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Abstract: A new type of parametrization for parton distribution functions in the proton, based
on their Q2-evolution at large and small x values, is constructed. In our analysis, the valence and
nonsinglet parts obey the Gross–Llewellyn–Smith and Gottfried sum rules, respectively. For the
singlet quark and gluon densities, momentum conservation is taken into account. Then, using
the Kimber–Martin–Ryskin prescription, we extend the consideration to Transverse Momentum
Dependent (TMD, or unintegrated) gluon and quark distributions in the proton, which currently
plays an important role in a the number of phenomenological applications. The analytical expressions
for the latter, valid for both low and large x, are derived for the first time.
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1. Introduction

The parton (quark and gluon) distribution functions (PDFs) in the proton are a neces-
sary part of any theoretical study performed within the quantum chromodynamics (QCD).
They encode information on the non-perturbative structure of the proton and are directly
related to the calculated cross sections (or other observables) via a certain QCD factorization
theorem. The QCD evolution leads to their essential dependence on the probing scale
Q2, which can be described by the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP)
equations [1–4]. Usually, the latter are solved numerically with leading (LO), next-to-
leading (NLO) or even next-to-next-to-leading order (NNLO) accuracy, where a number
of corresponding phenomenological parameters of initial parton distributions are fitted at
HERA, LHC and fixed target experiments at various (x, Q2) ranges (several recent PDF fits,
as well as the references to the previous studies, can be found [5–22]). Large uncertainties
for many processes at the LHC originate, of course, mainly from our restricted knowledge
of the parton distributions (see, for example, [23] and references therein). Thus, studying
the proton PDFs from both theoretical and experimental points of view is an important and
urgent task.

In the present paper, we continue with the idea [24] to present more information on
the PDFs from the theoretical side. The approach consists of two basic steps. First, we find
the asymptotics of solutions of the DGLAP equations for the parton densities at small and
large values of the Bjorken variable x. Second, we combine these two solutions and then
interpolate between them to obtain analytical expressions for PDFs over the full range of x.

In a sense, this is not a very new idea. A similar approach was proposed [25–27]
about 50 years ago. However, in the present paper, the parametrizations are constructed in
quite a different way. In particular, following [24], they include important subasymptotic
terms which are fixed exactly by the momentum conservation and also by the Gross–
Llewellyn–Smith and Gottfried sum rules (see [28,29], respectively). Such calculations will
be performed for the first time providing the community with a new type of parametriza-
tion of gluon and quark densities in the proton valid at low and large x. Moreover, we
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extend our consideration [30,31] and derive analytical expressions for Transverse Mo-
mentum Dependent (TMD) parton distributions using the Kimber–Martin–Ryskin (KMR)
framework [32–34]. These quantities are known to be a very suitable tool to investigate less
inclusive processes which proceed at high energies with large momentum transfer and/or
contain multiple hard scales (see, for example, review [35] and references therein). Our
main motivation is that up until now, there are no analytical expressions for gluon and
especially quark TMDs (both sea and valence) valid in a wide x region (in our previous
study [30,31], only the small x limit was considered and a phenomenological model for the
large x region was applied).

The analysis of the present paper is limited to LO in the perturbation theory, which is
reasonable [36] for those processes at the LHC for which the NLO corrections are not known
at present. Moreover, most phenomenological applications involving TMDs are currently
performed at LO also (see, for example, [31,37–40] and references therein). On the other
hand, the consideration of PDFs at LO is a necessary first step in studying PDFs and TMDs
at higher orders. These higher order corrections can be treated like those from [27,41,42].

The outline of our paper is the following. In Section 2, we describe our theoretical input.
Sections 3 and 4 contain low x and large x PDF asymptotics. Parametrizations of parton
densities, their properties and numerical results for PDFs are given in Section 5. Section 6
is devoted to TMD parton densities in the Kimber–Martin–Ryskin framework. Section 7
contains our conclusions. The most complicated calculations are presented in Appendices.

2. Theoretical Input

In this section, we briefly present the theoretical part of our analysis. The reader is
referred to [43,44] for more details.

The deep-inelastic scattering (DIS) l + N → l′ + X, where l and N are the incoming
lepton and nucleon, and l′ is the outgoing lepton, in one of the basic processes for studying
the nucleon structure. The DIS cross-section can be split to the lepton Lµν and hadron
Fµν parts

dσ ∼ LµνFµν . (1)

The lepton part Lµν is evaluated exactly, while the hadron one, Fµν, can be presented
in the following form

Fµν =

(
−gµν +

qµqν

q2

)
F1(x, Q2) +

(
pµ +

(pq)
q2 qµ

)(
pν +

(pq)
q2 qν

)
F2(x, Q2)

+ iεµναβ pα pβ x
q2 F3(x, Q2) + . . . , (2)

where the symbol . . . stands for those parts which depend on the nucleon spin. The
functions Fk(x, Q2) with k = 1, 2 and 3 are the DIS structure functions (SFs) and q and p are
the photon and parton momenta. Moreover, the two variables

Q2 = −q2 > 0 , x =
Q2

2(pq)
(3)

determine the basic properties of the DIS process. Here, Q2 is the “mass” of the virtual
photon and/or Z/W boson, and the Bjorken variable x (0 < x < 1) is the part of the hadron
momentum carried by the scattering parton (quark or gluon).

2.1. Mellin Transform

The Mellin transform diagonalizes the Q2 evolution of the parton densities. In other
words, the Q2 evolution of the Mellin moment with a certain value n does not depend on
the moment with another value n′.
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The Mellin moments Mk(n, Q2) of the SF Fk(x, Q2)

Mk(n, Q2) =
∫ 1

0
dx xn−2Fk(x, Q2) (4)

can be represented as the sum

Mk(n, Q2) = ∑
a=q,q̄,g

Ca
k(n, Q2/µ2) Aa(n,µ2), (5)

where Ca
k(n, Q2/µ2) are the coefficient functions and Aa(n,µ2) =< N|Oa

µ1,··· ,µn |N > are the
matrix elements of the Wilson operators Oa

µ1,··· ,µn , which in turn are process-independent.
Phenomenologically, the matrix elements Aa(n,µ2) are equal to the Mellin moments of

the PDFs fa(x,µ2), where fa(x,µ2) are the distributions (all parton densities are multiplied
by x, i.e., in LO the structure functions are some combinations of the parton densities) of
quarks (a = qi), antiquarks (a = q̄i) with i = 1 · · · 6 and gluons (a = g), i.e.,

Aa(n,µ2) ≡ fa(n,µ2) =
∫ 1

0
dx xn−2 fa(x,µ2). (6)

The coefficient functions Ca
k(n, Q2/µ2) are represented by

Ca
k(n, Q2/µ2) =

∫ 1

0
dx xn−2C̃a

k(x, Q2/µ2) (7)

and responsible for the relationship between SFs and PDFs. Indeed, in the x-space the
relation (5) is replaced by

Fk(x, Q2) = ∑
a=q,q̄,g

C̃a
k(x, Q2/µ2)⊗ fa(x,µ2), (8)

where ⊗ denotes the Mellin convolution

f1(x)⊗ f2(x) ≡
∫ 1

x

dy
y

f1(y) f2

(
x
y

)
. (9)

Applying (5) and (8), one can fit the shapes of PDFs fa(x,µ2), which are process-independent
and use them later for other processes. Note that the factorization scale µ2 is often taken as
µ2 = Q2. Here, we will follow this choice.

2.2. Quark Densities

The distributions of the u and d quarks contain the valence and sea parts:

fq1 ≡ fu = f V
u + f S

u , fq2 ≡ fd = f V
d + f S

d . (10)

The distributions of the other quark flavors and of all the antiquarks contain the sea
parts only:

fqj = f S
qj

, (j = 3 · · · 6), fq̄i = f S
q̄i

(i = 1 · · · 6). (11)

It is useful to define combinations [42] of quark densities (here, we consider all quark
flavors. In fact, heavy quarks factorize out when

√
Q2 becomes less then their masses,

and we should exclude them from the Q2-region): the valence part fV , the sea one fS and
the singlet one fSI :
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fV = f V
u + f V

d , fS =
6

∑
i=1

(
f S
qi
+ f S

q̄i

)
,

fSI =
6

∑
i=1

(
fqi + fq̄i

)
= fV + fS. (12)

Since the PDFs, which contribute to the structure functions, are accompanied by some
numerical factors, there are also nonsinglet parts

f∆ij =
(

fqi + fq̄i

)
−
(

fqj + fq̄j

)
, (13)

which contain the difference in the densities of quarks and antiquarks with different values
of charges.

