find that Ψ vanishes on the x-axis, and it has no isolated

nodal points. Moreover, in the right hand side of the corresponding Bohmian equations,
there are trigonometric terms of only one angle, 2t(ωx + ωy), i.e., the vector flow has a
period T = π/(ωx + ωy), and since at t = 0, both components of the Bohmian velocity
are equal to zero, all Bohmian trajectories are periodic. In Figure 4a, we plot the Bohmian
flow at t = 0.02 along with the invariant curves of the Y-points. There are eight Y-points
(Y1 . . . Y8). We observe the complete symmetry of the arrows with respect to the x-axis. The
unstable invariant curves from the Y-points (red color) go to infinity along the directions
of the x and y axes, while the stable curves (blue color) are of finite length. In fact, they
terminate at a repelling fixed point of the frozen flow, e.g., the stable asymptotic curves that
seem to join Y1 with Y3 in fact terminate close to a point between Y1 and Y3 (green dot). The
flow changes in time, but the nodal points and the Y-points do not change. The trajectories
in this case are periodic, e.g., the trajectory of Figure 4b starts at A, reaches the final point
A’, and then returns to A along the same path.

Similar results are found for larger values of m and n if the differences in the m′s and
the n′s are equal. However, all these cases are exceptional.
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(a) (b)

Figure 4. (a) The Bohmian flow at t = 0.02 in the case Ψ = aΨ0,1 + bΨ2,3 + cΨ4,5 and the invariant
curves of the Y-points. (b) A periodic trajectory with x(0) = y(0) = 0.01 (ωx = 1, ωy =

√
2/2, a =

1, b =
√

2, c =
√

2/2).

3.2. Commensurable Frequencies

If, in a system of three components, Ψ = aΨm1,n1 + bΨm2,n2 + cΨm3,n3 the ratio ωx/ωy
is rational, we have ωx = N1ω and ωy = N2ω, where N1/N2 is an irreducible fraction.
The corresponding Bohmian equations then have factors sin(Nωt) in the numerator and
cos(Nωt) in the denominator. Therefore, the numerators have the factor sin(ωt) and they
become zero at t = kπ/ω (k = 0, 1, 2, . . . ) and, by following the arguments of Section 2, we
find that all Bohmian trajectories are periodic.

For example, in the case m1 = n1 = 0, m2 = 1, n2 = 0, m3 = 0, n3 = 1 with ωx = ωy =
1, we obtain

ΨRe =
1√
π

exp
(
− x2 + y2

2

)(
a cos(t) + (bx + cy)

√
2 cos(2t)

)
(26)

ΨIm = − 1√
π

exp
(
− x2 + y2

2

)(
a sin(t) + (bx + cy)

√
2 sin(2t)

)
. (27)

The nodal points should have

a cos(t) + (bx + cy)
√

2(2 cos2(t)− 1) = 0 (28)

sin(t)[(a + 2
√

2(bx + cy) cos(t)] = 0. (29)

But these equations cannot be satisfied unless sin(t) = 0. Thus, in general, there are
no nodal points.

The corresponding Bohmian equations read

dx
dt

= − ab
√

2 sin(t)
G′

,
dy
dt

= − ac
√

2 sin(t)
G′

, (30)

with

G′ = [a2 + 2(bx + cy)2 + 2a
√

2(bx + cy) cos(t)]. (31)

As a consequence, dy/dx = c/b, i.e., y = c
b x + C. The solutions of the Bohmian

equation (30) are of the form x = fx(cos(t)), y = fy(cos(t)).
Therefore, the stroboscopic points coincide at the times when cos(t) = 1, e.g., in the

case b = c =
√

2π/2 we have taken 17 points along the y = x axis and the stroboscopic
points of every trajectory are fixed (Figure 5a). If, however, the factors b, c are complex,
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i.e., b = |b| exp(iγ1), c = |c| exp(iγ2) with γ1 6= γ2, then the stroboscopic images of the
17 points along the y = x axis give both order and chaos (Figure 5b).

