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Abstract: Starting from some results regarding the form of the Ricci scalar at a point P in a (particle-
like) spacetime endowed with a minimum distance, we investigate how they might be accommodated,
specifically for the case of null separations, in a as-simple-as-possible quantum structure for spacetime
at P, and we try to accomplish this in terms of potentially operationally defined concepts. In so
doing, we provide a possible explicit form for the operator expressing the Ricci scalar as a quantum
observable, and give quantum-informational support, thus regardless of or before field equations, to
associating with a patch of horizon an entropy proportional to its area.
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1. Introduction

From consideration of the combination of gravity and quantum mechanics several results
from a variety of approaches have pointed to the existence of a lower-limit length [1–10]
(Refs. [11,12] for further references). In recent works an intrinsic discreteness or particle
nature for spacetime has been considered by endowing it with a finite lower-limit length L0,
built [13–15] in terms of a bitensor also called qmetric effectively embodying this. Among
other things, a result has been investigated [14,15] (and Ref. [16] for null separations)
consisting in that the Ricci scalar R(q) in the qmetric at a point P does not approach R in
the L0 → 0 limit and has the nature of kind of multivalued quantity, somehow dependent
on how we happen to probe spacetime curvature at P. The persistence of the effect in the
L0 → 0 limit, is telling that the structure we get in the L0 → 0 limit (i.e., from a physical
point of view, when the effects of a L0 6= 0 are undetectably small) is not what we have
with L0 = 0 (i.e., ordinary spacetime).

Such features, far from being a mathematical accident of the model, are found to
unavoidably arise once very basic conditions are met (as the fact that for large separations
the qmetric bitensor qab provides distances which agree with what is foreseen for ordinary
metric, and the well-posedness of the Green’s function of the D’Alembertian in the qmetric)
after input is taken from physics through the requirement of existence of a non-vanishing
lower-limit length.

We speculated then that this might be accommodated by assuming that embodying
a non-vanishing L0 goes hand in hand with requiring an underlying (finite-dimensional)
quantum structure for spacetime at P, a consistent description of which would demand on
one side a constraint on the metric in the large scale (in the form of field equations) [17],
and on another side the existence of some, not better specified up to this stage, quantum
operator R̂, corresponding to the observable Ricci scalar, with expectation value R on the
maximally mixed state [18].

The aim of present study is to try to investigate further this quantum space that such
intrinsically discrete or particle-like spacetime might possess at P. This, first of all trying to
characterize its states, and then finding an explicit expression for the quantum operator
R̂ acting on them. We specifically restrict consideration to the qmetric for null separated
events, as in [17,18] on which we elaborate.

Since the multivaluedness of R(q) mentioned above comes about when trying to probe
the Ricci scalar reaching P along different geodesics [14–16], a further exploration of this
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fact seems to naturally hint to operational notions/procedures. This apparently suggests
that a proper framework for further progress might be the consideration of gravity in
an as-much-as-possible operational setting, that is in terms of information acquired by
physical bodies.

Much progress has taken place in recent times concerning an operational character-
ization of gravity, in particular regarding the formulation of the equivalence principle,
which is at the heart of general relativity, in quantum operational terms, namely with
quantum theory considered first of all as a means of information processing. This has
been specifically addressed in [19–21], with emphasis in this last work on considering
quantum reference frames as something corresponding to real quantum systems (rather
than abstract quantum coordinates) as explicitly described in [22]. On top of this, starting
from [23,24] several operational procedures have been devised, which might allow in a not
far future a direct experimental verification of a quantumness, or non-classicality at least,
of the gravitational field, or, quite on the contrary, to rule out any quantum superposition
of gravitational fields, along what envisaged in [25].

Also, the strong case has been made that the quantum space which ought to de-
scribe gravity is locally finite-dimensional [26], this essentially arising from the Bekenstein
bound [27]. On the other hand, finite-dimensional quantum mechanics has been shown to
be entirely derivable from a few axioms of general operational theories [28–32].

All this, suggests that in the operational methods there might be all the ingredients
needed for a new, deeper-level understanding of the quantum spacetime at a point. This
paper is meant as a tentative step in this direction building on the results with qmetric.

