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Abstract: We have studied wake effects on the dissociation of heavy quarkonia states J/ψ and Υ by
introducing an in-medium modification to the inter-quark potential. The wakes in the quark–gluon
plasma were modeled using linear response theory using a dynamic dielectric function obtained
from kinetic theory (Boltzmann equation) with a Bhatnagar–Gross–Krook (BGK) collision term. The
in-medium modified potential was used to investigate the dissociation character depending on
various parameters such as the velocity of quarkonium moving through the medium and the collision
frequency. We have also calculated critical values of the dissociation temperature. Modifications of
the dissociation energy due to wake-field effects were found.
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1. Introduction

The investigation of quark–gluon plasma (QGP) has been one of the most significant
scientific undertakings and challenges in recent decades. QGP is a state of hot and dense
matter at an extremely high temperature above 150 MeV with a density ten times that of
nuclear matter, consisting of free quarks and gluons. QGP can only exist in the conditions of
the very early universe, up to about 1–5 microseconds after the Big Bang, hypothetically in
the centers of neutron star cores, and in heavy ion collision experiments such as in the Super
Proton Synchrotron (SPS), the Relativistic Heavy Ion Collider (RHIC), and the Large Hadron
Collider (LHC). Quarks and gluons are described by quantum chromodynamics (QCD)
and the theory of strong interaction. According to this theory, under normal conditions,
these particles cannot be observed in the free state, which is referred to as the confinement
problem [1]. If one tries to separate quarks from each other by applying increasingly
more energy, eventually, it becomes more favorable to have a new quark–antiquark pair.
However, QCD states that at a sufficiently high temperature, the color charge of quarks
and gluons becomes screened [2] to the point where they start moving freely in the QGP,
which is called “asymptotic freedom” [3,4]. The formation of QGP cannot be directly
detected; therefore, it is challenging to say whether conditions are sufficient to achieve the
desired state.

The ultrarelativistic heavy ion collision experiments at the SPS and the RHIC show
some promise that strongly coupled QGP might be formed in a hot and dense fireball after
nucleus–nucleus collisions [5]. There are a few signs of QGP formation in the experiments,
such as jet quenching, when partons propagate through the fireball [6,7]. A possible phase
transition of dense matter to QGP in the fireball was detected at the RHIC via strong
quenching of jets, as well as high pT hadron spectrum suppression [8,9]. The suppression
of the J/ψ state of quarkonium was first studied in [10], and some calculations were
conducted in [11].

Particles 2023, 6, 886–897. https://doi.org/10.3390/particles6040057 https://www.mdpi.com/journal/particles

https://doi.org/10.3390/particles6040057
https://doi.org/10.3390/particles6040057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/particles
https://www.mdpi.com
https://orcid.org/0000-0003-3336-0945
https://orcid.org/0000-0001-7270-9834
https://doi.org/10.3390/particles6040057
https://www.mdpi.com/journal/particles
https://www.mdpi.com/article/10.3390/particles6040057?type=check_update&version=1


Particles 2023, 6 887

Quarkonium is a heavy meson consisting of a quark–antiquark pair with the same
flavor. Quarks from charm flavor form a meson called charmonium, and quarks with
bottom flavor form bottomonium [12]. These particle systems are similar to positronium,
the electron–positron pair system. Charmonium and bottomonium have sparked the
interest of scientists because of their huge mass, which is a thousand times heavier that of
up and down quarks from which ordinary matter forms. The huge mass of such quarks
results in more compact sizes of the system they form compared to light ones. Therefore,
quarkonium may survive the phase transition to QGP, being the last that dissolves in a
hot and dense state. Hence, when the production of quarkonium stops, we may say with
high certainty that QGP is formed. The equations of motion for quarks are described in the
framework of QCD theory [13].

However, due to the large coupling parameter in the theory of strong interaction, it is
impossible to apply methods of perturbative quantum field theory [4,14]. In addition, there
is a problem of confinement, a phenomenon in which the energy of attraction between
quarks grows in proportion to the distance between them, which leads to the fact that
under normal conditions, quarks cannot exist freely. Therefore, effective theories, which
use a certain approximation or constraints, are applied to describe these properties. In this
paper, the well-known model of potentials is used [15,16]. In-medium modification to the
quarkonium potential can be introduced via the dielectric function of the media [17,18].
As the static screening of the potential can be found in [11], we mainly focus here on the
dynamical screening of inter-quark potential.