In order to find how Figure 5a is transformed into Figure 5b, we have taken in the
values of b, c the same γ1, γ2 but multiplied them by a factor of ε ranging from ε = 0
(Figure 5a) up to ε = 1 (Figure 5a–f). The stroboscopic images are taken up to a time
t = 1000π. In Figure 5c, we have taken ε = 0.8. This figure contains both ordered and
chaotic stroboscopic images, but displaced with respect to Figure 5b.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Stroboscopic images in the case of complex weights in Ψ with a = 0.17651
√

π, b = c =√
2π/2, and γ1 = 3.876968ε, γ2 = 2.684916ε (see [28]) for different values of ε: (a) ε = 0, (b) ε = 1,

(c) ε = 0.8, (d) ε = 0.3, (e) ε = 0.04, (f) ε = 0.01.

In Figure 5d (ε = 0.3), the main island of stability is smaller in size and in Figure 5e
(ε = 0.04), it takes a position along the diagonal x = y. Finally, in Figure 5f (ε = 0.01),
the invariant curves fill most of the space (x, y) symmetrically with respect to the axis
x = y, and the chaotic regions are very small. Therefore, if ε is slightly different from zero,
then the fixed points of Figure 5a change into a set of large ordered curves, with only a
little chaos between them. As ε increases, the chaotic regions increase, but some ordered
trajectories remain.
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In Figure 6, we see three ordered trajectories (red) and the corresponding stroboscopic
invariant curves (black), while in Figure 6d, we see a chaotic trajectory whose stroboscopic
images are scattered. All these figures refer to the case of Figure 5b.

(a) (b)

(c) (d)

Figure 6. (a–c): Three ordered trajectories (red) and the corresponding stroboscopic invariant curves
(see Figure 5b). (d) A chaotic trajectory (red). In this case, the stroboscopic images of the initial point
are randomly scattered. (a = 0.17651

√
π, b = c =

√
2π/2, and γ1 = 3.876968, γ2 = 2.684916).

The coexistence of ordered and chaotic trajectories in the support of the wavefunction
(the region where |Ψ|2 is not negligible) affects the accessibility of the Born rule distribution.
Namely, the existence of the islands of stability implies that all trajectories inside them
will never escape to other regions of space. In fact, it is possible to define an approximate
integral of motion S(x, y) = K inside the islands of stability and interpret the observed
asymptotic curves as the level curves of S for various values of K. Thus, when we have
islands of stability, any initial distribution with P0 6= |Ψ0|2 will never approach P = |Ψ|2.

4. Bohmian Qubits

While the possible combinations of quantum numbers and the number of terms in a
wavefunction describing a quantum oscillator are infinitely many (due to the linearity of
Schrödinger’s equation), most basic orbital characteristics of the corresponding Bohmian
trajectories can be studied with systems with few nodal points and a small number of terms.
However, of special importance is the case of coherent states of the harmonic oscillator,
which was our choice in a series of previous papers of ours that dealt with the relation
between order, chaos and entanglement [49] in bipartite Bohmian qubit systems [48,50] (for
entanglement in BQM, see also [51–53]).

A coherent state of a quantum harmonic oscillator corresponding to the classical system

H =
1
2

Mxω2
xx2 +

p2

2Mx
, (32)
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is defined as the eigenstate of the anihillation operator â:

â|α〉 = A|α〉. (33)

The eigenvalue A = |A| exp(iθ) is complex because the operator â is not hermitian.
Furthermore, |A| is the amplitude and θ the phase of the state |α〉. A coherent state reads

|α〉 = e−
1
2 |A|

2
∞

∑
n=0

An
√

n!
|n〉, (34)

where |n〉 are the eigenvectors of the Hamiltonian operator Ĥ = h̄ωq(âq
† âq +

1
2 ) with

q = x, y. The discrete energy spectrum of a coherent state follows Poissonian statistics
(Figure 7) [54], i.e., the probability of detecting the energy level n in the state |α〉 is

P(n) = |〈n|α〉|2 =
e−〈n〉〈n〉n

n!
. (35)

Figure 7. The Poissonian distribution of energy levels in a coherent state for 〈n〉 = 1 (red curve)
〈n〉 = 2 (blue curve), 〈n〉 = 3 (green curve) and 〈n〉 = 4 (grey curve).

From the general theory of random distributions, we know that the mean value
〈n〉 and the variance (∆n)2 are both constant, equal to |A|2, and ∑n=∞

n=0 P(n) = 1. The
time-dependent wavefunction of a 1D coherent state in the position representation reads:

Y(x, t) = e−
1
2 a2

0 e
−iωxt

2

n f

∑
n=0

(a0eiσx e−iωxt)n
√

n!
ψn(x), (36)

where

ψn(x) =
1√
2nn!