2. Quantum Spacetime at a Point: Null States

As mentioned, spacetime endowed with a minimum-length L0 exhibits in the small
scale a peculiar structure at any event P related to the fact that the qmetric Ricci scalar R(q)
does not tend to the ordinary Ricci scalar R in the L0 → 0 limit. In particular, the limit value
depends on the direction of approach to P. This is puzzling because the Ricci scalar ought
to be determined completely by the assigned spacetime when giving P (with no need of
further specifications at P); to be sure this ought to be the case at least when L0 → 0, limit
in which all dependence on the direction along which in the qmetric we postulated the
existence of an L0 6= 0 goes to be lost. In this limit one would expect R(q) to not depend on
the direction of approach and to definitely be R, but as a matter of fact this is not the case.
A crucial further feature observed in the Ricci scalar of the qmetric is that if we average the
obtained limiting values of R(q) over the possible orthogonal directions we do get R.

It appears here sort of similarity between the just described results and what we
would get if we went to measure a quantum observable corresponding to the Ricci scalar at
(classical) event P with probes reaching P along orthogonal directions, each measurement
possibly consisting in taking the expectation value of quantum Ricci according to some
suitable state. The purpose of the paper is to try to investigate this similarity and possibly
turn it into something more definite and workable on. As we will see below, this is done by
introducing an abstract, finite-dimensional Hilbert space H attached to (classical) event P,
capable of describing all the states of qmetric spacetime at P as well as the observables at P,
specifically the Ricci scalar.

Having this finite-dim Hilbert space reproducing qmetric results might be enough in
that d-dimensional Hilbert spaces with assigned finite d are all equivalent to each other. But,
which is the physical system which these states are supposed to refer to? It is generically
“the spacetime at P” as probed by that congruence. But this entails a reference body A
(the observer) and a test body B reaching P along the possible geodesics, both generically
quantum. We see on one hand minimum length results hint at a kind of microstructure
for spacetime, on the other the probing of this possible microstructure means to resort to
observers and test bodies. This quite naturally leads to join the minimum-length results
with an operational view of gravity.
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Following Einstein himself, we consider a point P in spacetime not merely as a math-
ematical entity in an abstract manifold, but as something physically defined by some
crossing or coincidence event among material bodies. In the same spirit, and following the
emphasis drawn on this for a long time now (see [33]), we consider as reference frames not
merely a set of local coordinates, but actual bodies, quantum bodies since we are going
to a small scale, in terms of which the motion of other quantum bodies, the test particles,
is described. Point P is regarded as a coincidence event involving a material reference
frame (system A), generically, but not necessarily, part of the matter which sources the
gravitational field, and a test particle (system B). In general, we can assume that both the
reference body and the test particle give, if any, only a slight perturbation of the field; this,
in the perspective of performing measurements disturbing as little as possible. It is clear
however that in the vacuum this cannot apply: in this case, the material frame and the test
particle are non-negligible sources of the field which is measured at P.

In fact, what we would like to do is to explore this way the short scales (in principle,
down to the Planck scale), and going to very short scales implies test and/or reference
particles of very high momentum, whose own field we can naively expect to definitely
dominate at P even in the presence of matter as a source. This would apparently deprive of
any possibility of success the attempt to measure in the short scale the properties of a given
configuration at P.

We have to consider however that, as we will see in more detail below, the departure
from the classical result in the expression of Ricci scalar in the qmetric, is at leading order
insensitive to the value of L0. The physical effects we want to study in this work are exactly
this ‘something’ which is present due to an L0 6= 0, and yet stays unchanged from an
L0 (relatively) large down to an L0 vanishingly small. To try to investigate which might
be the characteristics of this ‘something’, we assume we can operationally probe it; this
is what we are supposing in this work. This amounts to assume that L0, which is a free
parameter of the model, is (relatively) large. We have to bear in mind however that with
this we are not saying that L0 is necessarily (relatively) large: we are only taking advantage
of a not exceedingly small L0 to study some possible consequences of an effect which is
scale-independent in the small scales.

