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Abstract: In this paper, we discuss various aspects of a class of A-twisted heterotic Landau–Ginzburg
models on a Kähler variety X. We provide a classification of the R-symmetries in these models which
allow the A-twist to be implemented, focusing on the case in which the gauge bundle is either a
deformation of the tangent bundle of X or a deformation of a sub-bundle of the tangent bundle of X.
Some anomaly-free examples are provided. The curvature constraint imposed by supersymmetry in
these models when the superpotential is not holomorphic is reviewed. Constraints of this nature have
been used to establish properties of analogues of pullbacks of Mathai–Quillen forms which arise in the
correlation functions of the corresponding A-twisted or B-twisted heterotic Landau–Ginzburg models.
The analogue most relevant to this paper is a deformation of the pullback of a Mathai–Quillen form.
We discuss how this deformation may arise in the class of models studied in this paper. We then
comment on how analogues of pullbacks of Mathai–Quillen forms not discussed in previous work
may be obtained. Standard Mathai–Quillen formalism is reviewed in an appendix. We also include
an appendix which discusses the deformation of the pullback of a Mathai–Quillen form.

Keywords: heterotic Landau–Ginzburg models; Mathai–Quillen forms; R-symmetries; supersymmetry
and duality; topological field theories

1. Introduction

A Landau–Ginzburg model is a nonlinear sigma model with a superpotential. For a
heterotic Landau–Ginzburg model [1–7], the nonlinear sigma model possesses only (0, 2)
supersymmetry and the superpotential is a Grassmann-odd function of the superfields
which may or may not be holomorphic.

Heterotic Landau–Ginzburg models have field content consisting of (0, 2) bosonic
chiral superfields

Φi = (φi, ψi
+)

and (0, 2) fermionic chiral superfields

Λa = (λa
−, Ha, Ea),

along with their conjugate antichiral superfields

Φı =
(

φı, ψı
+

)
and

Λa =
(

λa
−, Ha, Ea

)
.

The φi are local complex coordinates on a Kähler variety X. The Ea are local smooth sec-
tions of a Hermitian vector bundle E over X, i.e., Ea ∈ Γ(X, E). The Ha are nonpropagating
auxiliary fields. The fermions couple to bundles as follows:
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ψi
+ ∈ Γ

(
K1/2

Σ ⊗Φ∗
(

T1,0X
))

, λa
− ∈ Γ

(
K1/2

Σ ⊗
(
Φ∗E

)∨)
,

ψı
+ ∈ Γ

(
K1/2

Σ ⊗
(

Φ∗
(

T1,0X
))∨)

, λa
− ∈ Γ

(
K1/2

Σ ⊗Φ∗E
)

,

where Φ : Σ→ X and KΣ is the canonical bundle on the worldsheet Σ.
In [5], heterotic Landau–Ginzburg models with superpotential of the form

W = Λa Fa , (1)

where Fa ∈ Γ(X, E∨) were considered. It was claimed in [7] that, when the superpotential (1)
is not holomorphic, supersymmetry imposes a constraint which relates the nonholomorphic
parameters of the superpotential to the Hermitian curvature. The details supporting that
claim were worked out in [8,9] for the case Ea ≡ 0. This curvature constraint has been used
in [7] to establish properties of analogues of pullbacks of Mathai–Quillen forms. These
analogues arise in the correlation functions of the corresponding A-twisted or B-twisted
heterotic Landau–Ginzburg models.

In this paper, we will study certain aspects of A-twisted heterotic Landau–Ginzburg
models with superpotential (1) and Ea ≡ 0. Such models yield the A-twisted (2, 2) Landau–
Ginzburg models of [10] when E = TX and Λi Fi = Λi ∂iW(2,2), where W(2,2) is the (2, 2)
superpotential. Although R-symmetries for (2, 2) Landau–Ginzburg models have been
classified, this has not been carried out for heterotic Landau–Ginzburg models. Further-
more, for (2, 2) Landau–Ginzburg models, a classification has been given only for the case
of holomorphic superpotentials [11]. We will provide a classification of the R-symmetries
which allow the A-twist to be implemented, focusing on the case in which E is either a
deformation of TX or a deformation of a sub-bundle of TX. The curvature constraint
imposed by supersymmetry in these models when the superpotential is not holomorphic
will be reviewed. The corresponding analogue of the pullback of a Mathai–Quillen form
is a deformation of the pullback of a Mathai–Quillen form. We will discuss how this
deformation may arise in the class of models studied in this paper. We will then comment
on how analogues of pullbacks of Mathai–Quillen forms not discussed in previous work
may be obtained.

This paper is organized as follows: The A-twist will be discussed in Section 2. A clas-
sification of the corresponding R-symmetries, along with some anomaly-free examples,
will be given in Section 3. The curvature constraint imposed by supersymmetry when the
superpotential is not holomorphic will be reviewed in Section 4. In Section 5, we will discuss
how an analogue of a pullback of a Mathai–Quillen form may arise in the class of heterotic
Landau–Ginzburg models discussed in this paper. In Section 6, we will summarize our
results and comment on how analogues of pullbacks of Mathai–Quillen forms not discussed
in previous work may be obtained. Appendix A will review standard Mathai–Quillen
formalism [12–18]. Finally, Appendix B will discuss the analogue that is most relevant to
this paper, i.e., a deformation of the pullback of a Mathai–Quillen form.

