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Abstract: We use the results of lattice simulations of the net-baryon number density at imaginary
baryon chemical potential in N f = 2 QCD to construct the equation of state of dense and hot
strong-interacting matter both above the Roberge–Weiss temperature T > TRW and below the critical
temperature T < Tc. For these cases, we also evaluate probability distributions of the net-baryon
number, as well as the respective cumulants and moments. The consequences of the asymptotic
behavior of these probability distributions for the problem of reconstruction of the net-baryon
probability distributions from cumulants are discussed.
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1. Introduction

The properties of nuclear matter at low temperature and high density and the location
of the phase transition to chral-symmetric and/or deconfined quark matter are subjects of
both experimental and theoretical studies. With large baryon densities, the only approach
based on first principles useful in nonperturbative computations—that is, lattice QCD—is
plagued by the so-called sign problem.

For this reason, the generally accepted knowledge in the physics of dense, strong-
interacting matter largely comes from low-energy effective models, which are consistent
with the first-order chiral phase transition at low temperatures and high baryon densities,
as is shown in Figure 1; some experimental evidence for this transition can be found in [1].
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Figure 1. QCD phase diagram.

There are several methods to obviate the sign problem in lattice studies. In this work,
we discuss Taylor expansion at zero baryon chemical potential µB = 0 and the analytical
continuation of the quantities computed at imaginary values of µB, where there is no
sign problem.
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Our attention is focused on the net-baryon number density, which can be evaluated on
a lattice at imaginary µB. Given the net-baryon number density, one can find the respective
pressure and the dependence of the grand canonical partition function on the baryon
chemical potential, as well as, therefore, the probability that the system has a definite
net-baryon number.

The probability mass function describing the distribution of fireballs produced in
heavy-ion collisions in the net-baryon number can be measured experimentally, mod-
ulo some plausible assumptions about thermodynamical equilibrium in fireballs. The
cumulants associated with this distribution have received considerable attention in the
literature [2]. In this regard, considerable theoretical and experimental work has been
undertaken on higher-order cumulants corresponding to the distribution of the fireballs
produced in heavy-ion collisions in the net-baryon charge.

We discuss the problem of reconstruction of the probability mass function from the
cumulants in connection with the phase transition.

On the basis of our lattice results obtained in a simplified version of QCD, we analyze
the asymptotic behavior of the distribution Pn in the net-baryon number and study its
dependence on the temperature. We find that the decrease in Pn with n as n→ ∞ becomes
progressively slower as the temperature decreases. We analyze the consequences of this
observation for the relation between the cumulants and the probability mass function at
low temperatures, where the phase transition is expected.

The results of our lattice simulations agree well with the hadron resonance gas (HRG)
model. We try to find signatures of the phase transition that should appear in the behavior
of the baryon density at imaginary chemical potentials, where it can be evaluated on a
lattice. We discuss in detail possible corrections to the the grand canonical partition function
of the HRG model, which are small at the imaginary baryon chemical potential; therefore,
however, they are consistent with the first-order phase transition at a real value of µB. We
also consider the equation of state (EoS)— that is, the relation between the pressure and the
net-baryon number density— that follows from the results of our lattice simulations. We
discuss its changes with temperature and outline a scenario of phase transition in terms of
the EoS.

Our study relies on the results of simulations described in [3], which use lattices of size
N3

s × 4 with Ns = 16, 20, 40 at several temperature values over the range 0.84Tc < T < 1.35Tc
with mπ/mρ = 0.8.

2. Definitions and Notation

The thermodynamical state of strong-interacting matter is described by the grand
canonical partition function

ZGC(θ, T, V) = Tr exp
(
− Ĥ − µB B̂

T

)
,

where Ĥ is the Hamiltonian, B̂ is the operator of the baryon charge, µB is the baryon

chemical potential, and θ =
µB
T

. The grand canonical partition function can be expressed
in terms of the canonical partition functions,

ZC(n, T, V) = ∑
j
〈j| exp

(
− Ĥ

T

)
|j〉, (1)

where |j〉 runs all states with the net-baryon number B = n. This expression is as follows:

ZGC(θ, T, V) =
∞

∑
n=−∞

ZC(n, T, V)ξn
B, ξB = eµB/T , µB = Ncµq, θ = θR + ıθI , (2)
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It is referred to as the fugacity expansion. It should be emphasized that ZC(n, T, V) ≥ 0
and, since the baryon charge takes integer values, the grand canonical partition function is
periodic in θI [4]: ZGC(θ, T, V) = ZGC(θ + 2ıπ, T, V). The inverse of the fugacity expansion
is provided by the Fourier transform

ZC(n, T, V) =
∫ π

−π

dθI
2π

eınθI ZGC(θ = ıθI , T, V). (3)

As was shown in [5], the canonical partition functions are of phenomenological signif-
icance because they are related to the probabilities Pn that the net-baryon number at given
values of µB and T equals n:

Pn(θ) =
ZC(n, T, V)ξn

B
ZGC(θ, T, V)

, (4)

We introduce special notation for these probabilities at µB = 0: Pn(0) ≡ Pn, which are
of particular interest. The probabilities Pn(θ) can be expressed in terms of Pn by the formula

Pn(θ) =
PnenθZGC(0)

ZGC(θ)
, (5)

where

ZGC(θ) = ZGC(0)
∞

∑
n=−∞

Pnenθ (6)

In addition to these probabilities, we also consider the equation of state; that is, the
relation between the pressure

p(θ, T) =
T
V

ln ZGC(θ, T, V) (7)

and the net-baryon number density

ρ(θ, T) =
1
V

∂ ln ZGC(θ, T, V)

∂θ
; (8)

We also use the respective dimensionless quantities

ρ̂ =
ρ

T3 , p̂ =
p

T4 , and ν = VT3. (9)

Considering Pn(0) defined in Equation (4) as a discrete probability mass function, one
can conclude that the partition function represents the moment-generating function (up to
a constant factor); namely

M(t) = ∑
n
Pn(θ)ent =

∞

∑
k=0

tk

k! ∑
n
Pn(θ)nk =

∞

∑
k=0

µk(θ)tk

k!
, (10)

where µk(θ) =
∞

∑
n=−∞

Pnnk are the moments of the random variable n. Now, we use

Equations (2) and (4) to obtain the relation

M(t) =
ZGC(t + θ, T, V)

ZGC(θ, T, V)
. (11)

The cumulants of this distribution are given by the coefficients of the Taylor expansion
of the cumulant-generating function

Kθ(t) = ln ZGC(θ + t, T, V)− ln ZGC(θ, T, V) =
(p(θ + t, T)− p(θ, T))V

T
=

V
T

∞

∑
j=1

κj(θ)tj

j!
, (12)
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We also consider κj ≡ κj(0); from parity conservation, it follows that µ2n−1(0) = 0
and κ2n−1 = 0. Of particular interest are a few of the lowest-order cumulants

κ2 = µ2 − µ2
1 κ4 = µ4 − 4µ3µ1 − 3µ2

2 + 12µ2µ2
1 − 6µ4

1 (13)

κ3 = µ3 − 3µ2µ1 + 2µ3
1 κ5 = µ5 − 5µ4µ1 − 10µ3µ2 + 20µ3µ2

1 + 30µ2
2µ1 − 60µ2µ3

1 + 24µ5
1.

3. Lattice Results

First, we write down the lattice results we need for the net-baryon number density ρ̂
at imaginary values of θ from [3]. It should be noticed that we presented the net-baryon
number density in contrast to the net-quark number density in [3].

In this work, we consider the cases T > TRW and T < TRW , where TRW is the Roberge–
Weiss temperature [4] (see Figure 2 illustrating the physical sense of TRW) and Tc is, strictly
speaking, the pseudocritical temperature of the chiral crossover at µB = 0. The range
Tc < T < TRW is omitted for simplicity.

Tc

TRW

T

ImθB−π − π
3

π
3 π

arg(P) ∼ 2π

3
∼ 4π

3 ∼ 0 ∼ 2π

3
∼ 4π

3

II III I II III

|P| 6= 0 |P| 6= 0

P = 0
P = 0

1

Figure 2. The QCD phase diagram in the θI − T plane. Vertical lines show the first-order Roberge–
Weiss phase transition, P is the Polyakov loop, and the symbols I, I I, and I I I label the Polyakov-loop
sectors. The dashed line separates phases with finite (|P| > 0) and infinite (|P| = 0) free energy for an
isolated quark. With physical quark masses, it furnishes a crossover transition line.