There are several works regarding in-medium modification of Cornell potential using
dielectric functions obtained from various models, where they also investigate the effect
of wake-field on the potential. In paper [19], they obtained the dielectric function from
viscous chromodynamic equations in the formalism of collision-less kinetic theory for
QGP. These equations were solved using the linear response approximation to derive the
polarization tensor of the media and the dielectric function. In their subsequent paper [20],
they used the dielectric function of the viscous QGP model to study wake-field effects on
the potential. They also showed how parameters such as shear viscosity η/S affect the
wake structure of the potential. In the following papers [21], it is proposed that the QGP in
the RHIC is strongly coupled. With that in mind, the authors of [21] obtained the wake-field
potential using the dielectric function from AdS/CFT correspondence. Similarly to [19],
they also used the framework of linear response theory and introduced an ‘R-charged’
particle moving in the strongly coupledN = 4 super-symmetric Yang–Mills plasma, which
induces wake potential along the direction of motion.

Recently, according to the modern effective field theories, there is a result that indi-
cates that the quark–antiquark potential in the medium has to be complex-valued [22,23].
The potential is derived from the static Wilson loop, with a screened Coulomb part and
an imaginary part induced by Landau damping. The process includes the calculation of
the lattice QCD correlation function and the reconstruction of their spectral function from
lattice data. In papers [24,25], the authors applied the same methods to investigate the
heavy quark–antiquark potential. In paper [26], the authors included a non-perturbative
contribution to the in-medium potential. The lattice data are prone to statistical errors and
discretization effects; therefore, it might be cumbersome to calculate spectral functions.
Moreover, not all medium effects can be incorporated into the potential. Therefore, in this
paper, we mainly focus on real-valued potentials.

In the following paper [27], it was suggested that the motion of partons in the media
might lead to a change in attractive potential; hence, the spectrum of bound states and the
J/ψ suppression pattern can be modified. In order to study these changes quantitatively,
we use the dielectric function obtained from transport equations, which takes into account
collisions [27–29].
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2. Theory and Methods

The Cornell potential is an effective method to account for the confinement of quarks. It
was developed [30,31] in the 1970s to explain the masses of quarkonium states and account
for the relation between the mass and angular momentum of the hadrons. The potential
has the following form:

V(r) = −4
3

αs

r
+ σr + const. (1)

where r is the effective radius of the quarkonium state, αs is the QCD running coupling,
and σ is the QCD string tension. The value of const. was taken to fit experimental data.
Initially, αs and σ were merely empirical parameters but with the development of QCD,
they can now be calculated using perturbative QCD and lattice QCD, respectively.

There are numerous types of potential models which have been suggested to fit and
determine hadron spectra. Those phenomenological models were especially useful when
describing the spectra of charmonium and bottomonium because the latter has a huge mass
compared to light quarks which ordinary matter is made of. Having a huge mass made it
possible to use the non-relativistic Schrödinger equation, since a huge mass implies small
velocities. Proposed potentials have the same quality in common: they behave similarly
in short and large distances, having a distinction between ranges. At short distances,
on account of the one-gluon exchange contribution, it behaves exactly the same as the
Coulomb potential:

lim
r→0

V(r) = Vexch = −αs

r
(2)

Consequently, for large distances, there should be a confinement:

lim
r→∞

V(r) = Vcon f ' ar (3)

The most straightforward and simple method to combine them is to add them together,
which leads to the Cornell potential. More complicated potential models leave such
asymptotic behavior outside of intermediate region R1 <= r <= R2, which is somehow
connected in between. Thus, they are also called funnel potentials owing to their shape.
One possible way is to connect these two regions using the logarithmic r-dependence as
in [15,32]:

V(r) = c ln(r/r0), R1 <= r <= R2 (4)

A new heavy quark potential is proposed which incorporates the two concepts of
asymptotic freedom and linear quark confinement in a unified manner. It is shown that
this potential reproduces the spectra of the triplet cc̄-system charmonium and the triplet
bb̄-system upsilonium (bottomonium). The only parameters other than the scale size Λ are
the quark masses. This potential is formulated in momentum space. This potential has the
added feature of a minimal number of parameters.

