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Abstract: A test-Accelerator as Coherent Terahertz Source (t-ACTS) has been under development
at Tohoku University, in which an intense coherent terahertz radiation is generated from the short
electron bunches. Velocity bunching scheme in a traveling wave accelerating structure is employed to
generate the short electron bunches. The in-phase and quadrature (IQ) modulator and demodulator
were installed to the low-level RF systems of t-ACTS linac to control and measure the amplitude and
phase of RF power. The amplitude and phase of the RF power applied to an RF electron gun cavities
and the accelerating structure are controlled to produce the electron bunches with a uniform and
small momentum spread suitable for the velocity bunching. By installing the feed-forward control
system using IQ modulators for the beam conditioning, we have successfully generated flat RF pulses
and improved beam quality, including the energy spectrum of the beam. The details of feed-forward
control system of the amplitude and phase using the IQ modulator and the beam experiments are
presented in this paper.
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1. Introduction

Generation of coherent radiation in the terahertz range using the short electron bunches
is one of the most promising candidates for high-intensity terahertz sources. In t-ACTS,
short electron bunches of less than 100 fs can be generated by velocity bunching [1–3]. We
are conducting fundamental studies on generation of intense coherent radiation from
short electron bunches. Various high-intensity coherent terahertz radiation sources, such
as transition radiation [4], Cherenkov radiation [5,6], Smith–Purcell radiation [7], and
undulator radiation [8], have been developed using the short electron bunches.

The t-ACTS accelerator is composed of the thermionic cathode RF electron gun, the
alpha-magnet, and 3 m long S-band traveling wave accelerating structure. A multi-bunch
electron beam with a duration of typically several microseconds, called a macro-pulse,
is used to generate the coherent radiation. The macro-pulse consists of a train of short
electron bunches at intervals of 350 ps, which corresponds to one period of the S-band RF
wave. To produce the short electron bunches, the longitudinal phase space distribution of
the bunch injected into the accelerating structure is optimized for the velocity bunching.
To manipulate the longitudinal phase space distribution, the ITC-RF gun (Independently
Tunable Cells RF gun) with two cavities has been developed, which allows independent
tuning of the phase and amplitude RF power feed to the RF gun cavities [1,3].

Variations in the amplitude and phase of the RF power fed to the RF gun cavities
and the accelerating structure have a significant effect on bunching and energy spread
of the macro-pulse of the electron beam. To improve electron beam quality, we installed
the IQ modulator and detector to the low-level RF (LLRF) system to control and measure
the amplitude and phase of RF power. We have developed a feed-forward control system
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for the beam conditioning using the IQ modulator. The demonstration experiments using
feed-forward control were conducted in t-ACTS linac.

2. Amplitude and Phase Control Using IQ Modulator
2.1. t-ACTS RF System

Figure 1 shows the high-power RF system for the t-ACTS linac. The RF power fed to the
RF gun cavities and the accelerating structure is generated by S-band klystron (TOSHIBA,
E3730A). The input RF parameters of the RF gun cavities can be adjusted independent
of the accelerating structure using the variable attenuators and the phase shifters in the
waveguide system. These variable attenuators and phase shifters are mechanical device,
making it impossible to control RF amplitude and phase at high speed. Several directional
couplers to measure the RF power are placed on the waveguide between the klystron to
the RF gun cavities and the accelerating structure as shown in Figure 1.
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Figure 1. RF system of the t-ACTS linac. The output power from one klystron is fed to the RF electron
gun cavities and accelerating structure. To control the amplitude and phase of the RF, the variable
attenuators and phase shifter are instrumented in waveguide system. Directional couplers are also
installed in the waveguide system as monitor.