3.1. T > TRW

It was shown in [3] that one can fit the lattice data for the baryon number density ρI
on the segment −π < θI < π with a low-degree polynomial. We used the polynomial

−ıρ̂I = a1θI − a3θ3
I (14)

in the case where T = 1.35Tc and

−ıρ̂I = a1θI − a3θ3
I − a7θ7

I , (15)

in the case where T = 1.2Tc. Formula (14) is the lowest-degree polynomial that fits the data
at T = 1.35Tc well. It is interesting to note that it turns into the net-baryon density formula

for free massless quarks when a1 =
N f

3Nc
and a3 =

N f

3π2N3
c

. At T = 1.2Tc, two-parameter

polynomial-fit formulas do not provide p−values greater than 0.05, whereas the three-
parameter fit formulas (Formula (15) and a1θI − a3θ3

I + a5θ5
I ) give rather good fit quality
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(p > 0.5). Therefore, the latter formula leads to unphysical behavior at θI = 0, θR → ∞
(ρ̂ < 0 and p̂ < 0), and thus we choose the fit Formula (15). We obtain the following values
for the fit parameters:

T = 1.20Tc : a1 = 0.4989(6), a3 = 0.0127(4), a7 = 1.43(13) · 10−5 (16)

T = 1.35Tc : a1 = 0.5189(3), a3 = 0.0122(4),

3.2. T < Tc

At T < Tc and θ = ıθI , the net-baryon number density can be fitted well by the
trigonometric series

−ıρ̂(ıθI) ' f1 sin θI + f2 sin(2θI) + f3 sin(3θI) + ... (17)

in which only a few terms survive. The coefficients fn can be evaluated in some models.
It has been shown [3,6,7] that, over the range Tc < T < TRW , the cluster expansion
model (CEM) agrees with the lattice data well, and one of the parameters of this model,
corresponding to the ratio fn+1/ fn at n → ∞, tends to zero as the temperature becomes
lower than Tc. We consider temperatures T = 0.99Tc and T = 0.93Tc in the confinement
domain in order to study the temperature dependence of the probabilities Pn where the
CEM reaches its applicability limit. The values of fn from [3] are as follows:

T = 0.93Tc : f1 = 0.0869(3) f2 = 0.0 p̂(0) = 0.569; (18)

T = 0.99Tc : f1 = 0.2541(8) f2 = − 0.0053(7) p̂(0) = 0.692 . (19)

Here, p̂(0, T) are the values of the pressure at µB = 0 evaluated with the formulas
from [8]; these values are needed for the EoS. Then, the pressure p̂(θ, T) can be readily
determined from ρ̂ by integration with respect to θI .

4. Equation of State

To derive the EoS in the case T > TRW , we consider the fit function shown in Formula (14)
at both T = 1.35Tc and T = 1.2Tc. Thus, we obtain the EoS at T > TRW in the paramet-
ric form,

ρ̂ = a1θ + a3θ3 (20)

p̂ =
a1

2
θ2 +

a3

4
θ4 + p̂0,

where p̂0 = p̂(0, T).
In the case T < Tc, we consider the situation when f1 6= 0 and employ analytical

continuation. Thus, we arrive at

ρ̂(θ) ' f1 sinh θ (21)

with real values for the baryon chemical potential. In this case, the dependence of the
pressure p(θ, T) on θ is given by

p̂(θ, T) = p̂(0, T) + f1(T)
∫ θ

0
sinh(x)dx = p̂(0, T) + f1(T)(cosh(θ)− 1) =

ln ZGC(θ, T, V)

VT3 . (22)

From Formulas (17) and (22), we readily obtain the relation

p̂(ρ, T) = p̂(0, T) +
(√

ρ̂2 + f 2
1 (T)− f1(T)

)
, (23)
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where p̂(0, T) is the dimensionless pressure corresponding to ρ = 0. This dependence of
the pressure of the density at a given temperature furnishes the equation of state (EoS) for
interacting quark–gluon matter obtained in lattice QCD for temperatures well below Tc,
where only one term in the Fourier expansion of the baryon density survives.

In the case of two-parameter fit, which works at T = 0.99Tc, we obtain the respective
EoS in the parametric form (here, s = sinh(θ)) as follows:

ρ̂ = f1 s + 2 f2 s
√

s2 + 1; (24)

p̂ = f1(
√

s2 + 1− 1) + f2 s2 + p̂0.