V(r) = −4
3

1
b

1
(2π)3

∫
d3k

eik·r

k2 ln(1 + k2/Λ2)
(5)

The final remark of general meaning is that one might expect that for heavy con-
stituents that the effect of the relativistic terms amounts to a small correction compared
to the effect of the non-relativistic terms in the Hamiltonian. If this is indeed the case, the
relativistic corrections may be treated perturbatively. Perturbative treatment means that
the Hamiltonian is split up into an unperturbed part and a part that is regarded as a small
perturbation. In order to obtain eigenstates, the Schrödinger equation is solved for the
unperturbed, in our case, non-relativistic, Hamiltonian. The energy spectrum of the system
under consideration is then approximated by the expectation values of the full Hamiltonian
taken with respect to the unperturbed eigenstates. Since the non-relativistic Hamiltonian
has no means to discriminate between states of different spin, perturbatively, the wavefunc-
tions of the spin-singlet and spin-triplet states, for instance, are identical. In the first place,
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all of the above models have been designed for the description of heavy-quark systems. It
is generally accepted that in this case, a perturbative treatment is justified [15].

For simplicity, we use the Cornell potential because we are only going to calculate the
ground state of charmoniums and bottomoniums. Moreover, this potential is sufficient to
investigate the effect of the wake-field.

We choose the interaction between heavy quarks in charmonium or bottomonium in
the form of the well-known Cornell potential [15]:

V(r) = σr− α

r
(6)

For the static case, the form of this potential is given by Karsch et al. [11]:

V(r, mD) =
σ

mD
(1− e−mDr)− α

r
e−mDr (7)

where mD = 1/rD is the inverse of the screening length, also known as the Debye mass.
The in-medium modification of the potential can be introduced via the Fourier transform
and the longitudinal dielectric function ε:

Ṽ(k) =
V(k)
εL(k)

(8)

The Yukawa-like part of the potential is obtained using the following dielectric
function:

εL(k) = 1 +
m2

D
k2 (9)

To study the dynamical screening case, we consider a particle moving at a constant
velocity v through the medium. The motion of the particle with a charge Qa induces the
charge density [27]:

ρa
ext = 2πQaδ(ω− v · k) (10)

In order to obtain a modified potential, one should take the inverse Fourier transform
of the potential Ṽ(k):

V(r, mD) =
∫ d3k

(2π)3

∫ dω

2π
exp[i(k · r−ωt)] · 4π

k2εL(ω, k)
· 2πQaδ(ω− k · v) (11)

Here, we only consider a system moving along z-axis, v||z, then the modified potential
reads as:

V(r, mD) =
∫ d3k

(2π)3 exp[i(k · (r− vt))] · 4πQa

k2εL(v · k, k)
(12)

with v = (0, 0, vz).
We use the dielectric function, which was studied in [27], which was obtained with the

Vlasov approach. In order to study collisions, they started with the Boltzmann equation
with the BGK collision term [33]. The advantage of the former is that one can obtain an
analytical expression of the dielectric functions [28]. Such a dielectric function with the
BGK collision term was obtained for ordinary plasmas in [28], and in spite of color and
flavor, it should be valid for the QGP case because both use the same Vlasov approach [34].
The dielectric function for the collisional quark–gluon plasma is written as follows:

εL(ω, k) = 1 +
m2

D
k2

(
1− ω + iν

2k
ln

ω + iν + k
ω + iν− k

)(
1− iν

2k
ln

ω + iν + k
ω + iν− k

)−1
(13)

where ν is the collision term. The dispersion relation for the dielectric function, i.e., longitu-
dinal modes from εL(w, k) = 0, is studied in [28,35,36]. The dielectric function used here is
highly inspired from works related to classical plasma where a wake-field is induced by
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flowing ions and electrons. The dielectric equation is obtained from the kinetic equation
for the QED case, which is exactly the same except for the color charge. Thus, we treat the
collision between point-like constituent partons with a specific color charge Qa, i.e., quarks,
antiquark, and gluons without explicit SU(3) symmetry.

In this work, the dissociation of quarkonium, a bound state of heavy quarks, is
investigated in the framework of the nonrelativistic potential model. The Hamiltonian of
such a system is given as:

H(r, mD) = 2m− 1
m
∇2 + V(r, mD) (14)

where m is the mass of the quark. The Schrödinger equation was used to obtain the spectrum
of quarkonium. The application of this formalism is valid because the quarkonium consists
of heavy quarks, which has repeatedly been shown in scientific papers [11,15,37].