2. A-Twist

Let X be a Kähler variety with metric g, antisymmetric tensor B, local real coordinates
φµ, and local complex coordinates φi with complex conjugates φı. Furthermore, let E be
a vector bundle over X with Hermitian fiber metric h. We consider the action [5] of an
A-twisted heterotic Landau–Ginzburg model on X with gauge bundle E :

S = 2t
∫

Σ
d2z
[

1
2
(

gµν + iBµν

)
∂zφµ∂zφν + igıiψ

ı
+Dzψi

+ + ihaaλa
−Dzλa

−

+ Fiıaa ψi
+ψı

+λa
−λa
− + haaFaFa + ψi

+λa
−DiFa + ψı

+λa
−DıFa

]
. (2)
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Here, t is a coupling constant, Σ is a Riemann surface, d2z = −i dz∧ dz, Fa ∈ Γ(X, E∨), and

Dz ψi
+ = ∂z ψi

+ + ∂z φj Γi
jkψk

+ , Dzλa
− = ∂zλa

− + ∂zφı Aa
ıb λb
− ,

DiFa = ∂iFa − Ab
iaFb , DıFa = ∂ı Fa − Ab

ı a Fb ,

Ab
ia = hbb hba,i , Ab

ı a = hbb hba,ı ,

Γi
jk = giı gık,j , Fiıaa = hab Ab

ı a,i .

The A-twist is defined by assigning the fermion couples to bundles as follows:

ψi
+ ∈ Γ

(
Φ∗
(

T1,0X
))

, λa
− ∈ Γ

(
KΣ ⊗

(
Φ∗E

)∨)
,

ψı
+ ∈ Γ

(
KΣ ⊗

(
Φ∗
(

T1,0X
))∨)

, λa
− ∈ Γ

(
Φ∗E

)
,

where Φ : Σ→ X and KΣ is the canonical bundle on Σ. Anomaly cancellation requires [5,19,20]

ΛtopE∨ ' KX , ch2(E) = ch2(TX). (3)

Action (2) is invariant on-shell under the supersymmetry transformations

δφi = iα−ψi
+ ,

δφı = 0 ,

δψi
+ = 0 ,

δψı
+ = −α−∂zφı ,

δλa
− = −iα−ψ

j
+ Aa

jb λb
− + iα−haa Fa ,

δλa
− = 0

(4)

up to a total derivative. Since we have integrated out the auxiliary fields Ha, one may use
the λa

− equation of motion

λa
− : ihaaDzλa

− + Fiıaa ψi
+ψı

+λa
− − ψi

+DiFa = 0 , (5)

to show [8] that action (2) can be written

S = it
∫

Σ
d2z {Q, V}+ t

∫
Σ

Φ∗(K) + 2t
∫

Σ
d2z
(

ψı
+λa
−DıFa − ψi

+λa
−DaFa

)
, (6)

where {
Q, φi

}
= −ψi

+ ,
{

Q, φı
}
= 0 ,{

Q, ψi
+

}
= 0 ,

{
Q, ψı

+

}
= −i∂zφı ,

{Q, λa
−} = ψ

j
+Aa

jbλb
− − haa Fa ,

{
Q, λa

−

}
= 0

are the BRST transformations (δ f = −iα−{Q, f }, where f is any field),

V = 2
(

gıiψ
ı
+∂zφi + iλa

−Fa

)
,

and ∫
Σ

Φ∗(K) =
∫

Σ
d2z(giı + iBiı)

(
∂zφi ∂zφı − ∂zφi∂zφı

)
is the integral over the worldsheet Σ of the pullback to Σ of the complexified Kähler form

K = −i(giı + iBiı)dφi ∧ dφı .
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3. R-Symmetries

Let us now discuss the R-symmetries which allow the A-twist described in Section 2
to be obtained. A classification of these R-symmetries will be given in Section 3.1. Some
anomaly-free examples will be given in Section 3.2.

3.1. Classification

For Fa ≡ 0, the twisting is achieved by tensoring the fields with

K−QR/2
Σ ⊗ K QL/2

Σ ,

where the fields have charges QL and QR, given in Table 1, under U(1)L and U(1)R
R-symmetries, respectively. These R-symmetries defined by QL and QR are broken when
Fa 6≡ 0.

Table 1. Charges when Fa ≡ 0.

Field QL QR

φi 0 0

φı 0 0

ψi
+ 0 1

ψı
+ 0 −1

λa
− 1 0

λa
− −1 0

Let us consider an Fa of the form

Fa = ∂aG + Ga . (7)

Here, G is quasihomogeneous and meromorphic, i.e.,

G
(

λni φi, λmı φı
)
= λd G

(
φi, φı

)
, (8)

where λ ∈ C×, ni = −mı and d are integers, and the deformation Ga is chosen to be

Ga = ∂a

[
1
d ∑

i
ni

(
φi
) d

ni

]
= (φa)

d
na −1 . (9)

For an Fa of this form, we can define new charges Q′L = QL −Q and Q′R = QR −Q,
given in Table 2, expressed in terms of the parameters

αi = ni/d = −mı/d , αa = na/d = −ma/d , (10)

which yield a U(1)L ×U(1)R-invariant action. On the (2, 2) locus, we have

Q′L
(
φi) = Q′L

(
ψi
+

)
, Q′L

(
λi
−
)
= Q′L

(
φi)+ 1 ,

Q′R
(
φi) = Q′R

(
λi
−
)
, Q′R

(
ψi
+

)
= Q′R

(
φi)+ 1 .

Off of this locus, although one has a pair of U(1) symmetries, only U(1)R is an
R-symmetry. The twisting is achieved by tensoring the fields with

K−Q′R/2
Σ ⊗ K Q′L/2

Σ .
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Recall that for a Riemann surface Σ of genus g, the degree of the canonical bundle is

2g− 2. It follows that, for the bundles K−Q′R/2
Σ and K Q′L/2

Σ to be well-defined, d must divide
g− 1, i.e.,

g = 1 + kd , k = 0, 1, 2, . . . . (11)

This genus issue is well understood; more details can be found in [10,21,22]. Table 2
gives a classification of the R-symmetries in the models we are discussing in terms of the
charges Q′L and Q′R.