(
Mxωx

πh̄

) 1
4
e−

Mxωx x2
2h̄ Hn

(√
Mxωx

h̄
x

)
, n = 0, 1, 2, . . . , (37)

and Hn(q) = (−1)neq2 dn

dqn

(
e−q2

)
are the corresponding Hermite polynomials. In a full

coherent state, we have n f = ∞, while a0 = |A(0)|, σx, ωx, Mx are the initial values of the
amplitude, the phase, the frequency and the mass of the oscillator (and similarly for the
corresponding parameters in the y direction). In our calculations, we take Mx = My = h̄ = 1.

In our previous works [48], we studied in detail both cases of ideal and non-ideal
qubits from the perspective of entanglement, ergodicity, and Born’s rule. However, it is
interesting to see how the Bohmian flow changes by adding increasing amounts of energy
terms by increasing the number n f in the coherent states in a wavefunction of the form
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Y = c1YR(x, t)YL(y, t) + c2YL(x, t)YR(y, t), (38)

where

YR(x, t) = Y(x, t; σx = 0), YL(x, t) = Y(x, t; σx = π) (39)

and similarly for the coordinate y. In the limit of infinite number of energies and with a0
sufficiently large we showed that YR, YL define the basis states of a qubit (see [48,55,56]).

As the functions YR, YL are sums of terms Ψ0, Ψ1, Ψ2, . . . of order (degree in x and y) 0,
1, 2,. . . with coefficients as in Equations (36) and (37), the total function Ψ is a superposition
of terms Ψm,n as in Equation (7) with appropriate coefficients. As regards the number of the
necessary terms for the production of chaos, there is an ambiguity. If Ψ is a sum of terms of
the form

Ψ =
imax

∑
i=1

ciΨi, (40)

with Ψi = Ψmi Ψni , then in order to observe chaos, we need to have imax ≥ 3 (Sections 2 and 3),
as it was already shown by Parmenter and Valentine in [18]. On the other hand, if the
partial functions are not of the form Ψmi Ψni , we observe chaos even if imax = 2, e.g., in the
particular case of qubits Ψ = c1YRYL + c2YLYR (Equation (38)), we have two basic states,
and for c1c2 6= 0, there is coexistence of order and chaos. Whenever c1 or c2 is zero, we
have no entanglement (product state), and the Bohmian system is decoupled; thus, we
observe only ordered trajectories. On the other hand, if we truncate YR, YL at an order n f

and express them in terms of the form Ψmi Ψni as in Equation (40), we find (n f + 1)2 terms
(because zero order terms are also counted). Thus, even if n f = 1, there are four terms
of the form Ψ0,0, Ψ0,1, Ψ1,0, Ψ1,1 (see Appendix A). Therefore, in this case, there is chaos
(except if c1c2 = 0) because we have four terms of the form (40), although we have two
terms of the form (38).

A similar situation appears in the examples of Makowski [25,26], which are similar
to our wavefunctions with two terms given by Equation (9). However, we take constant
phases φ1 and φ2, while in Makowski’s works, the phases depend on x and y. In such cases,
two terms are sufficient for chaos generation, but when φ1, φ2 are constant, all Bohmian
trajectories are ordered (Section 2).

In Figure 8, we observe the Bohmian flow at t = 0.53 for various truncations of the
energies in the coherent states (but the same for both x and y coordinates) in the region
x, y ∈ [−3, 3]. When the truncation order is n f = 12, we find 30 nodal points (Figure 8a),
and for n f = 20 (Figure 8b), we find 50 nodal points (but there are further points at larger
distances outside this square). We see that, as n increases, most nodal points tend to move
away from the central area and become aligned along the straight line x = y when n→ ∞
(see Figure 8c). This is exactly the line of the infinitely many nodal points of the full qubit
case (Figure 8d).