As an example, we consider electron-proton scattering, where the corresponding SF
has the form

Fep
2 (x, Q2) =

6

∑
i=1

e2
i

(
fqi (x, Q2) + fq̄i (x, Q2)

)
. (14)

In a four-quark case (when b and t quarks are separated out), we will have [42]

Fep
2 (x, Q2) =

5
18

fSI(x, Q2) +
1
6

f∆(x, Q2), (15)

where
f∆ = ∑

qi=u,c

(
fqi (x, Q2) + fq̄i (x, Q2)

)
− ∑

qi=d,s

(
fqi (x, Q2) + fq̄i (x, Q2)

)
. (16)

2.3. DGLAP Equations

The PDFs obey the DGLAP equations [1–4]:

d
d ln Q2 fi(x, Q2) = −1

2 ∑
b

γNS(x)⊗ fi(x, Q2), i = NS, V,

d
d ln Q2 fa(x, Q2) = −1

2 ∑
b

γab(x)⊗ fb(x, Q2), a, b = SI, g, (17)

where γi(x) and γab(x) are so-called splitting functions. Anomalous dimensions (ADs)
γab(n) of the twist-two Wilson operators Oa

µ1,··· ,µn in the brackets b are the Mellin trans-
forms of the corresponding splitting functions

γab(n) =
∫ 1

0
dx xn−2γab(x), fa(n,µ2) =

∫ 1

0
dx xn−2 fa(x,µ2). (18)

At LO of perturbation theory, ADs
γab(n) have the following form [42]:

γab(n) = as(Q2) γ
(0)
ab (n), γ

(0)
NS(n) = γ

(0)
qq (n), as(Q2) =

αs(Q2)

4π
=

1
β0 ln(Q2/Λ2

LO)
,

γ
(0)
NS(n) = γ

(0)
qq (n) = 8CF

(
S1(n)−

3
4
− 1

2n(n + 1)

)
,

γ
(0)
qg (n) = −4 f

n2 + n + 2
n(n + 1)(n + 2)

, γ
(0)
gq (n) = −4CF

n2 + n + 2
n(n2 − 1)

,

γ
(0)
gg (n) = 8CA

(
S1(n)−

11
12
− 1

n(n− 1)
− 1

(n + 1)(n + 2)

)
+

4 f
3

, (19)
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where CA = N, CF = (N2 − 1)/(2N) for SU(N) group and f is the number of active
(massless) quarks and

S1(n) =
n

∑
m=1

1
m

= Ψ(n + 1) + γE, (20)

with Euler Ψ-function and Euler constant γE.
In the Mellin moment space, the DGLAP equation becomes the standard renormaliza-

tion group equation. At LO we have

d
d ln Q2 fi(n, Q2) = − as(Q2)

2
γ
(0)
NS(n) fi(n, Q2), i = V, NS, (21)

d
d ln Q2 fa(n, Q2) = − as(Q2)

2 ∑
b=SI,G

γ
(0)
ab (n) fb(n, Q2), a = SI, g. (22)

To solve (22), it is more convenient to move to the ± components [42,45], that leads to the
diagonal form:

d
d ln Q2 f±(n, Q2) = − as(Q2)

2
γ
(0)
± (n) f±(n, Q2), (23)

where

γ
(0)
± (n) =

1
2

[
γ
(0)
qq (n) + γ

(0)
gg (n)±

√
(γ

(0)
qq (n)− γ

(0)
gg (n))2 + 4γ

(0)
qg (n)γ(0)

gq (n)
]
. (24)

The solutions of (21) and (23) have the following form:

fa(n,µ2) = fa(n, Q2
0) e−da(n)s, a = V, NS,±, (25)

where Q2
0 is some initial scale and

da(n) =
γ
(0)
a (n)
2β0

, s = ln
ln(Q2/Λ2)

ln(Q2
0/Λ2)

. (26)

The singlet quark and gluon densities can be expressed through their “±” components as

fa(n, Q2) = fa,+(n, Q2) + fa,−(n, Q2), fa,±(n, Q2) = fa,±(n, Q2
0) e−d±(n)s, (27)

where

fq,+(n, Q2
0) = fq(n, Q2

0)− fq,−(n, Q2
0), fq,−(n, Q2

0) = fq(n, Q2
0) αn + fq(n, Q2

0)βn,

fg,−(n, Q2
0) = fg(n, Q2

0)− fg,+(n, Q2
0), fq,+(n, Q2

0) = fg(n, Q2
0) αn − fq(n, Q2

0)εn, (28)

and

αn =
γ
(0)
qq (n)− γ

(0)
+ (n)

γ
(0)
− (n)− γ

(0)
+ (n)

, βn =
γ
(0)
qg (n)

γ
(0)
− (n)− γ

(0)
+ (n)

, εn =
γ
(0)
gq (n)

γ
(0)
− (n)− γ

(0)
+ (n)

. (29)

2.4. Special Cases

A special case of parton evolution is the case n = 1 for the valence part, which
corresponds to the number NV of structural quarks in a considered hadron. For example,
for a proton NV = 3. So, we have∫ 1

0
dx

1
x

fV(x,µ2) = NV , (30)

which is the so-called Gross-Llewellyn-Smith sum rule [28].
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Indeed, for this case, γ
(0)
NS(n = 1) = 0 and

fa(n = 1, Q2) = fa(n = 1, Q2
0), a = V, NS. (31)

For the NS part, the corresponding sum rule, so-called Gottfried sum rule [29], is written as∫ 1

0
dx

1
x

fNS(x, Q2) = NNS(Q2) = 3IG(Q2) , (32)

with [46]
IG(Q2

c ) = 0.705± 0.078, Q2
c = 4 GeV2 . (33)

We note that the result (32) is correct in a case of flavor-symmetric sea. Moreover, IG(Q2)
has only very weak Q2-dependence (see [47]), which comes beyond LO from the so-called
analytic continuation [47–49] of the corresponding Wilson coefficients. So, the values of
the Gottfried sum rule [29] can be taken below as

IG(Q2) ≈ IG(Q2
c ) = 0.705 . (34)

For the sea quark and gluon densities the special case is n = 2, that corresponds to the
conservation of the total momentum carried by quarks and gluons, i.e.,∫ 1

0
dx
(

fSI(x, Q2) + fg(x, Q2)
)
=
∫ 1

0
dx
(

fSI(x, Q2
0) + fg(x, Q2

0)
)
= 1, (35)

i.e.,
fSI(n = 2, Q2) + fg(n = 2, Q2) = fSI(n = 2, Q2

0) + fg(n = 2, Q2
0)
)
= 1. (36)

Let us consider the case n = 2 more accurately. We have

γ
(0)
qq (n = 2) = −γ

(0)
gq (n = 2) =

16CF
3

, γ
(0)
gg (n = 2) = −γ

(0)
qg (n = 2) =

4 f
3

, (37)

and thus,

γ
(0)
− (n = 2) = 0, γ

(0)
+ (n = 2) =

4
3

(
4CF + f

)
, αn=2 = βn=2 = 1− εn=2 =

f
4CF + f

. (38)

Using these values, we obtain

fSI,−(2, Q2) =
f

4CF + f

(
fSI(2, Q2

0) + fg(2, Q2
0)
)

e−d−(n=2)s =
f

4CF + f
,

fg,−(2, Q2) =
4CF

4CF + f

(
fSI(2, Q2

0) + fg(2, Q2
0)
)

e−d−(n=2)s =
4CF

4CF + f
, (39)

because fSI(2,µ2
0) + fg(2,µ2

0) = 1 and d−(n = 2) = γ−(n = 2)/(2β0) = 0. Thus, the
“−”-components are Q2-independent. Moreover,

fSI,−(2, Q2) + fg,−(2, Q2) = fSI(2, Q2
0) + fg(2, Q2

0) = 1, (40)

i.e., the sum of the “−” components of the singlet and gluon densities is responsible for the
momentum conservation. For the “+” components we have

fSI,+(n, Q2) =
1

4CF + f

(
4CF fSI(2, Q2

0)− f fg(2, Q2
0)
)

e−d+(n=2)s,

fg,+(n, Q2) =
1

4CF + f

(
f fg(2, Q2

0)− 4CF fSI(2, Q2
0)
)

e−d+(n=2)s (41)
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and thus,
fSI,+(2, Q2) + fg,+(2, Q2) = 0, (42)

i.e., the sum of the “+” components of the singlet and gluon densities is exactly zero.