As the previously obtained potentials for dynamical screening are non-analytic and
three-dimensional, the problem of solving the nonrelativistic Schrödinger equation is
reduced to the numerical solution of the eigenvalue problem. For this purpose, a finite
difference scheme of the three-dimensional differential equation was constructed, and the
scientific package SciPy was used. The equation to be solved is given as follows:

[H(r, mD)− En(mD)]φn(r, mD) = 0 (15)

where the eigenvalues En(mD) correspond to the energy levels of the given system and are
expressed by the principal quantum number n due to technical difficulties, such as error
accumulation with the increasing discretization of the grid size. For the difference scheme
here, we have limited ourselves to the ground states of the system at n = 0 (i.e., J/ψ and Υ
states), the charm quark mass mc = 1.320 GeV, and the bottom quark mass mb = 4.746 GeV.
The final solutions of En(mD) depend inversely on the Debye mass mD.

3. Results and Discussion

Since the dielectric functions are nontrivial, the potentials were constructed numeri-
cally. In order to obtain them, one has to perform the inverse Fourier transform. For this
purpose, the Fast Fourier Transformation (FFT) method was used.

Due to the cylindrical symmetry, the physical z-axis is on the abscissa and the potential
itself is on the ordinate. Here, the natural systems of units were used, where c = 1 and
h̄ = 1, which is typical for high-energy physics. In these units, length is measured in GeV−1,
and energy is in GeV.

The potentials depend on parameters such as the collision frequency ν and the velocity of
the system v. The following values of the collision frequency ν = {0; 0.3mD; 0.6mD; 0.9mD}
were chosen. The potentials were constructed using Equation (12) for v = 0.55c and
v = 0.99c, where c is the speed of light, because those values are usually used in similar
papers [20,21,27]. Plots of these potentials are shown in Figures 1 and 2, respectively.

For visual representation and a better understanding of the behavior of the potential
change at the dynamic screening, it is convenient to represent a two-dimensional cross-
section of the z–r plane, where the color corresponds to the value of potential energy.
Two-dimensional cross sections of the potential are shown in Figures 3 and 4 for different
values of the parameters ν and v.

It can easily be seen from these graphs that the value of the potential is more intense
in front of the particles in the direction of motion and less intense behind these particles.
Moreover, the effect is more substantial the greater the velocity of the particle and the
collision frequency. A similar phenomenon is observed when a boat moves on a water
surface, where it leaves a wake. Therefore, such potentials are called wake-field potentials.

We have represented the amplitudes of the wave function in the presence of the bound
state in Figures 5 and 6 for values of v = 0.55c and v = 0.99c. The amplitudes of the wave
functions are normalized. We plotted the wave functions only for the value of the Debye
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mass mD = 1 GeV and the value of the collision frequency ν = 0.6mD, since the behavior
of the wave functions remains the same, except for the magnitude. It can easily be seen that
there is an anisotropy in the density distribution of the wave function which is induced by
the wake-field.
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Figure 1. The behavior of the potential at v = 0.55c for different values of the collision frequency.
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Figure 2. The behavior of the potential at v = 0.99 for different values of the collision frequency.

A suitable physical quantity by which the moment of decay of quarkonium can be
determined is the dissociation energy, given as:

En
dis(mD) = 2m + σ/mD − En(mD) (16)

which is positively determined for bound states and negatively determined for free particles.
Consequently, the expression

En
dis(m

crit
D ) = 0 (17)

determines the critical value, mdis
D , at which dissociation occurs. The dissociation energy

Edis
n as a function of mD for different parameters of the collision frequency ν and v is

depicted in Figure 7 for the J/ψ-state and in Figure 8 for the Υ-state.
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The critical values for mD were calculated for each set of parameters of the collision
frequency ν and velocity v and can be found in Tables 1 and 2.

Table 1. The critical values of the Debye mass (in GeV) Edis(mcrit
D ) = 0 for the J/ψ-state.

ν 0 0.3mD 0.6mD 0.9mD

v = 0.55c 0.656 0.663 0.685 0.716
v = 0.99c 0.641 0.688 0.755 0.827

Table 2. The critical values of the Debye mass (in GeV) Edis(mcrit
D ) = 0 for the Υ-state.