Table 2. Charges when Fa = ∂aG + Ga.

Field QL QR Q Q′L = QL −Q Q′R = QR −Q

φi 0 0 αi −αi −αi

φı 0 0 −αi αi αi

ψi
+ 0 1 αi −αi 1− αi

ψı
+ 0 −1 −αi αi αi − 1

λa
− 1 0 αa 1− αa −αa

λa
− −1 0 −αa αa − 1 αa

Di 0 0 −αi αi αi

Dı 0 0 αi −αi −αi

∂a 0 0 −αa αa αa

∂a 0 0 αa −αa −αa

G 0 0 1 −1 −1

G 0 0 −1 1 1

Ga 0 0 1− αa αa − 1 αa − 1

Ga 0 0 αa − 1 1− αa 1− αa

Fa = ∂aG + Ga 0 0 1− αa αa − 1 αa − 1

Fa = ∂a G + Ga 0 0 αa − 1 1− αa 1− αa

3.2. Examples

Let us consider some examples in which E is a deformation of TX. For such examples,
the anomaly cancellation conditions (3) are satisfied.

As a first example, consider the case in which X is a complex affine space and G is a
Fermat polynomial:

Example 1. Let X = Cd, and

G =
(

φ1
)d

+ · · ·+
(

φd
)d

.

Thus,
(n1, . . . , nd) = (1, . . . , 1) ,

Ga = (φa)d−1 , a = 1, . . . , d ,

and
αa =

na

d
=

1
d

, a = 1, . . . , d .

The twist described in this example can be defined on worldsheets of genus g given by (11).

As a second example, consider the case in which X is a complex projective space and
G is a Fermat polynomial with zero locus defining a hypersurface in X:
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Example 2. Let X = CPd−1 and

G =
(

φ1
)d

+ · · ·+
(

φd
)d

.

Thus,
{G = 0} ∈ CPd−1[d] ,

(n1, . . . , nd) = (1, . . . , 1) ,

Ga = (φa)d−1 , φa Ga = 0 , a = 1, . . . , d ,

and
αa =

na

d
=

1
d

, a = 1, . . . , d .

The twist described in this example can be defined on worldsheets of genus g given by (11).

As a final example, consider the case in which X is a weighted complex projective
space and the zero locus of G is a hypersurface in that space:

Example 3. Let X = WCP3
12,8,7,9 and

G =
(

φ1
)3

+ φ1
(

φ2
)3

+ φ2
(

φ2
)4

+
(

φ4
)4

.

Thus,
{G = 0} ∈ WCP3

n1,n2,n3,n4
[d] = WCP3

12,8,7,9[36] ,

Ga = (φa)
d

na −1 , φa Ga = 0 , a = 1, . . . , 4 ,

and
α1 =

n1

d
=

12
36

=
1
3

,

α2 =
n2

d
=

8
36

=
2
9

,

α3 =
n3

d
=

7
36

,

α4 =
n4

d
=

9
36

=
1
4

.

The twist described in this example can be defined on worldsheets of genus g given by (11):

g = 1 + kd = 1 + k(36) , k = 0, 1, 2, . . .

= 1, 37, 73, 109, . . . .

4. Curvature Constraints

Action (6) is invariant on-shell under the supersymmetry transformations (4) up to
a total derivative. It was claimed in [7] that requiring this invariance when the super-
potential (1) is not holomorphic imposes a constraint which relates the nonholomorphic
parameters of the superpotential to the Hermitian curvature. This curvature constraint,
along with an additional constraint imposed by supersymmetry, was derived in [8,9]. Let us
now briefly review the key steps of this derivation; see [8,9] for more details.

Since δ f = −iα−{Q, f }, where f is any field, the Q-exact part of (6) is δ-exact and
hence δ-closed. For the non-exact term of (6) involving Φ∗(K), note that∫

Σ
Φ∗(K) =

∫
Φ(Σ)

K =
∫

Φ(Σ)
[−i(giı + iBiı)]dφi ∧ dφı
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and K satisfies
∂K = −i ∂k(giı + iBiı)dφk ∧ dφi ∧ dφı = 0 .

Thus,
δ[Φ∗(K)] = [Φ∗(K)]kδφk = 0 . (12)

It remains to consider the non-exact expression of (6) involving

ψı
+λa
−DıFa − ψi

+λa
−DiFa .

First, we compute

δ
(

ψı
+λa
−DıFa

)
=
(
−α−∂zφı

)
λa
− Dı Fa − ψı

+λa
−Ab

ı a,k

(
iα−ψk

+

)
Fb

+ ψı
+λa
−

(
∂iDıFa + Fiı aa hab Fb

)(
iα−ψi

+

)
. (13)

Now, we compute

δ
(
−ψi

+λa
−DiFa

)
= − α−Fa Dzλa

− +
(

iα−hab Fb

)
Fiıaa ψi

+ψı
+λa
−

=
(

α−∂zφı
)

λa
− Dı Fa − α−∂z

(
Fa λa

−

)
+ α−Fa,k ∂zφkλa

− (14)

+ ψı
+λa
− Ab

ı a,k

(
iα−ψk

+

)
Fb ,

where we have used the λa
− equation of motion (5) in the first step and Fiıaa = hab Ab

ı a,i in
the last step. It follows that (14) cancels (13) up to a total derivative, i.e.,

δ
(
−ψi

+λa
−DiFa

)
= − δ

(
ψı
+λa
− DıFa

)
− α−∂z

(
Fa λa

−

)
, (15)

when both the curvature constraint

∂iDıFa + Fiı aa hab Fb = 0 (16)

and the constraint
Fa,k ∂zφkλa

− = 0 (17)

are satisfied.
Curvature constraints have been used in [7] to establish properties of analogues of

pullbacks of Mathai–Quillen forms. These analogues arise in the correlation functions of the
corresponding A-twisted or B-twisted heterotic Landau–Ginzburg models. The analogue
most relevant to this paper, i.e., a deformation of the pullback of a Mathai–Quillen form, is
discussed in Appendix B.