3. Low x Asymptotics

According to (12), the singlet quark density fSI(x, Q2) contains the valence part
fV(x, Q2) and the sea part fS(x, Q2).

3.1. Nonsinglet and Valence Parts

At small-x values, the NS and valence parts have the following asymptotics [25,26,50,51]:

fi(x) → Ai(s) xλi , i = V, NS, (43)

where the variable s is defined in Equation (26) and

Ai(s) = Ai(0)e−dV(1−λi)s, Ai(0) ≡ Ai, dV(n) =
γ
(0)
NS(n)
2β0

, (44)

λi and Ai(0) are free parameters and Ψ(n + 1) is the Euler Ψ-function. It follows from the
Regge calculus that the constant λi ∼ 0.3÷ 0.5. Moreover, the Q2 evolution of this parton
density shows that λi must be Q2 independent [25,26].

3.2. Singlet Part

It was pointed out [52] that HERA small-x data can be well interpreted in terms of
the so-called doubled asymptotic scaling (DAS) phenomenon related to the asymptotic
behavior of the DGLAP evolution discovered many years ago [53]. The study [52] was
extended [54–56] to include the finite parts of anomalous dimensions of Wilson operators
and Wilson coefficients (in the standard DAS approximation [53] only the AD singular
parts were used) (see review [43] and discussions therein). This leads to predictions [55,56]
of the small-x asymptotic form of PDFs in the framework of the DGLAP dynamics, which
were obtained starting at some Q2

0 with the flat function

fa(x, Q2
0) = Aa, (45)

where Aa are free parameters that have to be determined from the data. We refer to the
approach of [54–56] as generalized DAS approximation. In this approach, the flat initial
conditions (45) determine the basic role of the AD singular parts as in the standard DAS
case, whereas the contributions coming from AD finite parts and Wilson coefficients can be
considered as corrections which are, however, important for achieving better agreement
with experimental data.

The generalized DAS approach has been successfully used to fit the experimental data
for F2 and Fc

2 SFs (see Refs. [52,55–62], respectively). In addition, it helps to extract
gluon density and FL SF from experimental data of F2 and its derivative with respect
to Q2 (see [63,64] and [65–67], respectively), to estimate the charm part of FL [68] and,
finally, it leads to useful links between SFs [69–71]. Moreover, the generalized DAS approach
provides the correct Q2- dependence of F2 slope [72] and reasonable asymptotics for nucleon
PDFs [73,74]. All the described cases take place for small values of the Bjorken variable x.

The generalized DAS approach also leads to simple and convenient low-x forms for
non-integrated quark and gluon densities [30,31], the application of which will be extended
to the entire area x in Section 6.

Hereafter, we consider for simplicity only the LO approximation (both the LO and
NLO results and their applications can be found in [55,56]). The small-x asymptotic
expressions for the sea quark and gluon densities fa(x,µ2) can be written as follows:
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fa(x, Q2) = f+a (x, Q2) + f−a (x, Q2),

f+g (x, Q2) = A+
g I0(σ) e−d+s + O(ρ), A+

g = Ag + C Aq, C =
CF
CA

=
4
9

,

f+q (x, Q2) = A+
q Ĩ1(σ) e−d+s + O(ρ), A+

q =
ϕ

3
A+

g , ϕ =
f

CA
=

f
3

,

f−g (x, Q2) = A−g e−d−s + O(x), A−g = −C Aq,

f−q (x, Q2) = Aqe−d−s + O(x), (46)

where CA = Nc, CF = (N2
c − 1)/(2Nc) for the color SU(Nc) group, Iν(σ) and Ĩν(σ)

(ν = 0, 1) are the combinations of the modified Bessel functions (at s ≥ 0, i.e., µ2 ≥ Q2
0) and

usual Bessel functions (at s < 0, i.e., µ2 < Q2
0):

Ĩν(σ) =

{
ρν Iν(σ), if s ≥ 0;
(−ρ̃)ν Jν(σ̃), if s < 0.

, Iν(σ) =

{
ρ−ν Iν(σ), if s ≥ 0;
ρ̃−ν Jν(σ̃), if s < 0.

Iν(σ) =
∞

∑
m=0

1
k!(k + ν)!

σ2k+ν, Jν(σ) =
∞

∑
m=0

(−1)k

k!(k + ν)!
σ2k+ν, (47)

where I0(σ) = Ĩ0(σ) and

σ = 2

√∣∣∣d̂+∣∣∣s ln
(

1
x

)
, ρ =

σ

2 ln(1/x)
, σ̃ = 2

√
−
∣∣∣d̂+∣∣∣s ln

(
1
x

)
, ρ̃ =

σ̃

2 ln(1/x)
, (48)

and

d̂+ = −4CA
β0

= − 12
β0

, d+ = 1 +
4 f (1− C)

3β0
= 1 +

20 f
27β0

, d− =
4C f
3β0

=
16 f
27β0

, (49)

are the singular and regular parts of the anomalous dimensions and β0 = 11− (2/3) f is
the first coefficient of the QCD β-function in the MS-scheme. The results for the parameters
Aa and Q2

0 can be found in [61]; they were obtained for αs(MZ) = 0.1168.
It is convenient to have the following expressions:

β0 d̂+ = −4CA, β0 d+ =
CA
3

(
11 + 2ϕ(1− 2C)

)
, β0 d− =

4C f
3

=
4CF ϕ

3
. (50)

4. Large x Asymptotics

The large x asymptotics of the valence, nonsinglet and sea quark densities have the
following form (see [25,26,50,51] and Appendix A):

fi(x, Q2) ≈ Bi(s)
Γ(1+νi(s))

(1− x)νi(s), i = NS, V,

fa(x, Q2) = ∑± fa,±(x, Q2), a = q, g,

fq,−(x, Q2) ≈ B−(s)
Γ(1+ν−(s))

(1− x)ν−(s),

fg,−(x, Q2) ≈ K−
Γ(2+ν−(s))

B−(s)
[ln(1/(1−x))+ĉ+Ψ(ν−+2)] (1− x)ν−(s)+1,

fg,+(x, Q2) ≈ B+(s)
Γ(1+ν+(s))

(1− x)ν+(s),

fq,+(x, Q2) ≈ − K+
Γ(2+ν+(s))

B+(s)x
[ln(1/(1−x))+ĉ+Ψ(ν++2)] (1− x)ν+(s)+1 , (51)

where

νi(s) = νi(0) + ris , ri =
4Ci
β0

, Bi(s) = Bi(0) e−pis , pi = ri

(
γE + ĉi

)
, i = NS, V,±, (52)
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with Bi(0) and νi(0) being free parameters, γE is the Euler constant and

C+ = CA, ĉ+ = − β0

4CA
= −11− 2ϕ

12
, Cj = CF, ĉj = −

3
4

, j = V, NS,

K+ =
f

2(CA − CF)
, K− =

CF
2(CA − CF)

, ĉ = γE +
CA ĉ+ − CF ĉ−

CA − CF
(53)

The constant νi(0) can be estimated from the quark counting rules [75–77] as

νj(0) ∼ 3, j = V, NS,−, ν+(0) = νj(0) + 1 . (54)

The relation ν+(s) = ν−(s) + 1 leads to smallness of the term fq,+(x, Q2). So, at large
x we have

fq,+(x, Q2) ≈ 0 and, thus, fq(x, Q2) ≈ fq,−(x, Q2). (55)

Moreover, the expressions (51) and (52) demonstrate fall of the parton densities at large x
when Q2 increases.