How large might L0 be taken? We will see that, concerning the qmetric taken alone, a
relevant reference scale is LR = 1/

√
Rablalb (with Rab the Ricci tensor and la the tangent

to the geodesic under consideration), kind of curvature length scale much larger than the
Planck scale. We can consider scales ` � LR for L0 (but with still ` � LPl) and as test
particle e.g., a photon with wavelength l ∼ `, such that the energy density ργ of the photon
(in a cube of edge `) is ργ � ρs where ρs is the source at P of the field. This is for sure
possible if e.g., the source of gravitational field are massive particles.

We emphasize however that the configuration we are considering, even if with an
operational flavor, is in the form of a gedankenexperiment. What we are using is a theo-
retically viable setup to highlight some consequences of the qmetric approach. The actual
feasibility of it is another story. As for the latter, the absence of any signal of a L0 6= 0
at Large Hadron Collider, suggests indeed to take L0 < 1/10 TeV−1 = 2.0 · 10−5 fm
(cf. [34]) (which is in the intermediate scales ` above). This means that as body A we
need mass-energies m > 10 TeV and we have to approach A at ≈ fm scales (thus A has
to be structureless at these energies). To meet these conditions in a controlled way we
have to think to colliders, and we can generically expect that the theoretical phenomenon
described here might have chances of actual experimental scrutiny as soon as signs of a
L0 6= 0 become visible at colliders.

Summing up, what we do here is –leaving for the moment the actual experimental
verification apart– to describe the spacetime at P with the qmetric with L0 in the inter-
mediate range mentioned above. And the physical system to which the Hilbert space
above refers (namely the spacetime at P) ought to be the composite system made up of
A (material reference body or observer) and B (test particle). From basic principles of
quantum physics [35] we have then that this Hilbert space H is the tensor product A⊗ B,
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denoting for simplicity of notation with the same letter the state space and the system to
which it refers in each case.

To proceed, we have to specify the states of A and B and of H = A⊗ B. To this aim
let us first recall in some more detail the results obtained through the qmetric which we
would take advantage of in guessing for a quantum description.

As mentioned in the introduction, we here consider the case of null separations. This
implies that, in the consideration of the Ricci scalar we are restricting attention to spacetimes
(including reference body + test particle, or from these two alone in case of the vacuum)
such that a congruence of null geodesics in all spatial directions from P has in it all what is
needed to fix the Ricci scalar R at P (in spite of being the congruence short of one dimension
as compared to the spacetime M) [16]. In these circumstances, using a congruence of null
geodesics emerging from P parameterized by length according to a local observer at P
which plays the role of reference system A, from the relation (M D-dimensional)

R =
D−1

∑
i=1

Rab la
i lb

i, (1)

for L0 small we definitely get [18]

1
D− 1

D−1

∑
i=1

R(q), la
i ,L0

= R

=
1

D− 1

D−1

∑
i=1

R(q), la
i
. (2)

Here, Rab and R ≡ gabRab are the (ordinary-metric) Ricci tensor and Ricci scalar at P
(quantities denoted without index (q) refer to ordinary metric); la

i is the (null) tangent
vector at P to the geodesic i, with the geodesics taken in spatial directions orthogonal to
each other; and [16]

R(q), la ,L0
= (D− 1) Rablalb +O

(
L0

LR
Rablalb

)
(3)

is the qmetric Ricci scalar at P as probed through geodesic with tangent la at P with L0 being
the minimum length which characterizes the qmetric spacetime and the magnitude of high
order terms taken from [17]; R(q), la ≡ limL0→0 R(q), la , L0

. We see that, as anticipated above,
the leading term does not depend on L0 and the high order terms are smaller by a factor
L0/LR, involving the length scale LR. As mentioned, Equation (3) shows that a same entity,
the qmetric Ricci scalar at P, happens to take different values depending on through which
geodesic we look at it; and this might be interpreted [17,18] as suggesting that the qmetric
spacetime at P should be regarded as a superposition of spacetimes, each with its own
metric, a characteristic non-classical feature. As repeatedly noticed, this phenomenon arises
in a minimum-length L0 6= 0 description, yet persists virtually unaltered in the L0 → 0
limit. It clearly stays there when (reduced) Planck’s constant h̄→ 0 in case L0 is something
different from the Planck length LPl with L0 6= 0 when h̄→ 0. But this happens also even
if we think of L0 as vanishing with h̄, like e.g., if it is something proportional to Planck
length, L0 = C LPl = C

√
Gh̄/c3 with C a constant (and G and c Newton’s constant and

speed of light in vacuum), which gives L0 → 0 when h̄→ 0. This non-classical structure of
spacetime is thus something that, when spelled out in particular in quantum terms, is in
any case apparently not O(h̄), with the meaning that it is not vanishing when assuming
a vanishing h̄. It looks like having a status akin to Bell’s inequalities. All this seems to
resonate with the results [23,24,36], specifically in the description provided in [37].