We plot these dependencies in Figure 3.
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Figure 3. (Left panel): isotherms illustrating the EoS at T > TRW (solid curve) and at T < Tc (dashed
curves). (Right panel): isotherms illustrating Formulas (23) (solid curves) and (24) (dashed curve)
for the EoS at temperatures T = 0.93Tc and T = 0.99Tc and various values for the parameters.
Dash-dotted curves are not related to lattice data and are explained in the text. ρs = 0.153/fm3 is the
nuclear saturation density.

In the left panel, we see that, at the densities of the order of the saturation den-
sity, the dependence of the pressure on the net-baryon number is qualitatively the same
over the range 0.93Tc < T < 1.2Tc, and the values of the pressure at θ = 0 are taken
from [8]; the pressure gradually decreases with the temperature. The difference between
the EoSs corresponding to the two-parameter fit (Formula (24)) and the one-parameter
fit (Formula (23)) at T = 0.99Tc is shown in the right panel. The dark blue solid curve
corresponds to the case where f2 in Formula (24) is set equal to zero, and the cyan dashed
curve corresponds to the negative value of f2, as was obtained in lattice simulations. It
deflects upwards from the f2 = 0 case, which is a consequence of the EoS (Formula (24))
that follows from the expansion shown in Formula (17). The physical reason for such
deflection can be explained as follows. In a wide class of statistical models, such as the
excluded-volume hadron resonance gas (EV-HRG) model or the CEM, the sign of the
coefficients fn alternates, which is a consequence of the excluded volume, as was shown
in [9]. The excluded-volume effect can be formulated in terms of the EoS as follows: the
pressure of the gas of finite-volume particles increases with an increase in the density more
rapidly than in the case of point-like particles. This is precisely what one sees in the case of
a van der Waals gas, as well as in Figure 3.

The (hypothetical) case where f2 > 0 is shown for T = 0.93Tc by a dash-dotted curve;
the isotherm deflects downwards as compared with the case f2 = 0 (corresponding to our
data and shown by the green solid curve). It should be noticed that the Fourier expansions
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of the density with all positive coefficients were obtained in [10] in the Nambu–Jona-
Lasinio model, where some evidence for the phase transition was found. The (hypothetical)
isotherm of the van der Waals type that would correspond to this phase transition is
shown by the dark red dash-dotted line; AB is the physical segment of this isotherm
associated with a two-phase mixed state. Thus, in the right panel, we have outlined a
plausible scenario for the phase transition in terms of the isotherms. It is important in what
follows that positive higher-order coefficients in the Fourier expansion in Formula (17) are
associated with the isotherms that can be naturally deformed to the isotherms of the van
der Waals type.

5. Asymptotic Behavior of the Net-Baryon Number Distributions

Given the pressure p(θI , T), we can find the grand canonical partition function,

ZGC = exp
(

p(θ, T)V
T

)
, (25)

with imaginary values for the baryon chemical potential and then compute the canonical
partition functions using Formula (3). We present the results of the outlined procedure at
high and low temperatures separately.

5.1. T > TRW

First, we consider in detail the case where only a1 and a3 are nonzero. A numerical
estimate of ZC(n, T, V) based on high-precision computations leads to negative values of
ZC(n, T, V) at n > 1.6VT3, which is unphysical. Moreover, the series in Formula (2) with
the coefficients calculated with Formula (3) using ZGC(θ, T, V) obtained by integration of
Equation (8) with the baryon density (Formula (14)) diverges everywhere in the fugacity
plane except the unit circle. This divergence stems from the discontinuities of the fit
function shown in Formula (14) at θI = (2n + 1)π, n ∈ Z and the general properties of
Fourier series.