A remarkable fact is that, while in the case of the truncated wavefunctions, the analyti-
cal calculation of the positions of the nodal points is practically tedious, when n f > 1, as we
increase the truncation order, in the full qubit case, we managed to analytically calculate the
positions of the infinitely many nodes. The simplicity of the form of the probability density
P = |Ψ|2, which is characterised by two well defined blobs that collide from time to time,
was very useful for us in order to understand chaos generation both from the dynamics of
the nodes and the dynamics of P (see [48]).
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(a) (b)

(c) (d)

Figure 8. The Bohmian flow at t = 0.53 and for various truncations of the energies inside the coherent
states of maximally entangled qubits (ωx = 1, ωy =

√
3): (a) n = 12, (b) n = 20, (c) n = 65. We

observe the gradual change in the positions of the nodal points on the x− y plane. We observe how
at the truncation n = 65 the nodal points tend to align on a straight line, i.e., to reach the geometry of
full qubits, which is that of (d). The two central nodal points of (c) perfectly match those of (d), while
the outer ones (orange dots) are very close. We work with a common amplitude a0 = 2.5 in both x
and y directions.

5. Ergodicity and Born’s Rule

It is widely believed that if the number of nodal points increases, we have more chaotic
trajectories, and Born’s rule is established after a long time from more initial distributions.

However, we have seen in Section 3 that there are some cases where no chaos appears at
all, even when the number of nodal points is large. Nevertheless, these cases are exceptional,
and in most systems with three or more components, we find many chaotic trajectories.

The chaotic trajectories are, in general, partially ergodic. Namely there are regions of
initial conditions that generate trajectories with the same long time pattern of points [48].
But only rarely we find globally ergodic systems, where almost all trajectories form the
same pattern. In general, the domains of partial ergodicity are separated and there are
ordered trajectories besides the chaotic trajectories.

In particular, we found in our work with qubits [48] that Born’s distribution itself
consists, in general, of both chaotic and ordered trajectories. In exceptional cases, it contains
only ordered or only chaotic trajectories. If Born’s distribution contains ordered trajectories
and we start with a set of initial conditions different from that of Born’s rule, then we
will never reach it unless we have the correct proportion (and distribution) of the ordered
trajectories. The case of qubits is excellent for our studies, since the positions of the
infinitely many nodal points could be found analytically. Moreover, their positions in the
configuration space have a characteristic geometry.



Particles 2023, 6 937

The question now is what the proportion of ordered trajectories in systems with many
nodal points scattered in an arbitrary way in the configuration space (namely without a
special geometry of their positions) is. This is not an easy problem to deal with. The larger
the number of nodes, the higher the complexity of the Bohmian trajectories, something
that implies very difficult numerical integrations. These integrations become even more
difficult when we also have to integrate the variational equations in order to calculate the
Lyapunov characteristic number.

In this paper, the characterization of the Bohmian trajectories as ordered or chaotic
is made by applying the practical numerical method described in the Appendix A of [34].
Namely, in order to avoid the calculation of the Lyapunov characteristic number of each
trajectory, we exploit the ergodicity (global or local) of the chaotic trajectories. We measured
the size of the long-time-limit colorplots [48] of the points of many chaotic trajectories (with
a sampling step ∆t = 0.05) initiated in various regions of the support of the wavefunction,
and compared them with the colorplot of each trajectory in our ensemble. If the colorplots
were similar, then the trajectory was characterized as chaotic. Otherwise, it was charac-
terised as ordered. In the present case, we integrated the distributions up to t = 105, which
was sufficiently large for a chaotic trajectory trapped in a certain region of the configuration
space to escape and cover a much larger space. This can be seen in Figure 9, where we show
two different time instances t = 102, and t = 105 of an ordered (red) trajectory and a chaotic
(blue) trajectory. They both are produced by the wavefunction Ψ = aΨ0,2 + bΨ3,4 + cΨ5,7.
In the ordered trajectory, we observe that the motion is confined in a area and very quickly
acquires its final shape (Figure 9a,b). On the other hand, the chaotic trajectory resembles
an ordered trajectory at t = 103 (Figure 9c) since it has a distorted Lissajous shape in a
confined region of space, but later it has many close encounters with the unstable points of
the Bohmian flow and covers a large part of the support of Ψ in a complex way (Figure 9d).
Thus, it is chaotic.