Relation (2) exhibits the value of the classical Ricci scalar R as an average over D− 1
qmetric terms. One way to look at this [18], is to take it as suggesting reference to a (D− 1)-
dimensional quantum space (Hilbert space corresponding to D− 1 perfectly discriminable
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states), with Equation (2) expressing the expectation value of the Ricci scalar, considered as
a quantum observable, on the maximally mixed state. We try here to bring this perspective
a little further.

Let us consider this quantum space as the (D − 1)-dimensional Hilbert space
H = A ⊗ B describing the quantum states (of the system consisting of the spacetime
at P) associated to null directions at P. That is, rooted in the just considered similarities, the
assumptions in building H are: (i) H is finite dimensional, the dimension being that of the
(sub)manifold swept by the congruence of geodesics used to probe spacetime around P
(this is D− 1 where D is the dimension of spacetime, since we use a congruence of null
geodesics from P); (ii) we take (spatially) orthogonal directions as associated to perfectly
distinguishable states, thus to states orthogonal according to the internal product of the
Hilbert space.

We then construct H as follows. Denoting L = {ka at P : ka null and future directed},
we introduce a correspondence f : ka = (k0,~k) 7−→ |~k〉 from L to an abstract (D − 1)-
dimensional Hilbert space with internal product 〈·|·〉. For la

i = ea
0 + ea

i = (1,~ei),
i = 1, . . . , D − 1 (here and hereafter i, j label vectors of the base; ea

0 is unit timelike),
this gives f (la

i) = |~ei〉 ≡ |i〉. We introduce H as the abstract (D− 1)-dimensional Hilbert
space with internal product 〈·|·〉, obtained as the complex span of the elements |ei〉 = f (la

i),
i = 1, . . . , D− 1, these being coinceived as pure states defined to be orthonormal according
to 〈·|·〉. This implements the view that, as for the system consisting of the coincidence at P
(i.e., of the composition of the reference body A and the test particle B) the spatial direction
associated to a vector la

i is exactly definite, and is thus represented by a pure state, i.e., by
a vector in H.

The bijective correspondence f : L→ H is not a correspondence between vector spaces
(L is not a vector space). This ought not to be a problem however, provided no incongru-
ences arise in any linear operation in L which maps L to itself; in this case, what we have
to require is that the corresponding operation in H brings to a vector ~k′ which is precisely
the image through f of the vector k′a we have got in L as a result of the operation. This
however is of course guaranteed by the fact that the vector~k is part of the vector ka and
thus any linear operation on ka which brings to a vector k′a ∈ L involves a linear operation
which brings from~k to exactly the component ~k′ orthogonal to ea

0 of the vector k′a. This
happens in particular for the case of scalar multiplication by η ≥ 0, and for rotations in the
subspace orthogonal to ea

0; for both, one easily verifies that the vector one gets in H is the
image of the vector we get in L, indeed

η f (ka) = η|~k〉 = |η~k〉 = f (ηka), (4)

and

Q f (ka) = Q|~k〉 = |Q~k〉 = f
(
Q̃ka) (5)

where Q̃ = (1, Q) with Q a (D− 1)× (D− 1) orthogonal matrix expressing a rotation in
the subspace orthogonal to ea

0.

3. A Quantum Observable for the Ricci Scalar

In the previous section, we established a correspondence between null vectors ka of the
local frame of coincidence event P and vectors of the Hilbert space H, with every element
of L represented in H this way. Our next task is now to be able to describe the Ricci scalar
as a quantum observable, namely to express it in the form of a Hermitian operator R̂ of H.