5. Physical Realization of Deformation of the Pullback of a Mathai–Quillen Form

Let us now describe how the deformation ωδs(G,∇), given by (A9), of the pullback
s∗u(G,∇), given by (A5), of a Mathai–Quillen form u(G,∇), given by (A1), may arise in
the class of A-twisted heterotic Landau–Ginzburg models discussed in this paper.

Mathematically, the tangent bundle to Y ≡ {s = 0}, s = (sp), is defined by the kernel
in the short exact sequence

0 −→ TY −→ TM|Y
(Disp)−→ G|Y −→ 0.

A deformation of the tangent bundle above is defined by

0 −→ E ′ −→ TM|Y
(Disp+(δs)ip)−→ G|Y −→ 0,
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where the (δs)ip define the deformation.
The action of the A-twisted heterotic Landau–Ginzburg model that RG flows to a

nonlinear sigma model with tangent bundle deformation above is given by [5]

S = 2t
∫

Σ
d2z
[

1
2
(

gµν + iBµν

)
∂zφµ∂zφν + igaaψa

+Dzψa
+ + igbbλb

−Dzλb
−

+Raabbψa
+ψa

+λb
−λb
− + gaaFaFa + ψa

+λb
−DaFb + ψa

+λb
−DaFb

]
, (18)

with target space
X = Tot

(
G∗ π−→ M

)
and gauge bundle E = TX, where

Fa = (Fp, Fi) =
(
sp, φp(Disp + (δs)ip)

)
, Fa =

(
Fp, Fı

)
=
(

sp, φp(Dısp + (δs)ı p
))

,

DaFb = ∂aFb − Γc
abFc , DaFb = ∂aFb − Γc

abFc ,

Dzψa
+ = ∂zψa

+ + ∂zφbΓa
bcψc

+ , Dzλb
− = ∂zλb

− + ∂zφaΓb
a cλc
− ,

and
ψi
+ ≡ χi ∈ Γ

(
Φ∗
(

T1,0M
))

, λi
− ≡ λi

z ∈ Γ
(

KΣ ⊗
(

Φ∗
(

T0,1M
))
∨
)

,

ψı
+ ≡ ψı

z ∈ Γ
(

KΣ ⊗
(

Φ∗
(

T1,0M
))
∨
)

, λı
− ≡ λı ∈ Γ

(
Φ∗
(

T0,1M
))

,

ψ
p
+ ≡ ψ

p
z ∈ Γ

(
KΣ ⊗Φ∗ T1,0

π

)
, λ

p
− ≡ λp ∈ Γ

((
Φ∗ T0,1

π

)
∨
)

,

ψ
p
+ ≡ χp ∈ Γ

((
Φ∗ T1,0

π

)
∨
)

, λ
p
− ≡ λ

p
z ∈ Γ

(
KΣ ⊗Φ∗ T0,1

π

)
,

φp ≡ pz ∈ Γ
(

KΣ ⊗Φ∗ T1,0
π

)
, φp ≡ pz ∈ Γ

(
KΣ ⊗Φ∗ T0,1

π

)
.

If we restrict to zero modes on a genus zero worldsheet, in the degree zero sector we
find the following interactions among zero modes:

gppFpFp + χiλpDiFp + χpλı DpFı + Rippıχ
iχpλpλı

= gppspsp + χiλpDisp + χpλı(Dısp + (δs)ıp
)
+ Rippıχ

iχpλpλı .

If we now complex conjugate so as to relate the heterotic expression above to standard
mathematics conventions, we find

gppspsp + χıλp Dısp + χpλi(Disp + (δs)ip
)
+ Rıppiχ

ıχpλpλi

= gppspsp + ρpDsp + Dsp ρp + ρpRppρp + ρpdφi (δs)ip

=
(

spep, spep
)
G
+
〈

ρp′ fp′ , Dspep
〉
G
+
〈

Dspep, ρp′ fp′
〉
G

(19)

+
(

ρp′ fp′ , f p(Rpp f p, ρp fp
)
G∨
)
G∨

+
〈

ρp′ fp′ , dφi (δs)ipep
〉
G

= A+
〈

ρp′ fp′ , dφi (δs)ipep
〉
G

= Aδs ,

which is minus the exponent of (A9). The deformation ωδs(G,∇) will appear in the
corresponding correlation functions. Explicitly, from the discussion in Appendix B, we
see that
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〈Õ1 · · · Õk〉 ∝
∫

X
Õ1 ∧ · · · ∧ Õk ∧ωδs(G,∇) =

∫
Y
O1 ∧ · · · ∧ Ok , (20)

where
Õ1 ∧ · · · ∧ Õk ∈ Hdim M−rkG

(
M,∧rk TM−rkGG∨

)
and Õ ∈ H•(M,∧•(TM)∨) is a lift of O ∈ H•(Y,∧•E ′∨).

6. Summary and Outlook

We have studied certain aspects of A-twisted heterotic Landau–Ginzburg models on a
Kähler variety X with gauge bundle E , superpotential (1)

W = ΛaFa ,

and Ea ≡ 0. Table 2 provides a classification of the R-symmetries which allow the A-twist
to be implemented when E is either a deformation of TX or a deformation of a sub-bundle
of TX. Some anomaly-free examples were provided in Section 3.2. When the superpotential
is not holomorphic, supersymmetry imposes the curvature constraint (16)

∂iDıFa + Fiı aa hab Fb = 0

and the constraint (17)
Fa,k ∂zφkλa

− = 0 .