5. Parametrizations

Here, we present parametrizations of the nonsinglet and singlet quark and gluon
densities constructed similar to ones obtained earlier [24] in the valence case.

5.1. Nonsinglet and Valence Parts

The nonsinglet and valence quark parts fi(x, Q2), where i = V, NS, can be represented
in the following form (similar studies were carried out in [78–80] (see also the review [43])):

fi(x, Q2) =

[
Ai(s)xλi (1− x) +

Bi(s) x
Γ(1 + νi(s))

+ Di(s)x(1− x)
]
(1− x)νi(s) , (56)

which is constructed as a combination of the small x and large x asymptotics and an
additional term proportional to Di(s), which is subasymptotic in both of these regions. The
Q2-dependence of the parameters in (56) is given by (51) and (44). The Q2-dependence of
magnitude Di(s) is determined by the corresponding sum rules (see below).

5.2. Sea and Gluon Parts

The sea and gluon parts can be represented as combinations of the ± terms:

f j(x, Q2) = ∑± f j,±(x, Q2), j = q, g,

fq,−(x, Q2) =

[
Aqe−d−s(1− x)mq,− + B−(s) x

Γ(1+ν−(s))
+ D−(s)x(1− x)

]
(1− x)ν−(s),

fg,−(x, Q2) =

[
A−g e−d−s(1− x)mg,− + K−

Γ(2+ν−(s))
B−(s)x

[ln(1/(1−x))+ĉ+Ψ(ν−+2)]

]
(1− x)ν−(s)+1,

fg,+(x, Q2) =

[
A+

g I0(σ)e−d+s(1− x)mg,+ + B+(s) x
Γ(1+ν+(s))

+ D+(s)x(1− x)
]
(1− x)ν+(s),

fq,+(x, Q2) = A+
q Ĩ1(σ)e−d+s(1− x)ν+(s)+mq,++1, (57)

where K− and ĉ are shown in (53). We note that one can set mq,− = mg,+ = 2 and
mq,+ = mg,− = 1. In this case, small-x asymptotics is suppressed for large x in comparison
with the subasymptotic behavior of ∼ D±(x). Moreover, the small-x asymptotics will
contain the same powers of the factor (1− x) for quarks and gluons.

We would like to note that the valence quarks contribute to the “−”-component but
not to “+”-one. So,

fSI(x, Q2) = fSI,−(x, Q2) + fSI,+(x, Q2),

fSI,−(x, Q2) = fq,−(x, Q2) + fV(x, Q2), fSI,+(x, Q2) = fq,+(x, Q2). (58)
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The parameters involved in (56)–(58) can be fitted, for example, from the comparison with
known parametrizations of the NNPDF group [7] and/or taking into account the sum rules
shown in the next section.

5.3. Properties of Parameterizations

The obtained above parametrizations of parton distributions in the proton must obey
sum rules given by (30) and (32).

5.3.1. Gross–Llewellyn–Smith and Gottfried Sum Rules

Additional relations between the parameters in (56) stems from the LO Gross–Llewellyn–
Smith sum rule [28] and Gottfried sum rule [29]:∫ 1

0

dx
x

fi(x, Q2) = Ni, i = V, NS, NV = 3, NNS = 3IG, (59)

where the value of IG can be found in (34).
So, we have the following relations:

Ni = Ai(s)
Γ(λi)Γ(2 + νi(s))
Γ(λi + 2 + νi(s))

+
Bi(s)

Γ(2 + νi(s))
+

Di(s)
2 + νi(s)

, (60)

i.e.,

Di(s) = (2 + νi(s))
[

Ni − Ai(s)
Γ(λi)Γ(2 + νi(s))
Γ(λi + 2 + νi(s))

− Bi(s)
Γ(2 + νi(s))

]
. (61)

The valence and NS densities at low and large x asymptotics are proportional to each other.
So, we can apply the following notations:

νV(s) ≈ νNS(s), λV ≈ λNS . (62)

5.3.2. Momentum Conservation

The momentum conservation (35) leads to the following relations:

1 = GV(s) + G−q (s) + G−g (s) 0 = G+
q (s) + G+

g (s), (63)

where∫ 1

0
dx fi(x, Q2) = Gi(s), (i = V, NS),

∫ 1

0
dx fa,±(x, Q2) = G±a (s), (a = q, g). (64)

So, we have

Gi(s) = Ai(s)
Γ(λi+1)Γ(2+νi(s))

Γ(λi+3+νi(s))
+ Bi(s)

Γ(3+νi(s))
+ Di(s)

(2+νi(s))(3+νi(s))
,

G+
g (s) = A+

g Φ0(mg,+ + ν+(s)) e−d+s + B+(s)
Γ(3+ν+(s))

+ D+(s)
Γ(3/2)Γ(2+ν+(s))

Γ(7/2+ν+(s))
,

G−q (s) = Aq
1+ν−(s)+mq,−

e−d−s + B−(s)
Γ(3+ν−(s))

+ D−(s)
Γ(3/2)Γ(2+ν−(s))

Γ(7/2+ν−(s))
,

G−g (s) =
A(−)

g
2+ν−(s)+mg,−

e−d−s + K− B−(s)
Γ(4+ν−(s))(Ψ(4+ν−)+ĉ) ,

G+
q (s) = A+

q Φ1(1 + mq,+ + ν+(s)) e−d+s . (65)

where

Φ0(ν(s)) =
∫ 1

0
dx I0(σ)(1− x)ν(s) =

∞

∑
l=0

Cν
l
(−1)l

l + 1
e(ds)/(l+1),

Φ1(ν(s)) =
∫ 1

0
dx ρ I1(σ)(1− x)ν(s) =

∞

∑
l=0

Cν
l (−1)le(ds)/(l+1), (66)
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with

Cν
l =

Γ(ν + 1)
l!Γ(ν + 1− l)

, d = |d̂+|, (67)

and d̂+ < 0 is defined above in (50). For ν = 1, 2 and 3, we have:

Φj(1) = eds − 1
2− j

eds/2 , j = 0, 1,

Φj(2) = eds − (1 + j)eds/2 +
1

3− 2j
eds/3,

Φj(3) = eds − 3
2− j

eds/2 + (1 + 2j)eds/3 − 1
4− 3j

eds/4 . (68)

We would like to note that comparing (61) and (65) at i = V, NS we have

Gi(s) =
1

3 + νi(s)

[
NV − (1− λi) Ai(s)

Γ(λi)Γ(3 + νi(s))
Γ(λi + 3 + νi(s))

+
Bi(s)

Γ(3 + νi(s))

]
. (69)

Moreover,

D−(s) =
Γ(7/2+ν−(s))

Γ(3/2)Γ(2+ν−(s))

[
1− GV(s)− G−g (s)− G−q (s)

]
,

D+(s) = − Γ(7/2+ν+(s))
Γ(3/2)Γ(2+ν+(s))

[
G+

q (s) + G+
g (s)

]
, (70)

where

G−q (s) =
Aq

1+ν−(s)+mq,−
e−d−s + B−(s)

Γ(3+ν−(s))
,

G+
g (s) = A+

g Φ0(mg,+ + ν+(s)) e−d+s + B+(s)
Γ(3+ν+(s))

. (71)

If the argument ν of Φk(ν) is large, which is the case (see Section 5.4 below), we have
the approximation

Φ0(ν) ≈ 1
1+ν I0(σν), σν = σ with ln(1/x)→ Ψ(2 + ν) + γE ≈ ln(1 + ν) + γE ,

Φ1(ν) ≈ ρν
1+ν I1(σν), ρν = ρ with ln(1/x)→ Ψ(2 + ν) + γE ≈ ln(1 + ν) + γE , (72)

where σ and ρ are given in Section 3.2 and γE is the Euler constant. The evaluation of the
results (72) can be found in Appendix B. Then, at s = 0 we will have relations between A±a ,
B±(0) and D±(0):