The results [17,18], have hinted to that the quantity R(q), la ,L0
in (3), or its L0 → 0 limit

form R(q), la = (D − 1)Rablalb, might be taken as the output we get from a probe of the
Ricci scalar through a geodesic with tangent la at P, this in turn tentatively giving kind of a
yet to be precisely defined expectation value on the maximally mixed state coinciding with
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the ordinary Ricci scalar R at P. This exhibits expression (2) as a potential candidate from
which to start trying to infer an expression for R̂.

Looking at it, from what we did so far it becomes quite natural to think of simply
replacing the null vectors la

i in the terms

R(q), la
i
= (D− 1) Rab la

i lb
i, (6)

in (2), with their quantum counterparts in H, leaving Rab as it is. This corresponds to the
presumption that the quantum nature ascribed to the (quantum) Ricci scalar might be
captured in the simplest manner by resorting to the null quantum states as replacing the
null fields, as well as by the occurrence of the factor (D− 1).

Inspecting however the terms Rab la
i lb

i or, more generally, quantities of the kind
Rab la

i lb
j, we see that even in this as-simple-as-possible prescription we have to face the

problem of how to express the sums over indices a and b in terms of vectors of H. Essentially
the problem is that of being able to manage the time component l0

i of la
i, that is terms of

the kind R00l0
il0

j or R0αl0
ilα

j (α = 1, . . . , D− 1, and in the expression we have implicit sum
on the repeated index α).

Since the vector la
i = (1,~ei) gets mapped into the state vector |i〉, we do this by

introducing the symbol

|la
i〉 ≡

(
|i〉, 0, 0, . . . , |i〉, 0, . . . , 0

)
= la

i |i〉 (7)

(no sum on repeated i implied). It denotes a string of D (dimension of spacetime) vectors of
the Hilbert space. Index a selects the place in the string (a = 0, 1, . . . , D− 1); the first entry
in the string, the time component in index a, has the state vector defined by the remaining
entries (the space components in index a) (in (7) then the same state vector |i〉 appears both
in place a = 0 and a = i). In general, for la = (1, k̂) null (k̂ versor), we have

|la〉 ≡
(
|~k〉, k1|1〉, k2|2〉, . . . , kD−1|D− 1〉

)
. (8)

Using this, we can write the quantum observable representing the Ricci scalar as

R̂ ≡ (D− 1)
D−1

∑
i,j=1

Rab|la
i〉〈lb

j|

= (D− 1)
D−1

∑
i,j=1

Rab la
i lb

j |i〉〈j|. (9)

Notice that the operator R̂ is real symmetric, then Hermitian.
The cases of Ricci-flat and of Einstein spacetimes are in view of this result somehow

special or peculiar, in that the curvature operator R̂ we get from (9) is for them identically
0. As a matter of fact the qmetric Ricci scalar turns out to coincide with the ordinary Ricci
scalar for Ricci-flat spacetimes (and also for Einstein spacetimes in the case of the qmetric
based on null separations). We notice however that, while this surely deserves further
understanding, it seems to have little effect in a context in which the spacetime is probed
operationally with a reference body (and a test particle). The stress-energy tensor of the
reference body itself generically guarantees indeed Rab 6= 0 and Rablalb 6= 0 at P (both in
case it is the only matter present and apparently also if it is part of the source distribution
(an exception being the cosmological fluid, namely interpreting the cosmological constant
effects as due to a fluid with p = −ρ)).
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Calculating the expectation value of R̂ over the maximally mixed state χ = 1
D−1 ∑D−1

i=1 |i〉〈i|
of H, we get

〈R̂〉χ = tr
(
Ø R̂

)
=

D−1

∑
i=1

1
D− 1

tr
(
|i〉〈i|R̂

)
=

D−1

∑
i=1

1
D− 1

〈i|R̂|i〉

=
D−1

∑
i=1

Rab la
i lb

i

= R, (10)

where the second equality is from the linearity of the trace, and the last from Equation (1).
Clearly the expectation value is the same whichever is the basis we can have chosen for H.
We mentioned that the multivaluedness of R(q), with the value depending on the geodesic
with which we reach P, can be interpreted as suggesting that the spacetime at coincidence
P can be interpreted as a superposition of geometries. The value we obtain, namely the
ordinary Ricci scalar R at P, fits then with what one would expect from randomly probing
the quantum Ricci scalar with a flat distribution in direction. The operator R̂ as defined by
(9) would be thus a possible explicit expression of a quantum observable corresponding to
the Ricci scalar along the lines envisaged in [18].