Yet another way to estimate the canonical partition functions associated with the
baryon density −ıρ̂I = a1θI − a3θ3

I is to perform an asymptotic expansion of the integral in
Formula (3) in the limit where

n→ ∞and V → ∞, whereas T and $ =
n
ν

are kept fixed. (26)

Such an estimate was performed in [11], where the leading and next-to-leading terms
of the asymptotic expansion of the canonical partition function in ν were taken into account,
and it was found that

ZC(n, T, V) ' exp
(

ν
[ a1

2
θ2

s +
a3

4
θ4

s − $θs

]
− 1

2
ln
(

4πν(a1 + 3a3θ2
s )
))

, (27)

where

θs =

√
a1

3a3

[
(
√

x2 + 1 + x)1/3 − (
√

x2 + 1− x)1/3
]

(28)

and x = $n

√
27a3

2a3/2
1

. At high $, we arrive at θs ∼ 3

√
$

a3
and

ZC(n, T, V) ' exp

−3
4

3

√
n4

νa3

. (29)

It should be noticed that the canonical partition functions defined by this formula give
the series shown in Formula (2), which converges everywhere in the fugacity plane and
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is periodic in θI with the period 2π. Therefore, the precision of the approximation of the
grand canonical partition function

ZGC(θ, T, V)

ZGC(0, T, V)
= exp

(νa1

2
θ2 +

νa3

4
θ4
)

(30)

using the formula associated with the coefficients (Formula (27)) should be investigated
in great detail; however, we leave this problem for other research. Here, we only check
whether the asymptotic behavior of ZGC(θ, T, V) at θI = 0, θR → ∞ defined by Formula (30)
corresponds to the asymptotic behavior (Formula (30)) of ZC(n, T, V) at n→ ∞.

The estimate of the grand canonical partition function at large θ > 0 associated with
the asymptotic behavior of the canonical partition functions (Formula (27)) can be obtained
as follows:

ZGC(θ, T, V) '
∞

∑
n=−∞

exp

 − 3
4

3

√
n4

νa3
+ θn

 ' ∫ ∞

0
exp

(
− 3

4(νa3)1/3 n4/3 + θn
)

dn, (31)

where the integral with respect to n is evaluated using the saddle-point approximation.
The result is

ZGC(θ, T, V) ' exp
(

νa3θ4

4

)
, (32)

which is in agreement with Formula (30) (the factor of exp
(

νa1θ2

2

)
is associated with the

subleading contribution to the pressure). Such agreement gives some evidence for the
validity of our conclusion that the asymptotic estimate (Formula (27)) of the canonical
partition functions in the limit shown in Formula (26) makes physical sense.

Therefore, of particular importance is the third method of estimating ZC(n, T, V) or,
more precisely, Pn given that the pressure takes the form

p̂ =
a1

2
θ2 +

a3

4
θ4. (33)

In terms of probability theory, a1 = κ2 and a3 = κ4 furnish the second and the fourth
cumulants corresponding to the probability mass function Pn to be determined.

To do this, one should begin with finding the moments of the random variable n
(net-baryon number), given that only the two cumulants κ2 and κ4 differ from zero.
In view of the general relation C(t) = lnM(t) between the cumulant-generating func-

tion C(t) =
∞

∑
j=1

κjtj

j!
and the moment-generating function (notice that µ0(θ) = 1) M(t) =

∞

∑
k=0

µktk

k!
, we obtain

C(t) = exp
(
κ2t2

2

)
exp

(
κ4t4

4

)
(34)

=
∞

∑
j=0

t2j

2j

[
j
2

]
∑

m=0

κm
4 κ j−2m

2
m!(j− 2m)!

=
∞

∑
j=0

t2j

2j

ıj
√
κ j

4

j!
Hj

(
− ıκ2

2
√κ4

)
,

where Hn(x) is the Hermite polynomial. Using the asymptotic formula for the Her-
mite polynomials,

Hn(x)|n→∞ '
√

2 exp
(

x2

2

)(
2n
e

) n
2

cos
(

x
√

2n− πn
2

) (
1 − x2

2n + 1

)− 1
4

, (35)
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at large n, we arrive at the asymptotic behavior of the moments

µ2n '
(

8κ4n3

e

) n
2

exp

(
−
(√

n − κ2√
8κ4

)2
)

. (36)

According to the Carleman criterion [12], the probability mass function Pn exists and

is unique provided that the series ∑∞
n=1

(
µ2n

)− 1
2n

diverges. In the case under consideration,(
µ2n

)− 1
2n ∼ n−

3
4 , and thus the Carleman criterion is met. Thus, we can use the ansatz

Pj ∼ exp(−xjy) (37)

in order to determine the asymptotic behavior of the probability distribution at n →
∞ related to the asymptotic behavior of moments (Formula (36)). We find x and y as
follows: we determine the asymptotic behavior of the moments that follows from the
ansatz (Formula (37)) using Laplace’s method,