Gi(s = 0) = 1
3+νV(0)

[
Ni − (1− λV) Ai(0)

Γ(λV)Γ(3+νV(0))
Γ(λV+3+νV(0))

+ Bi(0)
Γ(3+νV(0))

]
,

G+
g (s = 0) =

A+
g

1+ν+(0)+mg,+
+ B+(0)

Γ(3+ν+(0))
+ D+(0)

Γ(3/2)Γ(2+ν+(0))
Γ(7/2+ν+(0))

,

G−q (s = 0) = Aq
1+ν−(0)+mq,−

+ B−(0)
Γ(3+ν−(0))

+ D−(0)
Γ(3/2)Γ(2+ν−(0))

Γ(7/2+ν−(0))
,

G−g (s = 0) =
A−g

2+ν−(0)+mg,−
+ K−

Γ(4+ν−(0))
B−(0)

(Ψ(4+ν−(0))+ĉ) , G+
q (s = 0) = 0. (73)
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So, the final results for Aq, Ag and B+(0) can be obtained from experimental data for the
sea quark and gluon densities at Q2 = Q2

0 (i.e., for s = 0):

f j(x, Q2
0) = ∑± f j,±(x, Q2

0), j = q, g,

fg,+(x, Q2
0) =

[
A+

g (1− x)mg,+ + B+(0) x
Γ(1+ν+(0))

+ D+(0)x(1− x)
]
(1− x)ν+(0) ,

fq,−(x, Q2
0) =

[
Aq(1− x)mq,− + B−(0) x

Γ(1+ν−(0))
+ D−(0)x(1− x)

]
(1− x)ν−(0) ,

fg,−(x, Q2
0) =

[
A−g (1− x)mg,− + K−

Γ(2+ν−(0))
B−(0)x

[ln(1/(1−x))+ĉ+Ψ(ν−(0)+2)]

]
(1− x)ν−(0)+1 ,

fq,+(x, Q2
0) = 0 , (74)

with ν+(0) = ν−(0) + 1 and ν−(0) ∼ 3.

5.4. Results for Parton Densities

From numerical analysis we have B−(s) = 0, i.e., the large x behavior is defined by the
valence quarks. Then, the results for fa,−(x, Q2) with a = q or g in (57) are strongly simplified:

fq,−(x, Q2) =

[
Aqe−d−s(1− x)mq,− + D−(s)x(1− x)

]
(1− x)ν−(s),

fg,−(x, Q2) = A−g e−d−s (1− x)ν−(s)+mg,−+1 . (75)

Similar simplification takes place also for fa,−(x, Q2
0) in (74). To obtain it, we should take

s = 0 in the results (75).
Moreover, we also have simplifications for G−a (s) with a = q or g in (65), for G−q (s)

in (71) and for G−a (s = 0) in (73). Indeed, we should replace G−a (s) in (65) by

G−q (s) = Aq
1+ν−(s)+mq,−

e−d−s + D−(s)
Γ(3/2)Γ(2+ν−(s))

Γ(7/2+ν−(s))
,

G−g (s) =
A(−)

g
2+ν−(s)+mg,−

e−d−s . (76)

and G−a (s = 0) (a = q, g) in (73) by the results (76) with s = 0. The results G−q (s) in (71)
should be replaced by

G−q (s) =
Aq

1 + ν−(s) + mq,−
e−d−s . (77)

The values of all the parameters involved in derived expressions can be determined
from the comparison with known parametrizations of numerical solutions of the DGLAP
equations and/or taking into account the sum rules. In our analysis, we employ the lat-
est parametrizations proposed by the NNPDF Collaboration, namely, NNPDF4.0 set [7].
The results of our fit are collected in Table 1. Additionally, in Figure 1 we show a com-
parison between our PDFs (labeled as AKL) and corresponding results obtained by the
MMHT’2014 [81] and NNPDF groups. We find good agreement between our analytical
derivation and relevant numerical analyses.

Table 1. The fitted values of various parameters involved in our analytical expressions for PDFs in
the proton.

Q0, GeV AV(0) Aq Ag BV(0) B−(0) B+(0)

AKL
√

0.43 3.0 0.95 0.77 100.0 0.0 13× 106

mq,− mq,+ mg,− mg,+ νV(0) ν−(0) ν+(0)

AKL 2.0 1.0 1.0 2.0 4.0 7.2 8.2
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Figure 1. The gluon, valence, singlet and sea quarks densities in the proton calculated as a function
of the longitudinal momentum fraction x at hard scale Q2 = 4 GeV2. The purple curve corresponds
to the results obtained with AKL, the green and blue curves with NNPDF4.0 (LO) and MMHT’2014
(LO) parton density functions, respectively.

6. TMD Parton Densities in the Proton

Now, we turn to the derivation of analytical expressions for the TMD gluon and quark
density functions in the proton. Our consideration is based on the KMR procedure [32,33],
which is a formalism to construct the TMDs from conventional PDFs. The key assumption
is that the transverse momentum dependence of the parton distributions enters only at the
last evolution step, so conventional PDFs can be used up to this step. There are known
differential and integral formulations of the KMR approach in the literature (see [82–84] for
more information and discussion). Below we derive expressions for the TMDs using both
of these schemes.

6.1. Differential Formulation

In the differential formulation of the KMR procedure, we have the TMD parton
densities f (d)a (x, k2, Q2), where a = V, q or g as

f (d)a (x, k2, Q2) =
∂

∂ ln k2

[
Ta(Q2, k2)D̂a(x, k2)

]
, (78)

where the Sudakov form factor Ta(Q2, k2) has the following form:

Ta(Q2, k2) = exp

−
Q2∫

k2

dp2

p2 ∑
b=q,g

x0∫
0

dz zPba(z, p2)

 , (79)
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with the splitting functions

Pab(z, k2) = 2as(k2) P(LO)
ab (z) + · · · , (80)

related with the LO anomalous dimensions (19) as

γ
(LO)
ab (n) =

∫ 2

)
dz zn−1 P(LO)

ab (z) . (81)

The PDFs D̂a(x, k2) have the following form:

fa(x, k2) = xD̂a(x, k2) . (82)

Since
fa(x, k2) = ∑

±
fa,±(x, k2), a = q, g, (83)

we see that the f (d)a (x, k2, Q2) have similar form

f (d)a (x, k2, Q2) = ∑
±

f (d)a,±(x, k2, Q2). (84)

Using the expressions (56)–(57) for PDFs fa(x, k2), we obtain the the final results for TMDs
(the complete results are shown in Appendix C):

f (d)i (x, k2, Q2) = β0 as(k2)Tq(Q2, k2)×
{[

dq Rq(∆)− rV ln
(

1
1−x

)]
fi(x, k2)

−
[

dV(1− λV) AV e−dV (1−λ)s2 (1− x)

+[pV + rVΨ(1 + νV(s2))]
Bi(s2) x

Γ(1+νV (s2))

]
(1− x)νV (s2)

}
, (i = V, NS) ,

f (d)g,+(x, k2, Q2) = β0 as(k2)Tg(Q2, k2)×
{[

dg Rg(∆)− r+ ln
(

1
1−x

)]
fg,+(x, k2)

−
[[

d̂+ I1(σ2) + d+ I0(σ2)
]

A+
g e−d+s2 (1− x)mg+

+[p+ + r+Ψ(1 + ν+(s2))]
B+(s2) x

Γ(1+ν+(s2))

]
(1− x)ν+(s2)

}
,

f (d)q,+(x, k2, Q2) = β0 as(k2)Tq(Q2, k2)×
{[

dq Rq(∆)− r+ ln
(

1
1−x

)]
fq,+(x, k2)

−
[
d̂+ I0(σ2) + d+ Ĩ1(σ2)

]
A+

q e−d+s2 (1− x)ν+(s2)+1+mq+

}
,

f (d)q,−(x, k2, Q2) = β0 as(k2)Tq(Q2, k2)×
{[

dq Rq(∆)− r− ln
(

1
1−x

)]
fq,−(x, k2)

−d− Aq e−d−s2 (1− x)ν−(s2)+mq−

}
,

f (d)g,−(x, k2, Q2) = β0 as(k2)Tg(Q2, k2)×
{[

dg Rg(∆)− r− ln
(

1
1−x

)]
fg,−(x, k2)

−d− A−g e−d−s2 (1− x)ν−(s2)+mg−+1

}
, (85)
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where we neglected the derivations of Da(s) (a = V,±). Indeed, the magnitudes Da(s) of
intermediate terms have slow s dependence and their derivations can be neglected.