(a) (b)

(c) (d)

Figure 9. An ordered trajectory (red) and a chaotic Bohmian trajectory of the wavefunction
Ψ = aΨ0,2 + bΨ3,4 + cΨ5,7 with a = 1, b =

√
2, c =

√
2/2, ωx = 1, ωy =

√
2/2 for t ∈ [0, 102] (a,c)

and for t ∈ [0, 105] (b,d). The ordered trajectory preserves its shape and size over time, while the blue
trajectory acquires a very complex shape in space due to its many close encounters with the X and Y
unstable points (note that the scale of (d) is much larger than that of (c)).

In Figure 10, we present our results in three different Born distributions made out
of 5000 Bohmian particles. In the left panel, we present the initial conditions on the x-y
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plane, while in the right panel, we project them onto the surface of P0 = |Ψ0|2. The red
color corresponds to initial conditions that were found to produce ordered trajectories and
the blue color to chaotic trajectories correspondingly. In Figure 10a,b, we have the Born
distribution of the wavefunction Ψ = aΨ0,2 + bΨ3,4 + cΨ5,6. A first look at P0 is enough to
understand the complexity of this multinodal wavefunction by taking into consideration
that P evolves in a complex way. However, we find that the ordered trajectories in this case
form almost 72% of the total set, while the chaotic trajectories are only 28%. This surprising
result shows this is the way the the nodes evolve over time, and not just the number of
nodes required for chaos to occur [31]. In this case, the collisions between the ‘blobs’ of P
are such that most trajectories remain in regions of high P and do not encounter the moving
nodal points at the lower levels of P. In fact, as we have already pointed out, in the case
of entangled qubits [48], where we have well-defined blobs of P, their collisions are more
efficient in producing chaotic trajectories than when the blobs are significantly deformed
during the collisions.

(a) (b)

(c) (d)

(e) (f)

Figure 10. (a) Born’s rule distribution of 5000 particles and its projection on the probability density
P0 in the case of (a,b) Ψ = aΨ0,2 + bΨ3,4 + cΨ5,6. (c,d) Ψ = aΨ0,2 + bΨ3,4 + cΨ5,7 and (e,f) Ψ =

aΨ10,3 + bΨ4,5 + cΨ7,8. Red/blue color refers to the initial conditions that produce ordered/chaotic
trajectories. The proportion of the ordered trajectories in the first case is 72%, in the second case is
50.6%, and in the third case is practically 0 (in all cases a = 1, b =

√
2, c =

√
2/2, ωx = 1, ωy =

√
2/2).

In Figure 10c,d, we have the wavefunction Ψ = aΨ0,2 + bΨ3,4 + cΨ5,7. By changing
only the last quantum number, we find a significant increase in chaotic trajectories, which
are now practically equal to the ordered ones (50, 6% and 49, 4% correspondingly). Namely,
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a slight variation in the system resulted in a drastic change in the amount of its ordered
and chaotic trajectories. The collisions between the blobs of P now become more efficient.

However, if one significantly changes the number of the nodes, then it is reasonable to
expect chaos to dominate in the Born distribution. This is shown in Figure 10c,d, where
we study the wavefunction Ψ = aΨ10,3 + bΨ4,5 + cΨ7,8. There, we find only one ordered
trajectory in our sample. Chaos is absolutely dominant in this case.

6. Conclusions

In the present paper, we presented the most important cases in the dynamics of
Bohmian systems systems described by superpositions of 2, 3 or multiple energy eigenstates
of the 2D quantum harmonic oscillator V = 1

2 (Mxω2
xx2 + Myω2

yy2).
These systems have, in general, a number of moving nodal points, where Ψ = 0. Close

to a nodal point (xN , yN), there is an unstable point X in the frame of reference of the
nodal point (u = x − xN , v = y− yn). Further unstable points (Y-points) appear in the
inertial frame of reference (x, y). Trajectories that approach the X-points or the Y-points are
deviated along the unstable asymptotic curves of these points and become chaotic.

However, there are cases where no chaos appears at all, as in the superpositions of two
components with constant weight coefficients and phases. There, we showed that the nodal
points are stationary, and thus, the X-points coincide with the Y-points. No trajectory can
come arbitrarily close to the Y-points, regardless of the number of nodal points. We then
showed, by use of stroboscopic sections, how the gradual introduction of an imaginary
part in the coefficients of the superposition is able to lead to the emergence of chaos.