ν 0 0.3mD 0.6mD 0.9mD

v = 0.55c 1.429 1.473 1.596 1.768
v = 0.99c 1.383 1.648 2.001 2.359

In order to calculate the critical temperatures of the medium, one might need the
expression that relates it to the Debye mass. The perturbation theory of N f light quarks has
the following relation in leading order [38,39]:

m2
D/T2 = (1 + N f /6)g2(T2) (18)

where g(T) is the running coupling constant, which depends on temperature T. There is
some amount of ambiguity in the coupling constant’s (g(T)) definition. For simplicity, we
have chosen the coupling constant to be g =

√
4παs. The results for the critical temperatures

are shown in Tables 3 and 4 for the charmonium state. The values for the bottomonium
state are in Tables 5 and 6, for N f = 0 and N f = 3, respectively.

Table 3. The critical values of dissociation temperature T (in MeV) at Edis(T) = 0 for the J/ψ-state,
N f = 0.

ν 0 0.3mD 0.6mD 0.9mD

v = 0.55c 269.64 272.52 281.56 294.3
v = 0.99c 263.48 282.8 310.34 339.93

Table 4. The critical values of dissociation temperature T (in MeV) at Edis(T) = 0 for the J/ψ-state,
N f = 3.

ν 0 0.3mD 0.6mD 0.9mD

v = 0.55c 220.16 222.51 229.9 240.3
v = 0.99c 215.13 230.9 253.39 277.55

Table 5. The critical values of dissociation temperature T (in MeV) at Edis(T) = 0 for the Υ-state,
N f = 0.

ν 0 0.3mD 0.6mD 0.9mD

v = 0.55c 587.38 605.46 656.02 726.72
v = 0.99c 568.47 677.39 822.49 969.64

Table 6. The critical values of dissociation temperature T (in MeV) at Edis(T) = 0 for the Υ-state,
N f = 3.

ν 0 0.3mD 0.6mD 0.9mD

v = 0.55c 479.59 494.36 535.64 593.36
v = 0.99c 464.15 553.09 671.56 791.71
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Unfortunately, there are no directly measured experimental data for the screening
length or Debye mass, except for lattice QCD data. However, these results have a consider-
able degree of diversity. For now, we can just compare our calculation with some values
that emerged from lattice QCD in Table 7 [40–42].

Table 7. Debye masses (in GeV) at different temperatures.

T/Tc 1 1.5 2

Perturbation theory
with N f = 0 0.33 0.46 0.59

Lattice SU(3) 0.7 0.75 1.0
Lattice SU(3) with

N f = 3 0.61 1.40 2.34

Most of the works involving in-medium modification consider a static quark–antiquark
potential. Therefore, we restrict ourselves from a direct comparison and treat our results
merely as qualitative rather than quantitative. It can be seen from the graph that with
increasing collision frequenciees ν there is a corresponding increase in the critical value
of mD. The same tendency is observed for different values of the parameter v = 0.55c and
v = 0.99c. Consequently, for moving particles the dissociation of quarkonium occurs at a
higher effective temperature. Thus, we can conclude that at dynamic screening, the bound
states of quarks are more stable than at static screening, which was predicted in [27].

4. Conclusions

In this work, the effect of the wake-field on the spectrum and dissociation of quarko-
nium in a quark–gluon plasma was studied. For this purpose, the quark interaction
potential in the gluon medium was constructed by summing the ring diagrams and using
the dielectric function from the relativistic Boltzmann equation with the BGK collision
integral. It was shown that there is an anisotropy induced by the wake-field in the obtained
potentials and in the amplitude of the wave functions as well. The anisotropy is directed
along the direction of the quarkonium in the media, and it depends on the velocity of
the particle in the medium and the collision frequency. Further, we have analyzed the
effect of the wake-field on the spectrum of quarkonium in a quark–gluon plasma. It was
demonstrated that for a moving quarkonium in the collisional QGP, dissociation occurs
at a much lower screening length and hence at a higher temperature. The collision rate of
partons in QGP has an effect on the dissociation of the quarkonium. We have determined
the critical plasma temperature corresponding to the dissociation of quarkonium taking
into account the wake-field.
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QCD Quantum Chromodynamics
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