The curvature constraint (16) was used in [7] to establish properties of the deformation
ωδs(G,∇), given by (A9), of the pullback s∗u(G,∇), given by (A5), of a Mathai–Quillen
form u(G,∇), given by (A1). In Section 5, we described how ωδs(G,∇) may arise in the
class of heterotic Landau–Ginzburg models studied in this paper.

It would be interesting to consider A-twisted and B-twisted heterotic Landau–Ginzburg
models with more general Grassmann-odd superpotentials. For example, one may consider
the superpotential [10]

W = ΛaΛbΛcFabc .

If this more general superpotential is not holomorphic, then supersymmetry should
impose a curvature constraint analogous to (16) and a constraint analogous to (17). These
new constraints could be derived using arguments similar to those used in [8,9]. Further-
more, using arguments similar to those used in [7], the new curvature constraint could
then be used to establish properties of new analogues of pullbacks of Mathai–Quillen
forms which arise in the correlation functions of the corresponding A-twisted or B-twisted
heterotic Landau–Ginzburg models. We leave a detailed study of this to future work.
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Appendix A. Review of Mathai–Quillen Formalism

Consider an oriented vector bundle G π−→ M of real rank r = 2m, with standard
fiber V, where M is an oriented closed manifold of real dimension n ≥ r. Suppose that G
has Euclidean metric (·, ·)G and compatible connection ∇. Under these circumstances, the
Mathai–Quillen formalism [12–18] provides an explicit representative u(G,∇) of the Thom
class of G. Furthermore, the pullback s∗u(G,∇) of u(G,∇) by any section s : M→ G of G
is a representative of the Euler class of G. Let us review the formalism in more detail.
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Appendix A.1. Conventions

Our conventions for M, G, and the dual G∨ of G are as follows. The exterior derivatives
on M and G are, respectively, denoted by d and dG . We choose local coordinates φI on M,
where I = 1, . . . , n. The connection on G is then given by ∇ = dφI∇I . In terms of this
connection, the curvature 2-form on G is given by R = ∇2. We choose a local oriented
orthonormal frame {eA} for G and let { f A} be the dual coframe, where A = 1, . . . , r.
The section s may thus be expressed as s = sAeA. Similarly, we write ρ = ρA f A, where the
ρA are anticommuting orthonormal coordinates on G∨. The dual pairing on G is denoted
by 〈·, ·〉G . Finally, the metric on G∨ is denoted by (·, ·)G∨ .

Now, consider the pullback bundle π∗G → G, i.e., the bundle over G whose fiber at
g ∈ G is (π∗G)g = Gπ(g). This bundle has Euclidean metric π∗(·, ·)G ≡ (·, ·)π∗G , compatible
connection π∗∇ ≡ ∇̃, curvature 2-form π∗R ≡ R̃, local oriented orthonormal frame
{π∗eA} ≡ {ẽA}, and tautological section x̃ = x̃A ẽA. (The tautological section of π∗G → G
is the section which maps a point g ∈ G to (g, g) ∈ π∗G.) The dual bundle (π∗G)∨ → G
has coframe {(π∨)∗ f A} ≡ { f̃ A} and metric (·, ·)(π∗G)∨ . We write ρ̃ = ρ̃A f̃ A, where the
ρ̃A ≡ (π∨)∗ρA are anticommuting orthonormal coordinates on (π∗G)∨. The dual pairing
on π∗E is denoted by 〈·, ·〉π∗G .

Appendix A.2. Mathai–Quillen Thom Class Representative

Consider the Mathai–Quillen form

u(G,∇) = ar

∫
dρ̃ exp

(
−Ã

)
, (A1)

where

ar =
(−1)

r(r+1)
2

(2π)
r
2

(A2)

and
Ã =

1
2

(
x̃, x̃
)

π∗G
+
〈
∇̃x̃, ρ̃

〉
π∗G

+
1
2

(
ρ̃, R̃ρ̃

)
(π∗G)∨

. (A3)

We wish to show that this form satisfies the following definition.

Definition A1. A representative of the Thom class of G is a dG -closed differential form
u(G) ∈ Ωr(G) such that

∫
V u(G) = 1.

Proposition A1. The Mathai–Quillen form u(G,∇) satisfies

(i) u(G,∇) ∈ Ωr(G) ,
(ii) dGu(G,∇) = 0 ,
(iii)

∫
V u(G,∇) = 1

and hence is a representative of the Thom class of G.

Proof.

(i) Since

Ã ∈
2
⊕

i=0
Ωi
(
G, Λi(π∗G)∨

)
,

it follows that
exp

(
−Ã

)
∈

r
⊕

i=0
Ωi
(
G, Λi(π∗G)∨

)
.

However, only the component of e−Ã in Ωr
(
G, Λr(π∗G)∨

)
contributes to u(G,∇).

Thus, u(G,∇) ∈ Ωr(G).
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(ii) Since ∇̃ is compatible with the metric (·, ·)π∗G , it follows that

dG
∫

dρ̃ α̃ =
∫

dρ̃ ∇̃α̃ ,

where α̃ ∈ Ω
(
G, Λ(π∗G)∨

)
. Furthermore,(

∇̃+ x̃A
∂

∂ρ̃A

)
Ã =

(
∇̃x̃, x̃

)
π∗G

+
〈
R̃x̃, ρ̃

〉
π∗G
− 1

2

(
ρ̃, ∇̃R̃ρ̃

)
(π∗G)∨

−
(
∇̃x̃, x̃

)
π∗G
−
〈
R̃x̃, ρ̃

〉
π∗G

(A4)

= 0 ,

where we have used the Bianchi identity ∇̃ R̃ = 0. From these results, we obtain

dGu(G,∇) = ar dG
∫

dρ̃ exp
(
−Ã

)
= ar

∫
dρ̃ ∇̃ exp

(
−Ã

)
= ar

∫
dρ̃

(
∇̃+ x̃A

∂

∂ρ̃A

)
exp

(
−Ã

)
= ar

∫
dρ̃

[
−
(
∇̃+ x̃A

∂

∂ρ̃A

)
Ã
]

exp
(
−Ã

)
= 0 .