6.2. Integral Formulation

Following the investigations performed in [30], we can obtain the following results
(j = V, NS):

f (i)j (x, k2, Q2) = β0as(k2) Tq(Q2, k2) ×
{[

dq Rq(∆)− rV ln
(

1
1−x

)]
f j(x, k2)− R̃j(x, k2)

}
,

f (i)a (x, k2, Q2) = f (i)a,+(x, k2, Q2) + f (i)a,−(x, k2, Q2),

f (i)a,−(x, k2, Q2) = β0as(k2) Ta(Q2, k2) ×
{[

da Ra(∆)− r− ln
(

1
1−x

)]
fa,−(x, k2)− R̃a,−(x, k2)

}
,

f (i)a,+(x, k2, Q2) = β0as(k2) Ta(Q2, k2) ×
{[

da Ra(∆)− r+ ln
(

1
1−x

)]
f a,+(x, k2)− R̃a,+(x, k2)

}
(86)

where

R̃j(x, k2) =

[
dV(1− λV) Aj e−dV(1−λ)s2 xλ + [pV + rVΨ(1 + νV(s2))]

Bj(s2) x
Γ(1+νV(s2))

]
(1− x)νV(s2)+1 ,

R̃q,+(x, k2) =
(

d̂+ I0(σ2) + d+ Ĩ1(σ2)
)

A+
q e−d+s2(1− x)ν+(s2)+mq,++2 ,

R̃g,+(x, k2) =

[(
d̂+ I1(σ2) + d+ I0(σ2)

)
A+

g e−d+s2 (1− x)mg,+

+[p+ + r+Ψ(1 + νV(s2))]
B+(s2) x

Γ(1+ν+(s2))

]
(1− x)ν+(s2) ,

R̃q,−(x, k2) = d− Aq e−d−s2(1− x)ν−(s2)+mg,− ,

R̃g,−(x, k2) = d− A−g e−d−s2(1− x)ν−(s2)+mg,−+2 , (87)

with
x =

x
x0

, x0 = 1− ∆, σ2 = σ2(x → x), ρ2 = ρ2(x → x) . (88)

and
f a,+(x, k2) = fa,+(x, k2) with σ2 → σ2, ρ2 → ρ2 . (89)

As in (85), we neglected contributions coming from the magnitudes Da(s), where a = V, ±.

6.3. Sudakov form Factors Ta(Q2, k2)

For the Sudakov form factors, we have [31]:

Ta(Q2, k2) = exp
[
−daRa(∆)s1

]
, (90)

where

s1 = ln
(

as(k2)

as(Q2)

)
, da =

4Ca

β0
, Cq = CF, Cg = CA, β0 =

CA
3

(
11− 2ϕ

)
,

Rq(∆) = ln
(

1
∆

)
−

3x2
0

4
= ln

(
1
∆

)
− 3

4
(1− ∆)2,

Rg(∆) = ln
(

1
∆

)
−
(

1− ϕ

4

)
x2

0 +
1− ϕ

12
x3

0(4− 3x0) =

= ln
(

1
∆

)
−
(

1− ϕ

4

)
(1− ∆)2 +

1− ϕ

12
(1− ∆)3(1 + 3∆) . (91)
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6.4. Cut-Off Parameter ∆

For phenomenological applications, the cut-off parameter ∆ usually has one of two ba-
sic forms:

∆1 =
k
Q

, ∆2 =
k

k + Q
, (92)

that reflects two cases: ∆1 is for the strong ordering, ∆2 is for the angular ordering (see [82]).
In all the cases above, except the results for Ta(Q2, k2), we can simply replace the parameter
∆ by ∆1 and/or ∆2. For the Sudakov form factors, we note that the parameters ∆i (with
i = 1, 2) contribute to the integrand and, thus, their momentum dependence changes the
results in (90). Perfoming the correct evaluation (see [31]), we have

T(i)
a (Q2, k2) = exp

−4Ca

Q2∫
k2

dp2

p2 as(p2)Ra(∆i)

. (93)

Analytic evaluation of T(i)
a (Q2, k2) is a very cumbersome procedure, which will be accom-

plished in the future. For the sake of simplifying our analysis, below we use numerical
results for T(i)

a (Q2, k2).

6.5. Results for TMD Parton Densities

Our results for the TMD quark and gluon densities in the proton, obtained in both
differential and integral formulations of the KMR procedure, are shown in Figure 2. Note
that the cut-off parameter ∆ is taken in the form corresponding to the angular ordering
condition. We find that the difference between these two scenarios originates at large
parton transverse momenta only, whereas at low kT they match each other. In addition, we
plot here for comparison results derived in other approaches. So, we show the TMD gluon
distribution obtained from the numerical solution [85] of the Catani–Ciafaloni–Fiorani–
Marchesini (CCFM) evolution equation [86–89], namely, JH’2013 set 2. The CCFM equation
smoothly interpolates between the small-x BFKL gluon dynamics and large-x DGLAP one,
and JH’2013 set 2 gluon is often used in different phenomenological applications (see, for
example, [37–40]). Moreover, we plot here results for the TMD PDFs obtained within the
KMR approach where the NNPDF4.0 set has been used as the input. One can see that
all these TMDs have different shapes in kT and different overall normalization. The step
behavior at low kT ∼ 1 GeV is related to a special normalization condition usually applied
in the KMR scheme (see [32,33] for more information). Studying the phenomenological
consequences of the observed differences is an important and interesting task, but it is out
of our present consideration.

Figure 2. Cont.
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Figure 2. The TMD gluon, valence, singlet and sea quarks densities in the proton calculated as a
function of the parton transverse momentum k2

T at longitudinal momentum fraction x = 0.001 and
hard scale Q2 = 10 GeV2. The purple and green curves correspond to the results obtained with AKL
sets, which were obtained from differential and integral formulations of KMR approach, respectively.
The blue curve corresponds to the results obtained with TMD gluon distribution JH’2013 set 2 and
with TMD quark distributions calculated numerically in the traditional KMR scenario, where the
conventional parton densities from standard NNPDF (LO) set are used as an input.

7. Conclusions

In the paper, we have proposed analytical expressions for the proton PDFs based on
their exact asymptotics at small and large x values. The derived parameterizations contain
subasymptotic terms, which are fixed by momentum conservation and, in the nonsinglet
and valence parts, by the Gross–Llewellyn–Smith and Gottfried sum rules (see [28,29],
respectively). The rest of the parameters are fixed by comparison with a recent numerical
solution of the DGLAP equation performed by the NNPDF group [7] and presented in
Table 1. Then, our consideration has been extended to the parton densities, dependent on
the transverse momentum (TMDs). These quantities are often used in phenomenological
applications and are widely discussed in the literature. We employ the popular Kimber–
Martin–Ryskin formalism [32–34] and derive the TMD quark and gluon distributions in
the proton within both differential and integral formulations of the KMR scheme. In the
calculations, we have considered different treatments of kinematical constraint, reflecting
the angular and strong ordering conditions. The analytical expressions for the PDFs and
TMDs (in particular, for the quark TMDs), valid at both low and large x, have been obtained
for the first time. As the next step, we plan to use the presented PDF sets to study PDF
modifications in nuclei and, of course, to extend the present investigations beyond LO. In
these investigations, we will follow [73,74,90–96], respectively.
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Appendix A. PDF Asymptotics at Large x Values