In the cases of three (or more) components, there are, in general, both chaotic and
ordered trajectories. However, we found that there are special cases of wavefunctions with
large quantum numbers but with no chaos.

Then, we considered cases of two qubits of the form (38) made of coherent states of the
oscillator. In these systems, there are infinitely many energies in the Poisson distribution.
This fact implies the existence of infinitely many nodes. However, in practice, one has
to make a truncation at some order. The truncated wavefunctions can be written as a
superpositions of the energy eigenstates of the quantum harmonic oscillator (with the
proper coeeficients) and lead to a number of nodal points in space with a complex geometry.
There, we showed the gradual change in the position of the nodal points, as we increase
the truncation order, and their limiting geometry in the full qubit case where they lie along
a straight line.

We note that quantum entanglement is a prerequisite for a Bohmian system to exhibit
chaotic behaviour. The absence of entanglement in the wavefunction implies decoupled
Bohmian equations, and consequently, ordered Bohmian trajectories. However, entangle-
ment, although necessary, does not always imply chaos, e.g., in the case of commensurable
frequencies, we find only ordered trajectories.

In our previous works, with qubit systems (see, e.g., [48,50,56]), we calculated the
entanglement by using the von Neumann entropy and we found that it plays a major role
in the production of chaotic Bohmian trajectories.

If a distribution of particles initially satisfies Born’s rule, then it satisfies it for all times.
If the trajectories are only chaotic–ergodic, then any initial distribution will reach Born’s
rule in the long run. However, the Born distribution consists, in general, of both ordered
and chaotic trajectories. Thus, an arbitrary initial distribution does not reach the Born
distribution, unless it has the correct proportion and distribution of the ordered trajectories.

In this paper, we explicitly showed that the common belief that a high number of
nodal points always leads to the dominance of chaos (and partial or complete ergodicity) is
not always correct. We studied the Born distributions of several multinodal wavefunctions
and presented a case where order is dominant, a case where chaos is dominant, and a case
where order and chaos are almost equal.

The coexistence of order and chaos in the Born distributions is of fundamental im-
portance, not only from the standpoint of the dynamical approach of Born’s rule, but also
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for understanding how Bohmian trajectories produce the same experimental results as
standard quantum mechanics. The details, however, are not yet well understood. Thus, the
role of order and chaos in producing the average values of the quantum observables in the
above cases is an important open problem for a future study.
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Appendix A

A simple truncated case of the entangled qubits is when n f = 1. Then, Equations (36)
and (37) take the form

Y = e−
a2
0
2 e−

i
2 ωq t

(
1

4
√

π
4
√

ωqe−
ωq q2

2 +
a0eiσq e−iωq t

√
2q

4
√

π
ωq

3
4 e−

ωq q2

2

)
, q = x, y. (A1)

The phases σq = 0 and σq = π correspond to Y = YR and Y = YL. Thus, the
wavefunction of the system is

Ψ =
(ωxωy)

1
4

√
π

e−a0
2− ωx x2

2 − ωyy2

2

(
(c1 + c2)e

− i
2 t(ωx+ωy) +

√
2
√

ωxa0x(c1 − c2)e
− i

2 t(ωy+3ωx)

−
√

2√ωya0y(c1 − c2)e
− i

2 t(3ωy+ωx) − 2(c1 + c2)
√

ωx
√

ωye−3/2it(ωx+ωy)a0
2xy

)
. (A2)

In the large parenthesis, there are four terms—a constant with respect to x, y, two
linear terms in x or y, and a quadratic cross term with xy. Therefore, the wavefunction
contains terms of the form Ψ0,0, Ψ0,1, Ψ1,0 and Ψ1,1. In this case, we find that for nonzero
and not equal c1, c2, there are two nodal points. In fact, if we eliminate the cross term by
appropriate multiplications in ΨR, ΨI , then we find an equation with linear terms in x and
y. Thus, y is a linear function of x, and if we insert this function into Ψ, we find a quadratic
equation for x.

For c1c2 = 0, we have a decoupled system with no isolated nodal points, while for
c1 = c2 (and n f = 1), there is no fixed nodal point and the Bohmian flow is periodic in time.
In the last case, all the trajectories are periodic following the arguments of Section 2. Thus, in
order to observe chaos in the maximally entangled case c1 = c2 =

√
2/2, we need n f ≥ 2.
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