Since R̂ is Hermitian on a finite dimensional Hilbert space, from the spectral decompo-
sition theorem (see e.g., [38]) we know it is diagonalizable. Being it real, this is accomplished
by an orthogonal matrix Q. We have

R̂ =
D−1

∑
i′=1

λi′ |i′〉〈i′| (11)

i′ = 1, . . . , D− 1, with

|i′〉 =
D−1

∑
i=1

Qi′i|i〉, (12)

and correspondingly

~ei′ =
D−1

∑
i=1

Qi′i~ei. (13)

The eigenvalues λi′ are given by

λi′ = 〈i′|R̂|i′〉

= (D− 1)
D−1

∑
i,j=1

Rab la
i lb

j 〈i′|i〉〈j|i′〉

= (D− 1)
D−1

∑
i,j=1

Rab la
i lb

j 〈i|i′〉〈j|i′〉

= (D− 1)
D−1

∑
i,j=1

Rab la
i lb

j Qi′i Qi′ j

= (D− 1) Rab la
i′ l

b
i′ . (14)
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Here, the third equality comes from being 〈i′|i〉 real, which gives 〈i′|i〉 = 〈i|i′〉; the last from

D−1

∑
i=1

Qi′i la
i =

(
1,

D−1

∑
i=1

Qi′i~ei

)
= (1,~ei′) = la

i′ . (15)

Equation (14) exhibits the λi′ ’s as the quantities R(q), la
i′

we find for geodesics with tangent
la

i′ at P such that la
i′ is la

i rotated by the matrix (1, Q) with Q that same matrix which
describes the rotation from the basis {|i〉} to {|i′〉}.

Notice that, when diagonalizing R̂, we change the basis in H not the local frame
at P. What happens in the tangent space at P is that we move from the vectors la

i to
the vectors la

i′ . Then, each single term Rab la
i lb

i goes into Rab la
i′ lb

i′ and changes in this
operation (by contrast with what we would get were our operation a change of local frame:
Rab la

i lb
i 7→ Ra′b′ la′

i lb′
i = Rab la

i lb
i).

Equation (11) can be read as R̂ = ∑D−1
i′=1 λi′Pi′ , where the operator Pi′ is the projector

onto the (1-dim) eigenspace of R̂ with eigenvalue λi′ . These operators are orthogonal to
each other and form a projected-value measure of the observable R̂. From basic tenets of
quantum mechanics, in a measurement of R̂ immediately after another one which gave as a
result λi′ , we have to find again λi′ with certainty.

When reaching P we can generically expect to become maximally uncertain about
the direction of approach. Looking at the expression (14) for λi′ as glimpsed through the
qmetric, things go like if, when reaching P, a direction, that corresponding to a specific |i′〉,
is chosen at random. The quantum behaviour would be in that when approaching P we
become maximally uncertain about the direction of approach, and in that the measurement
of R̂ consists in extracting a random direction among those corresponding to the (D− 1)
eigenvectors |i′〉.

Another probe of R̂ at P immediately after, would correspond to a new random
extraction of direction. Still, quantum mechanics requires for the new measure that same
eigenvalue λi′ . This in itself poses a difficulty, because, if the extraction is random, we will
in general expect |i′′〉 6= |i′〉.

At this stage, one possibility might be to hypothesize, somehow by fiat, that the new
pick of direction is, for a system already probed, no longer at random. Another one, figured
in [17], would be to allow that the pick of direction is still at random (according to what one
would basically expect from quantum mechanics), but a specific mechanism, related to that
the system has been already probed, would prevent from getting a result different from
what already obtained. The mechanism would be in terms of a constraint on Rab, and then
on the metric, and would involve endowing matter with the capability to affect curvature,
in such a way that matter could undo the variation of the curvature one would get when
going from λi′ to λi′′ 6= λi′ . The system would keep this way for the Ricci scalar the value
λi′ already obtained, and then as a matter of fact would keep staying in the eigenstate
|i′〉. Interestingly, the mechanism takes the form of field equations for the metric gab thus
possibly providing a quantum foundation for them.