Using large n expansion for S1(n) as

S1(n) = ln n + γE + O(n−1) , (A1)
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of some auxiliary anomalous dimension dc = c1S1(n) + c2, we see for the general renorm-
group exponent

e−dcs = e−(c1(ln(n)+γE)−c2)s + O(n−1) = n−c1se−c2s + O(n−1), c2 = c2 + c1γE . (A2)

Let some Mellin moment fc(n, Q2) of corresponding PDF fc(x, Q2) following (18),
have the Q2-dependence

fc(n, Q2) = fc(n, Q2
0) e−dcs = fc(n, Q2

0) n−c1se−c2s . (A3)

It is convenient to represent our basic variable s shown in Equation (26) as

s = s(Q2)− s(Q2
0) ≡ s− s0 , (A4)

where
s(Q2) = ln[ln(Q2/Λ2

LO)] . (A5)

Then we can see that the result (A3) for fc(n, Q2) can be rewritten as

fc(n, Q2) = Bc n−ν1−c1seν2−c2s , (A6)

with some free parameters Bc, ν1 and ν2. For the initial condition fc(x, Q2
0), we have the

same result but with the replacement s→ s0.
Now we consider the Mellin moment

Mc(n) =
∫ 1

0
dx xn−1 (1− x)νc =

Γ(n)Γ(νc + 1)
Γ(n + νc + 1)

(A7)

and try to represent it in a form, similar to (A3) and (A13).
It is convenient to use the Sterling formula

ln Γ(z) = z ln z− z +
1
2

ln
2π

z
+

B2

2z
+ O(z−2) (A8)

at large z values, where B2 is the Bernoulli number.
So, for large z and fixed δ values, we have after a little algebra

ln
Γ(z + δ)

Γ(z)
= δ ln z +

δ(δ− 1)
2z

+ O(z−2) (A9)

and, thus,

Γ(z)
Γ(z + δ)

= z−δeδ(1−δ)/(2z) + O(z−2) = z−δ

(
1 +

δ(1− δ)

2z

)
+ O(z−2) (A10)

So, the Mellin moment Mc(n) can be represented as

Mc(n) = n−(νc+1)
(

1− νc(1 + νc)

2n

)
+ O(n−2) (A11)

For the PDF fc(x, Q2) we have ((α + 1)→ ν1 + c1s)

fc(x, Q2) = Bc
(1− x)νc+c1s

Γ(νc + 1 + c1s)
eν2−c2s = fc(x, Q2

0)
Γ(νc + 1 + c1s0)

Γ(νc + 1 + c1s)
e−c2s, (A12)

where νc = ν1 − 1. The constant ν2 can be neglected.
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So, finally we have

fc(x, Q2) = Bc
(1− x)νc(s)

Γ(νc(s) + 1)
e−c2s, νc(s) = νc(0) + c2s , (A13)

where

νc(0) = νc + c1s0, Bc = fc(x, Q2)
Γ(νc(0) + 1)
(1− x)νc(0)

ec2s0 (A14)

Appendix A.1. O(n0) Accuracy

At O(n0) accuracy,
γqg = γgq = O(n−1) , (A15)

and, thus, the Q2-evolutions of the singlet quark and gluon densities are not related to
each other.

The corresponding anomalous dimesions have the following form

γa = 8CF

(
ln n + γE −

3
4

)
+ O(n−1), (a = NS, V, qq), γa = 8CA(ln n + γE)− 2β0 + O(n−1), (A16)

and parton densities

fq(x, Q2) = f−(x, Q2) + O(n−1), fg(x, Q2) = f+(x, Q2) + O(n−1), (A17)

have the large x asymptotics

fb(x, Q2) = Bb(s)
(1− x)νb(s)

Γ(νb(s) + 1)
, Bb(s) = Bb(0)e−pbs, νb(s) = νb(0) + rbs , (b = NS, V,±) (A18)

where rb and pb are given in Equations (52).

Appendix A.2. O(n−1) Accuracy

At O(n−1) accuracy,

γqg = −4 f
n

+ O(n−2), γgq = −4CF
n

+ O(n−2),

γqq = 8CF

(
ln n + ĉ− +

1
2n

)
+ O(n−2), γgg = 8CA

(
ln n + ĉ+ +

1
2n

)
+ O(n−2) . (A19)

where ĉ± are given in Equation (53).
Using these results, we have

γ+ = γgg + O(n−2), γ− = γqq + O(n−2), (A20)

i.e., the evolution of the “±”-components is the same as in the previous subsection.
The corresponding projectors have the following form:

α = 1 + O(n−2), β =
K−
n

1
ln n + ĉ

, ε̃ =
K+

n
1

ln n + ĉ
, (A21)

where K± and ĉ are given in Equation (53).
Thus, now the contributions of the initial quarks (gluons) to the final quarks (gluons)

during Q2 evolution are the same as in the previous subsection (see Equation (A18))
but there are additional contributions: initial quarks to gluons and vice versa. The last
contributions have an unusual form ∼ 1

n ln n at large n values.
So, for the Q2-evolutions of the singlet quark and gluon densities we have

fa(n, Q2) = f̂+a (n, Q2
0) e−d+s + f̂−a (n, Q2

0) e−d−s , (A22)
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where

f̂+q (n, Q2
0) = −β fg(n, Q2

0), f̂−q (n, Q2
0) = fq(n, Q2

0) + β f+g (n, Q2
0),

f̂−g (n, Q2
0) = ε fq(n, Q2

0), f̂+g (n, Q2
0) = fg(n, Q2

0)− ε f+q (n, Q2
0), (A23)

Thus, the NS and valence parton densities have the large x asymptotics, shown in
Equation (51) of the main text. For the singlet quark and gluon densities the situation is
different. Their large x asymptotics contain standard contributions: the “+”-component for
the gluon density and the “−”-component for the sea quark density (see Equation (A18),
for example). However, there are also additional parts, ∼K± in Equation (51), coming from
the contributions ∼β and ∼ε in (A23). We will sketch a way to calculate the additional
parts f±(x, Q2) in Appendix B.

Appendix B. Results at Large ν Values

To obtain the results f±(x, Q2) it is convenient to calculate the inverse Mellin transform
of the auxiliary function

fA(n) =
1

nν+2(ln n + a)
. (A24)

To do it, we expand the denominator of fA(n) as

fA(n) =
1

nν+2(ln n + a)
=

∞

∑
m=0

(−1)m lnm n
nν+2am+1 =

∞

∑
m=0

1
am+1

(
d

dν

)m 1
nν+2 (A25)

Since ∫ 1

0
dx xn−2 (1− x)ν+1 ≈ Γ(ν + 2)

(n− 1)ν+1 ≈
Γ(ν + 2)

nν+1 , (A26)

then the function fA(x), which is the inverse Mellin transform of fA(n)

fA(n) =
∫ 1

0
dx xn−2 fA(x) , (A27)

has the form

fA(x) =
∞

∑
m=0

(−1)m

am+1

(
d

dν

)m (1− x)ν+1

Γ(ν + 2)
=

∞

∑
m=0

(−1)m

am+1

m

∑
k=0

Cm
k

(
d

dν

)m−l
(1− x)ν+1

(
d

dν

)l 1
Γ(ν + 2)

. (A28)

In the r.h.s. we will have powers of Polygamma functions

Ψ(ν + 2) =
d

dν
ln Γ(ν + 2), Ψ(m+1)(ν + 2) =

d
dν

Ψ(m)(ν + 2), (m ≥ 0) . (A29)

At large ν-values, Ψ(ν + 2) ∼ ln(ν + 2) and Ψ(m)(ν + 2) ∼ 1/(ν + 2)m, (m ≥ 1). So,
we can neglect contributions from Ψ(m)(ν + 2), (m ≥ 1) and obtain(

d
dν

)l 1
Γ(ν + 2)

≈ (−1)lΨl(ν + 2)
Γ(ν + 2)

. (A30)