The amplitude and phase of the klystron output power depend on the voltage applied
to the klystron, Vk [9]. The RF frequency of the klystron used for the linac is 2856 MHz,
and the typical klystron voltage is around 250 kV. The pulse-to-pulse klystron voltage and
its ripple on the flat top of the square pulse should be small. Figure 2 shows a measured
klystron high-voltage pulse shape, and the pulse duration is 7 µs (FWHM). A drive RF
pulse with a 3.5 µs time duration is input to the klystron. The klystron voltage peak-to-peak
variation is about 5.6 kV, which corresponds to 2.3%. This variation in klystron voltage
results in a fluctuation of RF amplitude and phase, as shown in Figure 3. The amplitude
and phase of the RF power vary by 9.8% and 6.9◦ in 3.3 µs.

2.2. Control System

We have developed a feed-forward control system of the amplitude and the phase for
the t-ACTS linac. Figure 4 shows the block diagram of the low-level RF (LLRF) system.
The 2856 MHz of continuous wave (CW) RF signal generated by a stable master oscillator
is converted using a high-speed RF switch to the pulsed RF signal with the duration of
several microseconds. The pulsed RF signal is amplified by the solid-state amplifier for
driving the 2856 MHz, 50 MW klystron. The timing and the duration of the RF pulse can
be changed by using a pulse generator. The duration of the RF pulse is typically 3.5 µs.
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The IQ modulator was implemented in the LLRF system for fast feed-forward control
of amplitude and phase of the RF power with a duration of several microsecond. In the IQ
modulation, arbitrary amplitude and phase are realized by composing the in-phase and
quadrature vectors. In other word, the IQ modulation is based on the summation of two
signals in quadrature. The IQ detector is also installed to measure the amplitude and the
phase of the RF pulse. The input RF signal is directly demodulated to baseband analog
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in-phase and quadrature signals that are subsequently converted to digital signal data
using a digital oscilloscope.

2.3. Amplitude and Phase Modulation of Klystron Output Power

Amplitude and phase modulation is performed by the following procedure. First,
target values for amplitude and phase (Atarget, φtraget) are given, which in this case are
constant values. The RF power is picked up from the directional coupler for monitoring
the klystron output power. The RF signal is demodulated into two orthogonal components,
VI(t)measure and VQ(t)masure, using the IQ detector. The output signals of the IQ detector
are measured with a digital oscilloscope, and the measured data are converted to amplitude
A(t) and phase φ(t) by a personal computer (PC). The measured data is subtracted from
the target values to construct the data sets for the feed-forward control of the amplitude
and the phase. The resulting data is transformed into the control voltages (VI(t)set and
VQ(t)set) for the IQ modulator using the klystron response curve, which are input–output
properties of the klystron in amplitude and phase. These control voltage signals, VI(t)set
and VQ(t)set, are generated using an arbitrary waveform generator (AWG).

The feed-forward control is based on the linear response of the system and cannot
compensate for the non-linear response of the control devise in the system. To overcome
these difficulties, the modulation procedure must be repeated alternatively several times
for the amplitude and the phase until the measured waveform become equal to the target
waveform [10]. Figure 5 shows the result of feed-forward control for the amplitude of
RF pulses, and iteration numbers are indicated along with the measured waveform. The
variations are significantly reduced, and the amplitude converge to flat and constant value.
Figure 6 shows the amplitude and phase of the RF power from the klystron before and after
feed-forward corrections. Finally, the amplitude and phase variations were compensated
to 0.8% and 0.9◦ in 3.3 µs, respectively.
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3. Beam Experiments

Beam experiments were performed with RF power of uniform amplitude and phase,
corrected by the feed-forward control, and applied to the RF gun cavities and the accelerat-
ing structure. The RF parameters for the gun and the injection phase of the beam into the
accelerating structure were adjusted to maximize the intensity of the coherent transition
radiation (CTR) measured downstream of the accelerating structure. In this experiment, a
spectral measurement [11] of the CTR using a Michelson interferometer was performed,
and the bunch length was derived to be approximately 80 fs.