µ2n = P0 + 2
∞

∑
j=1

j2nPj '
∫

exp
(
− xjy + 2n ln(j)

)
dj, (38)

and then compare the obtained formula with Formula (36). The result x =
3

4 3
√

νκ4
, y =

4
3

coincides with Formula (29).
We consider the asymptotic of the moments of the Pn distribution when the term a7θ7

I
in Formula (15) does not vanish. From the above reasoning, we arrive at the asymptotic

behavior as follows: Pn ∼ exp

 − 7
8

7

√
n8

νa7

. In the general case, when the quark density

is fitted by a polynomial of degree q, we obtain

Pn ∼ exp

(
− q

q + 1
q

√
nq+1

νaq

)
. (39)

As the temperature T > TRW decreases, the degree of the polynomial needed to fit the
quark density at imaginary θ increases. Therefore, the respective probability mass function
Pn decreases with n progressively more slowly as the temperature decreases over the range
T > TRW .

5.2. T < Tc

With T < Tc and θ = ıθI , the net-baryon number density can be fitted by Formula (17),
in which only two (with T = 0.99Tc) or one (with T = 0.93Tc) terms survive. First, we
consider the case where f1 6= 0 and employ analytical continuation. Thus, we arrive at
ρ̂(θ) ' f1 sinh θ with real values for the baryon chemical potential, derive the expression
for the pressure (22), and, thus, obtain the grand canonical partition function as well. Then,
Formula (3) gives

Pn = enθ−ν f1 cosh θ In(ν f1), (40)

where In(z) is the Infeld function of z, which coincides with the Skellam distribution

S(n; b, b̄) = e−(b+b̄)
(

b
b̄

) n
2

In(2
√

bb̄) (41)

with the parameters b =
ν f1

2
eθ , b̄ =

ν f1

2
e− θ .
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The HRG model also predicts the Skellam distribution of the net-baryon number [13,14],
and our results agree with this prediction provided that b and b̄ are the average baryon and
antibaryon multiplicities. In this case, our fit parameter is interpreted as follows:

f1ν = 2
√

bb̄, (42)

It should be emphasized that the product bb̄ is independent of µB. This excellent
agreement between lattice and HRG predictions gives some evidence that a "naive" ana-
lytic continuation of the grand canonical partition function and other thermodynamical
quantities to real values of chemical potential with Formula (22) is valid when T is well
below Tc so that the baryon density can be fitted by trigonometric series with a few terms
only. Therefore, the dependence of the pressure and baryon density on θ is rather smooth,
implying that there is no transition in the µB − T plane at T < Ts associated with singular
behavior for the baryon density.

The agreement of the lattice data for several low-order cumulants with the HRG model
was found in [6]; however, our approach demonstrates the agreement of the net-baryon
number probability distribution, which is more informative.

The asymptotic behavior of the probabilities Pn at n→ ∞ in the case where exactly J
coefficients in Formula (17) do not vanish was obtained in [3],

Pn ∼
(ν f J)

n/J

Γ
(

n
J
+ 1
) , (43)

However, this estimate was proven for positive values of J only. In the case of alter-
nating coefficients fn, the Formula (43) is not justified; however, in the case of alternating
coefficients fn, the probability mass function Pn declines even more rapidly than in the case
where fn > 0 ∀n.

To justify this statement, one can consider the CEM, the EV-HRG model, etc., where the
net-baryon number density at imaginary chemical potentials is described by Formula (17)
with an alternating sign for fn and | fn| decreasing as a geometric progression or faster.
The probabilities Pn corresponding to such quark densities can be evaluated numerically
using the algebraic procedures described in [7], both in the case fn = | fn| and in the case of
an alternating sign for fn. Such estimates show that the probabilities Pn in the case of an
alternating sign for fn decrease with n more rapidly than those in the case of a constant
sign for fn.

It should also be noticed that the alternating sign for fn was obtained in lattice simula-
tions in QC2D at Tc < T < TRW . In [7], it was shown that fitting the CEM-parameterized
fit-function to the lattice data on the imaginary part of the net-baryon number density over
the segment −π < θI < π gives alternating coefficients fn.