So, we have

fA(x) ≈
∞

∑
m=0

(−1)m

am+1

(
ln

1
1− x

+ Ψ(ν + 2)
)m (1− x)ν+1

Γ(ν + 2)
=

1
ln 1

1−x + a + Ψ(ν + 2)
(1− x)ν+1

Γ(ν + 2)
. (A31)

To obtain the contribution ∼K− in Equations (65) and (73), it is convenient to calculate
the following auxiliary integral

I(µ) =
∫ 1

0
dx xµ fA(x) =

∫ 1

0
dx

xµ

ln 1
1−x + a + Ψ(ν + 2)

(1− x)ν+1

Γ(ν + 2)
. (A32)
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Expanding the denominator as in Equation (A25), we have

I(µ) =
∞

∑
m=0

(−1)m

am+1

∫ 1

0
dx xµ

(
ln

1
1− x

+ Ψ(ν + 2)
)m (1− x)ν+1

Γ(ν + 2)
(A33)

As it was shown above in Equations (A28) and (A31) the integral in the r.h.s. has the
following form∫ 1

0
dxxµ

(
ln

1
1− x

+ Ψ(ν + 2)
)m (1− x)ν+1

Γ(ν + 2)
≈ (−1)m

(
d

dν

)m ∫ 1

0
dx xµ

(1− x)ν+1

Γ(ν + 2)

= (−1)m
(

d
dν

)m Γ(µ+ 1)
Γ(µ+ ν + 3)

≈ Ψm(µ+ ν + 3)
Γ(µ+ 1)

Γ(µ+ ν + 3)
. (A34)

So, for the auxiliary integral I(µ) we have

I(µ) ≈
∞

∑
m=0

(−1)m

am+1 Ψm(µ+ ν + 3)
Γ(µ+ 1)

Γ(µ+ ν + 3)
=

1
a + Ψ(µ+ ν + 3)

Γ(µ+ 1)
Γ(µ+ ν + 3)

(A35)

Thus, the results ∼K− for G−g (s) in Equation (65) and for G−g (s = 0) in Equation (73),
can be obtained from (A35) for µ = 1.

To obtain the results (72) it is convenient to consider the following auxiliary integral

Φj(µ, ν) =
∫ 1

0
dxxµρj Ij(σ) (1− x)ν . (A36)

Expanding Bessel function, we have

Φj(µ, ν) =
∫ 1

0
dxxµ

∞

∑
k=0

(ds)k+j

k!(k + j)!

(
ln

1
x

)k
(1− x)ν . (A37)

As it was above in Equation (A34), the integral in the r.h.s. can be rewritten as∫ 1

0
dxxµ

(
ln

1
x

)k
(1− x)ν = (−1)k

(
d

dµ

)k ∫ 1

0
dxxµ (1− x)ν = (−1)k

(
d

dµ

)k Γ(µ+ 1)Γ(ν + 1)
Γ(µ+ ν + 2)

. (A38)

Taking approximations (A29), we have

∫ 1

0
dxxµ

(
ln

1
x

)k
(1− x)ν =

(
Ψ(µ+ ν + 2)−Ψ(µ+ 1)

)k Γ(µ+ 1)Γ(ν + 1)
Γ(µ+ ν + 2)

. (A39)

and, thus, the integral Φj(µ, ν) is equal to

Φj(µ, ν) = ρ
j
µ Ij(σµ)

Γ(µ+ 1)Γ(ν + 1)
Γ(µ+ ν + 2)

, (A40)

where

σµ = 2
√

ds(Ψ(µ+ ν + 2)−Ψ(µ+ 1)), ρµ =
σµ

2(Ψ(µ+ ν + 2)−Ψ(µ+ 1))
. (A41)

The results (72) for Φj(ν) (j = 0, 1) can be obtained from Equation (A40) at µ = 0.

Appendix C. Differential Formulation of KMR Approach

Now we can find the results for TMD parton densities without derivatives. Derivation
of Ta(Q2, k2) is as follows

∂Ta(Q2, k2)

∂ ln k2 = da β0 as(k2) Ra(∆) Ta(Q2, k2), (A42)
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and derivations of conventional PDFs are as follows

∂ fV(x,k2)
∂ ln k2 = β0 as(k2)

{
rV ln(1− x) fV(x, k2)−

[
dV(1− λV) AV e−dV(1−λ)s2(1− x)

+
[
pV + rVΨ(1 + νV(s2))

] BV(s2) x
Γ(1+νV(s2))

+
∗

DV (s2)x(1− x)

]
(1− x)νV(s2)

}
,

∂ fg,+(x,k2)

∂ ln k2 = β0 as(k2)

{
r+ ln(1− x) fg,+(x, k2)−

[[
d̂+ I1(σ2) + d+ I0(σ2)

]
A+

g e−d+s2

×(1− x)mg+ + [p+ + r+Ψ(1 + ν+(s2))]
B+(s2) x

Γ(1+ν+(s2))
+

∗
D+

g (s2)x(1− x)

]
(1− x)ν+(s2)

}
,

∂ fq,+(x,k2)

∂ ln k2 = β0 as(k2)

{
r+ ln(1− x) fq,+(x, k2)

−
[
d̂+ I0(σ2) + d+ Ĩ1(σ2)

]
A+

q e−d+s2(1− x)ν+(s2)+1+mq+

}
,

∂ fq,−(x,k2)

∂ ln k2 = β0 as(k2)

{
r− ln(1− x) fq,−(x, k2)−

[
d− Aq ed−s2(1− x)mq−

+
∗

D−q (s2)x(1− x)

]
(1− x)ν−(s2)

}
,

∂ fg,−(x,k2)

∂ ln k2 = β0 as(k2)

{
r− ln(1− x) fg,−(x, k2)− d− A−g ed−s2 (1− x)ν−(s2)+mg−+1

}
, (A43)

where

∗
D··· (s) =

d
ds

D···(s) , s2 = ln

(
as(Q2

0)

as(k2)

)
, σ2 = σ(s→ s2), ρ2 = ρ(s→ s2) . (A44)

So, the results for the TMD parton densities read the form (84) with
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f (d)V (x, k2, Q2) = β0 as(k2)Tq(Q2, k2)×
{[

dq Rq(∆)− rV ln
(

1
1−x

)]
fV(x, k2)

−
[

dV(1− λV) AV e−dV(1−λ)s2(1− x)

+[pV + rVΨ(1 + νV(s2))]
BV(s2) x

Γ(1+νV(s2))
+
∗

Dv (s2)x(1− x)

]
(1− x)νV(s2)

}
,

f (d)g,+(x, k2, Q2) = β0 as(k2)Tg(Q2, k2)×
{[

dg Rg(∆)− r+ ln
(

1
1−x

)]
fg,+(x, k2)

−
[[

d̂+ I1(σ2) + d+ I0(σ2)
]

A+
g e−d+s2(1− x)mg+

+[p+ + r+Ψ(1 + ν+(s2))]
B+(s2) x

Γ(1+ν+(s2))
+

∗
D+

g (s2)x(1− x)

]
(1− x)ν+(s2)

}
,

f (d)q,+(x, k2, Q2) = β0 as(k2)Tq(Q2, k2)×
{[

dq Rq(∆)− r+ ln
(

1
1−x

)]
fq,+(x, k2)

−
[
d̂+ I0(σ2) + d+ Ĩ1(σ2)

]
A+

q e−d+s2(1− x)ν+(s2)+1+mq+

}
,

f (d)q,−(x, k2, Q2) = β0 as(k2)Tq(Q2, k2)×
{[

dq Rq(∆)− r− ln
(

1
1−x

)]
fq,−(x, k2)

−
[

d− Aq e−d−s2(1− x)mq−+
∗

D−q (s2)x(1− x)

]
(1− x)ν−(s2)

}
,

f (d)g,−(x, k2, Q2) = β0 as(k2)Tg(Q2, k2)×
{[

dg Rg(∆)− r− ln
(

1
1−x

)]
fg,−(x, k2)

−d− A−g e−d−s2 (1− x)ν−(s2)+mg−+1

}
. (A45)
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