Here, the third equality holds because x̃A(∂/∂ρ̃A)e−Ã contributes nothing to the
Grassmann integral.

(iii) ∫
V

u(G,∇) = ar

∫
V

exp
[
−1

2
(x̃, x̃)π∗G

] ∫
dρ̃

(
−dx̃Aρ̃A

)r

r!

=
1

(2π)
r
2

∫
V

dx̃1 ∧ · · · ∧ dx̃r exp
[
−1

2
(x̃, x̃)π∗G

]
= 1 .

Thus, by Definition A1, u(G,∇) is a representative of the Thom class of G.

Appendix A.3. Mathai–Quillen Euler Class Representative

Now, consider the pullback of the Mathai–Quillen form u(G,∇) by any section s of G.
We write this as

s∗u(G,∇) = ar

∫
dρ exp(−A), (A5)

where ar is given by (A2) and

A =
1
2
(s, s)G + 〈∇s, ρ〉G +

1
2
(ρ,Rρ)G∨ . (A6)

Proposition A2. The form s∗u(G,∇) satisfies

(i) s∗u(G,∇) ∈ Ωr(M) ,
(ii) ds∗u(G,∇) = 0 .



Particles 2023, 6 757

Proof.

(i) The proof is similar to that of Proposition A1 (i) and uses the fact that

A ∈
2
⊕

i=0
Ωi
(
G, ΛiG∨

)
.

(ii) The proof is similar to that of Proposition A1 (ii) and uses the results

d
∫

dρ α =
∫

dρ∇α ,

where α ∈ Ω(G, ΛG∨) and (
∇+ sA

∂

∂ρA

)
A = 0 . (A7)

Proposition A3. The d-cohomology class of s∗u(G,∇) is independent of the section s.

Proof. Let sτ = s + τs′ be an affine one-parameter family of sections of G and let

Aτ =
1
2
(sτ , sτ)G + 〈∇sτ , ρ〉G +

1
2
(ρ,Rρ)G∨ .

Then

d
dτ

s∗τu(G,∇) = ar
d

dτ

∫
dρ exp(−Aτ)

= −ar

∫
dρ
[(

s′, sτ

)
G +

〈
∇s′, ρ

〉
G

]
exp(−Aτ)

= −ar

∫
dρ

{[
∇+ (sτ)A

∂

∂ρA

]〈
s′, ρ

〉
G

}
exp(−Aτ)

= −ar

∫
dρ

[
∇+ (sτ)A

∂

∂ρA

][〈
s′, ρ

〉
G exp(−Aτ)

]
= −ar d

∫
dρ
〈
s′, ρ

〉
G exp(−Aτ).

It follows that

s∗τ2
u(G,∇)− s∗τ1

u(G,∇) = −ar d
∫ τ2

τ1

dτ
∫

dρ
〈
s′, ρ

〉
G exp(−Aτ).

Thus, for arbitrary sections sτ1 and sτ2 of G, the d-closed forms s∗τ1
u(G,∇) and

s∗τ2
u(G,∇) differ by a d-exact form and hence are cohomologous.

Corollary A1. The form s∗u(G,∇) is cohomologous to the Euler form

e(G,∇) = 1

(2π)
r
2

∫
dρ exp

[
1
2
(ρ,Rρ)G∨

]
= Pfaff

(
R
2π

)
and hence is a representative of the Euler class of G.

Proof. This follows from Proposition A3 upon choosing s to be the zero section.

Remark A1. The top Chern class of a complex vector bundle is equal to the Euler class of the
underlying real vector bundle.
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Remark A2. If s intersects the zero section of G transversely, then s∗u(G,∇) is Poincaré dual to
s−1(0), i.e., ∫

M
ω ∧ s∗u(G,∇) =

∫
s−1(0)

ω , (A8)

where ω ∈ Ωn−r(M) is d-closed.

Remark A3. When n = r, integrating s∗u(G,∇) over M yields the Euler number of G.

Appendix B. Deformation of the Pullback of a Mathai–Quillen Form

Various analogues of pullbacks of Mathai–Quillen forms were proposed in [7]. Let us
now discuss the analogue that is most relevant to this paper, i.e., a deformation of the
pullback of a Mathai–Quillen form.

Consider deforming s∗u(G,∇) to

ωδs(G,∇) = ar

∫
dρ exp(−Aδs), (A9)

where
Aδs = A+

〈
ρp′ fp′ , dφi(δs)ipep

〉
G

. (A10)

Here, A is given by (A6) and

(δs)ip ∈ Γ(π∗G ⊗ π∗TM). (A11)

The deformation ωδs(G,∇) and s∗u(G,∇) are special cases of the analogue ωK1 of
s∗u(G,∇) proposed in [7]. Briefly,

ωK1 ∝
∫ [

∏x dλx ][∏r dχr] exp(−AK1) ∈ H rkG
(

M,∧rkF2F∨2 ⊗ detG∨ ⊗ detF2

)
,

where F1 and F1 are holomorphic vector bundles on M and

AK1 = hxxsxsx + χıλx Dı sx + χrλγ F̃rγ + Fırxγχıχrλxλγ .