We measured momentum distribution of the electron beam produced from the RF gun
using the movable slit in alpha-magnet and the beam current monitor. The beam current of
the macro-pulse injected into the accelerating structure was approximately about 20 mA,
which corresponds to a bunch charge of 7 pC. Figure 7 shows the measurement results
with and without beam conditioning using the feed-forward control of the amplitude and
phase of the RF power using IQ modulator. Without the IQ modulation, the time duration
of the beam pulse with uniform energy was only about 1.3 µs. On the other hand, the
electron momentum is constant in the portion of the spectrum, from 1.5 to 3.5 µs, with
beam conditioning as shown in Figure 7. The variation of momentum in the macro-pulse
of the beam causes a difference of travel time of the electron beam from the RF gun cavities
to the accelerating structure, therefore resulting in a difference in the injection phase of
the beam into the accelerating structure. Velocity bunching is very sensitive with the
injection phase of the electron beam into accelerating structure. Namely, the difference in
the injection phase becomes a bunch length variation. Electron beams with uniform and
small momentum spread have been generated by RF gun and are suitable for the velocity
bunching in the structure.
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The time-resolved energy spectra measurement of accelerated electron beam with and
without beam conditioning using feed-forward control was performed at the dispersion
section downstream of t-ACTS linac. For the time-resolved measurements, an aluminum
plate was installed as the screen for the beam profile monitor to generate optical transition
radiation (OTR), since OTR is emitted in the time duration of the electron bunch. Beam
profile measurements in the dispersion section using the OTR enable time-resolved energy
spectra measurements. To acquire an image of the electron beam, we utilized gated image
intensifier unit and a CCD camera. The gate pulse width for the image intensifier was set
to 100 ns, and the beam profile was measured by changing the timing of the gate pulses in
100 ns steps. The dispersion function and β function in horizontal direction at the beam
profile monitor were 0.49 m and 0.02 m, respectively. In the experiment, normalized
horizontal emittance was 6.4 × 10−6 m. Figure 8 show the time-resolved energy spectra
with and without beam conditioning using IQ modulator. In Figure 8, the energy deviation
is derived with the reference energy as 22.2 MeV. The energy spectrum without beam
conditioning indicates that the energy of electron beam varies considerably, whereas the
energy of the electron beam with beam conditioning using IQ modulator is constant except
for a transient part in the first 0.8 µs, which is due to the filling time of the accelerating
structure and the transient beam loading.
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Figure 8. Measured energy distribution of the accelerated beam in dispersion section with and
without IQ modulation. The spectra were measured using a gated image intensifier and a CCD
camera. The 100 ns time-width gate was shifted in 100 ns steps.

Figure 9 shows the energy spectra of the electron beam integrated over the macro-
pulse with 2.5 µs of time duration. The energy spectra of the electron beam without beam
conditioning have broad energy distribution. On the other hand, the peak in the energy
spectra with beam conditioning using the IQ modulator becomes sharp, since the electron
energy is constant and small energy spreads in the portion of the time-resolved energy
spectrum, from 2.0 to 3.5 µs.
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Figure 9. The energy spectra of the electron beam with and without conditioning using the
IQ modulator.
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4. Summary

The feed-forward control system of amplitude and phase using the IQ modulator for
high-power RF pulses was applied to the t-ACTS linac to make the energy of the electron
beam uniform and constant. With the feed-forward control, the peak-to-peak variation over
3.5 µs in the RF power were reduced from 9.8% to 0.9% for the amplitude and from 6.9◦

to 0.9◦ for the phase. We have been able to produce an electron beam suitable for velocity
bunching with a uniform and small momentum spread over 2 µs from the RF electron gun.
The time-resolved energy spectra of the accelerated beam in t-ACTS linac was measured,
and the energy deviation of the electron beam was suppressed from 1.7% to 0.8% in FWHM.
We have successfully improved beam quality, including the energy spectrum of the beam,
by installing the feed-forward control of the amplitude and phase using IQ modulators into
the LLRF system. The improvement of the beam quality leads to the generation of high
intensity coherent radiation. We will clarify the effect of feed-forward beam conditioning
by measuring the intensity of the coherent radiation.
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