Using expression (43) and assuming the positivity of the coefficients of the Fourier
expansion, we find that the second term of the expansion shown in Formula (17) can be
neglected as compared with the first term provided that

n .
e f 2

1 ν

2 f2
, (44)

where ν = VT3. Then, assuming that, for the fireball, ν & 10 and fn are given by
Formula (18) (for T = 0.99Tc), we find that deviations from the HRG model should be
dramatic at n ∼ 160, whereas experimental studies deal with n ∼ 40÷ 60 [15].
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6. Discussion

From Formula (43), it follows that, when we deal with infinite series of positive
coefficients fn, the sequence Pn decreases more slowly than any function of the type

exp
(
− n

J
ln n

)
, J ∈ N. The positivity of the coefficients of the Fourier expansion of the

density obtained in [10] at low temperatures suggests that Pn shows a very slow decrease
with n, though the corresponding fugacity expansion converges. It may occur that the
cumulants obtained from such slowly decreasing probability mass functions correspond to
a large variety of functions; that is, given the complete set of the cumulants, one cannot
unambiguously reconstruct the probability mass function. To be more precise, we should
indicate the conditions for a unique reconstruction of Pn from its moments µk, since the
moments are readily determined by the cumulants. The Krein criterion [12] states that the
problem of moments becomes indeterminate when∫

dx
ln ϕ(x)
(1 + x2)

> −∞, (45)

where ϕ(x) is the probability density function. The rate of decrease in Pn at low tempera-
tures is very close to the line of demarcation between probability mass functions generating
determinate and indeterminate moment problems. Therefore, at low temperatures, the
problem of reconstruction of the probability distribution of the net-baryon number by the
measured cumulants is highly probably an ill-posed problem. In any case, a comprehensive
study of possible unambiguity in the reconstruction of the net-baryon number probability
distribution is needed.

Therefore, such a distribution should also be measured experimentally. This point of
view was advocated in [5], where, on the basis of Formula (4) and the C-parity conservation
represented by the relation ZC(n, T, V) = ZC(−n, T, V), a procedure for the measurement
of the baryon chemical potential was suggested. Since Pn are experimentally measurable

quantities and
Pn

P−n
= ξ2n, one may conclude that theoretical expectations of the quantities

µ
(n)
B =

T
2n

ln
( Pn

P−n

)
(46)

coincide with each other; that is, µ
(n)
B = µB, provided that thermodynamical equilibrium in

the fireball is approached.
Thus, it should be checked experimentally whether the data on µn

B considered as a
function of n can be fitted by a constant function. If they can, this constant should be

interpreted as µB. Given θ =
µB
T

, one can determine the empirical cumulative distribution
function (ECDF) of the net-baryon number at θ = 0 using the formula

Pn =
Pne−nθ

∑∞
k=−∞ Pke−kθ

. (47)

Thus, one can combine data obtained at different values of µB (however, at the same
temperature) to increase statistics for the determination of the probability mass function Pn.

7. Conclusions

The results of the analytical continuation of the net-baryon number density evaluated
in N f = 2 lattice QCD at imaginary baryon chemical potentials were used to estimate both
the equation of state and the asymptotic behavior of the net-baryon number probability
distribution Pn when n→ ∞.

It was found that Pn decreases sufficiently fast for the fugacity expansion to con-
verge; however, the rate of decrease becomes gradually slower with the decrease in
the temperature.
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At low temperatures, the rate of decrease becomes so slow that the respective moment
problem may become indeterminate—the used lattice data do not imply a definite conclu-
sion. That is, different probability distributions of the net-baryon number may correspond
to the same equation of state provided that at least one of them decreases sufficiently slowly
such that the respective moment problem becomes indeterminate.

In any case, the problem of reconstruction of Pn from the respective cumulants is
either ill posed, even from the mathematical point of view, or highly sensitive to small
variations in higher-order cumulants. For this reason, the analysis of experimental data
based on the net-baryon number distribution involves additional information compared to
that extracted from the set of cumulants.

The dependence of the equation of state on the temperature and fit parameters has also
been used to formulate a possible scenario of emergence of the van der Waals isotherms
corresponding to the first-order chiral phase transition. However, a check of this hypothesis,
as well as the relation of the ambiguity of the reconstruction of the net-baryon number
probability distribution from the cumulants to the first-order phase transition, should be
the subject of further studies.
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