Here, x indexes local coordinates along the fibers of G, γ indexes local coordinates
along the fibers of F1, r indexes local coordinates along the fibers of F∨2 , and i indexes local
coordinates on M. s ∈ Γ(G). The map F̃ : F1 → F2 is smooth and surjective. The curvature
term Fırxγχıχrλxλγ is subject to the constraint

∂ı F̃rγ = hxxsxFırγx = −hxxsxFırxγ

which is imposed physically by supersymmetry. Note that this constraint is consistent with
the curvature 2-form being ∂-closed by virtue of the Bianchi identity. One may show that(

D + hxxsx
∂

∂λx

)
AK1 = χiχrλγ

(
∂ı F̃rγ + hxxsxFırxγ

)
= 0 ,

where D = χı ∂ı. It follows that ∂ ωK1 = 0. Let Y ≡ {s = 0} ⊂ M and let E ′ be the
restriction to Y of the kernel of the map F̃. Then∫

Y
O1 ∧ · · · ∧ Ok =

∫
M
Õ1 ∧ · · · ∧ Õk ∧ωK1 ,

where Õ1 ∧ · · · ∧ Õk ∈ Hdim M−rkG(M,∧rkF1−rkF2F∨2
)

and Õ ∈ H•
(

M,∧•F∨1
)

is a lift
of O ∈ H•(Y,∧•E ′∨). For this reason, ωK1 is called in [7] the (first) kernel construction.
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See [7] for further details. One recovers ωδs(G,∇) and (when δs = 0) s∗u(G,∇) in the
special case that F1 = TM and F2 = G with the map F̃ : F1 → F2 defined by

Fip = Disp + (δs)ip , (A12)

where sp is a holomorphic section of G. This corresponds to E ′ being a deformation of TY,
with the deformation determined by δs. If δs = 0, then E ′ = TY. Note that

∂ı Fip = ∂ı

(
Disp + (δs)ip

)
=
[

Dı , Di
]
sp = Rıipp gppsp .

Proposition A4. The form ωδs(G,∇) satisfies

∂ ωδs(G,∇) = 0 .

Proof. For A given by (A6), we have that DR = 0 and hence(
D + sp ∂

∂ρp

)
A = −

(
spep, Dsp ep

)
G
+
〈
Rsp′ e

p′ , ρp fp

〉
G
− 1

2
(
ρ, DRρ

)
G∨

+
(

spep, Dsp ep
)
G
−
〈
Rsp′ e

p′ , ρp fp

〉
G

(A13)

= 0 .

It follows that(
D + sp ∂

∂ρp

)
Aδs =

(
D + sp ∂

∂ρp

)[
A+

〈
ρp′ fp′ , dφi(δs)ipep

〉
G

]
= 0 . (A14)

Using this result, we obtain

∂ ωδs(G,∇) = ar ∂
∫

dρ exp(−Aδs)

= ar

∫
dρ D exp(−Aδs)

= ar

∫
dρ

(
D + sp ∂

∂ρp

)
exp(−Aδs)

= ar

∫
dρ

[
−
(

D + sp ∂

∂ρp

)
Aδs

]
exp(−Aδs)

= 0 .

Proposition A5. The ∂-cohomology class of ωδs(G,∇) is unchanged by antiholomorphic
deformations of s.

Proof. Let sα = s + α s′p ep be an affine one parameter family of sections of G and let

Aδs,α =
1
2
(sα, sα)G + (∇sα, ρ)G +

1
2
(ρ,Rρ)G∨ +

〈
ρp′ fp′ , dφi(δs)ipep

〉
G

.
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Then

d
dα

ωδs,α(G,∇) = ar
d

dα

∫
dρ exp(−Aδs,α)

= −ar

∫
dρ

[(
s′p ep, spep

)
G
+
〈

ρp fp, Ds′p′ e
p′
〉
G

]
exp(−Aδs,α)

= −ar

∫
dρ

[(
D + sp ∂

∂ρp

)〈
ρp fp, s′p′ e

p′
〉
G

]
exp(−Aδs,α)

= −ar

∫
dρ

(
D + sp ∂

∂ρp

)[〈
ρp fp, s′p′ e

p′
〉
G

exp(−Aδs,α)

]
= −ar ∂

∫
dρ
〈

ρp fp, s′p′ e
p′
〉
G

exp(−Aδs,α).

It follows that

ωδs,α2(G,∇)−ωδs,α1(G,∇) = −ar ∂
∫ α2

α1

dα
∫

dρ
〈

ρp fp, s′p′ e
p′
〉
G

exp(−Aδs,α),

which establishes that the ∂-cohomology class of ωδs(G,∇) is unchanged by antiholomor-
phic deformations of s.

Remark A4. The ∂-cohomology class of ωδs(G,∇) does seem to depend on the choice of the (δs)ip,

at least naively. Let (δs)ip,γ = (δs)ip + γ(δs)′ip and Aδs,γ = A+
〈

ρp′ fp′ , dφi(δs)γ
ipep

〉
G

. Then

d
dγ

ωδs,γ(G,∇) = ar
d

dγ

∫
dρ exp

(
−Aδs,γ

)
= −ar

∫
dρ
〈

ρp′ fp′ , dφi(δs)′ipep
〉
G

exp
(
−Aδs,γ

)
.

It follows that

ωδs,γ2(G,∇)−ωδs,γ1(G,∇) = −ar

∫ γ2

γ1

dγ
∫

dρ
〈

ρp′ fp′ , dφi(δs)′ipep
〉
G

exp
(
−Aδs,γ

)
,

which is at least not obviously ∂-exact. The physical meaning of this result is commented on in [7].

References
1. Witten, E. Phases of N = 2 theories in two dimensions. Nucl. Phys. B 1993, 403, 159–222. [CrossRef]
2. Distler, J.; Kachru, S. (0, 2) Landau-Ginzburg theory. Nucl. Phys. B 1994, 413, 213–243. [CrossRef]
3. Adams, A.; Basu, A.; Sethi, S. (0, 2) Duality. Adv. Theor. Math. Phys. 2004, 7, 865–950. [CrossRef]
4. Melnikov, I.; Sethi, S. Half-twisted (0, 2) Landau-Ginzburg models. J. High Energy Phys. 2008, 3, 40. [CrossRef]
5. Guffin, J.; Sharpe, E. A-twisted heterotic Landau-Ginzburg models. J. Geom. Phys. 2009, 59, 1581–1596. [CrossRef]
6. Melnikov, I.; Sethi, S.; Sharpe, E. Recent Developments in (0, 2) Mirror Symmetry. Symmetry Integr. Geom. Methods Appl. (SIGMA)

2012, 8, 68. [CrossRef]
7. Garavuso, R.S.; Sharpe, E. Analogues of Mathai-Quillen forms in sheaf cohomology and applications to topological field theory.

J. Geom. Phys. 2015, 92, 1–29. [CrossRef]
8. Garavuso, R.S. Curvature constraints in heterotic Landau-Ginzburg models. J. High Energy Phys. 2020, 11, 019. [CrossRef]
9. Garavuso, R.S. Nonholomorphic superpotentials in heterotic Landau-Ginzburg models. In Proceedings of the XIV International

Workshop “Lie Theory and Its Applications in Physics”, Sofia, Bulgaria, 20–26 June 2021. [CrossRef]
10. Guffin, J.; Sharpe, E. A-twisted Landau-Ginzburg models. J. Geom. Phys. 2009, 59, 1547–1580. [CrossRef]
11. Kachru, S.; Witten E. Computing the complete massless spectrum of a Landau-Ginzburg orbifold. Nucl. Phys. B 1993, 407, 637–666.

[CrossRef]
12. Mathai, V.; Quillen, D. Superconnections, Thom classes, and equivariant differential forms. Topology 1986, 25, 85–110. [CrossRef]
13. Berline, N.; Getzler, E.; Vergne, M. Heat Kernels and Dirac Operators: Grundlehren der Mathematischen Wissenschaften 298; Springer:

Berlin/Heidelberg, Germany, 1992.

http://doi.org/10.1016/0550-3213(93)90033-L
http://dx.doi.org/10.1016/0550-3213(94)90619-X
http://dx.doi.org/10.4310/ATMP.2003.v7.n5.a5
http://dx.doi.org/10.1088/1126-6708/2008/03/040
http://dx.doi.org/10.1016/j.geomphys.2009.07.013
http://dx.doi.org/10.3842/SIGMA.2012.068
http://dx.doi.org/10.1016/j.geomphys.2015.01.011
http://dx.doi.org/10.1007/JHEP11(2020)019
http://dx.doi.org/10.1007/978-981-19-4751-3_40
http://dx.doi.org/10.1016/j.geomphys.2009.07.014
http://dx.doi.org/10.1016/0550-3213(93)90093-5
http://dx.doi.org/10.1016/0040-9383(86)90007-8


Particles 2023, 6 761

14. Kalkman, J. BRST model for equivariant cohomology and representatives for the equivariant Thom class. Commun. Math. Phys.
1993, 153, 447–463. [CrossRef]

15. Blau, M. The Mathai-Quillen formalism and topological field theory. J. Geom. Phys. 1993, 11, 95–127. [CrossRef]
16. Wu, S. On the Mathai-Quillen formalism of topological sigma models. J. Geom. Phys. 1995, 17, 299–309. [CrossRef]
17. Cordes, S.; Moore, G.; Ramgoolam, S. Lectures on 2D Yang-Mills theory, equivariant cohomology and topological field theories.

Nucl. Phys. Proc. Suppl. 1995, 41, 184–244. [CrossRef]
18. Wu, S. Mathai-Quillen formalism. arXiv 2005, arXiv:0505003. [CrossRef]
19. Katz, S.; Sharpe, E. Notes on certain (0,2) correlation functions. Comm. Math. Phys. 2006, 262, 611–644. [CrossRef]
20. Sharpe, E. Notes on certain other (0,2) correlation functions. Adv. Theor. Math. Phys. 2009, 13, 33–70. [CrossRef]
21. Witten, E. Algebraic geometry associated with matrix models of two-dimensional gravity. In Topological Methods in Modern

Mathematics: A Symposium in Honor of John Milnor’s Sixtieth Birthday; Goldberg, L.R., Phillips, A.V., Eds.; Publish or Perish, Inc.:
Houston, TX, USA, 1993; p. 235.

22. Witten, E. The N matrix model and gauged WZW models. Nucl. Phys. B 1992, 371, 191–245. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/BF02096949
http://dx.doi.org/10.1016/0393-0440(93)90049-K
http://dx.doi.org/10.1016/0393-0440(94)00046-8
http://dx.doi.org/10.1016/0920-5632(95)00434-B
https://doi.org/10.48550/arXiv.hep-th/0505003
http://dx.doi.org/10.1007/s00220-005-1443-1
http://dx.doi.org/10.4310/ATMP.2009.v13.n1.a2
http://dx.doi.org/10.1016/0550-3213(92)90235-4

	Introduction
	A-Twist
	R-Symmetries
	Classification
	Examples

	Curvature Constraints
	Physical Realization of Deformation of the Pullback of a Mathai–Quillen Form
	Summary and Outlook
	Appendix A. Review of Mathai–Quillen Formalism
	Appendix A.1. Conventions
	Appendix A.2. Mathai–Quillen Thom Class Representative
	Appendix A.3. Mathai–Quillen Euler Class Representative

	Appendix B. Deformation of the Pullback of a Mathai–Quillen Form
	References