Let us take stock for a moment. What we have reached so far is that, building on
qmetric results, it seems we can construct a finite-dimensional Hilbert space describing
the quantum states of the gravitational field (the metric) at an event P, and we have given
the explicit form of an operator representing in this space the Ricci scalar. This might be
something interesting, in that there are several proposed quantum descriptions of gravity,
but they in general do refer to regions of spacetime. The peculiarity here is instead to
consider gravity in circumstances in which these regions shrink (classically) to a point.

This result might be expected, at least according to some perspectives as e.g., Ref. [26]
we mentioned, which do maintain that the number of gravitational degrees of freedom in
a local region ought to be finite, and ask for what is the finite-dimensional Hilbert space
describing them. In this paper this is attempted in the limit of these local regions shrinking
to a point making use of minimum-length results. This can be considered in a sense as a
sort of explicit implementation of the ideas of [26] exploiting the fact that with spacetime
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endowed with a minimum-length we have something which in the small scale hints to a
quantum structure.

4. Description in Terms of Component Subsystems: Entropy

In the previous sections we have considered a point P in spacetime as a coincidence
event involving two physical systems: a reference body (system A) and a (lightlike) test
particle (system B). To accommodate the results of minimum-length metric regarding the
Ricci scalar, we found then appropriate to describe the physics of the spacetime at P in
terms of the composite system A⊗ B, with states described by the (finite-dimensional)
Hilbert space H. Our aim here, is to try to gain some description of the states of H in terms
of the states of the component subsystems.

As one of the hallmarks of quantum theory, we know that pure states of a composite
system can correspond to reduced states for the component systems which turn out to
be mixed. Each state |ψAB〉 is meant to describe a situation in which the direction at P
is exactly given, and the state is accordingly pure. Beside |ψAB〉, we consider the states
ρA = trB |ψAB〉 of system A and ρB = trA |ψAB〉 of B we get when tracing out in each of the
cases the other system.

The physical situation we would consider is the following: given circumstances in
which the test particle reached P along a definite direction, we would like to describe the
record of this in system A regardless of B and vice-versa. The idea is that, even if the
direction at P is exactly given for the coincidence, namely for A⊗ B, this might no longer
be true for A and B taken separately. In other words, and focusing the discussion on A
(given its role as reference system), it might not be true that, after the test particle reached
P, in the reference frame at P its arrival direction is known exactly.

We ask: does the existence of a minimum-length for spacetime–property which, we
have seen, might suggest a quantum description for the system of the coincidence at P–
allow to make definite statements also regarding the states of the reference body A? To
address this question let us define more precisely what may be meant, from an operational
point of view, that the system A finds the lightlike test particle along some direction~k and
thus with tangent to the worldline la = (k,~k) (k ≡ |~k|).

Imagine that the measurement of direction is done say from the track left by the test
particle in A, taken this as some kind of spherical detector, when going to the coincidence
limit P′ → P, i.e., λ → 0, with P′ the point at which the test particle is at λ, which is
the affine parameterization of geodesic such that la = dxa/dλ (xa local coordinates) and
P′|λ=0 = P. Assume that A is characterized by some angular resolution and that this is
captured in terms of some small solid angle Ω(D−2) along any given spatial direction (the
same in any given direction).

According to A, geodesics are straight lines in its Lorentz frame. At some assigned
λ, A takes samples in a small solid angle Ω(D−2) in any direction; corresponding to the
direction at which the signal results maximized (maximum number of hits in the small solid
angle in that direction) A takes every straight line from P to points in the area Ω(D−2)λ

D−2

at λ as a geodesics possibly describing the track of the test particle; this is the estimate
A gives of the actual geodesic of the test particle, based on the hits at λ and on angular
resolution Ω(D−2). When shrinking Ω(D−2) (ideally even approaching 0) it obtains a better
estimate, and when doing this with λ → 0 A finally gets its measurement of the arrival
direction at P.

Beside the area Ω(D−2)λ
D−2, we consider the ((D− 2)-dim) area a transverse to the

direction of motion of the test particle at any given λ caught by the set of geodesics from P
in the small solid angle Ω(D−2) according to the actual metric (at this stage, still unknown
to A); these geodesics define a = a(λ) along the particle trajectory down to P.

What we would like to point out is that whenever it happens that

a < Ω(D−2)λ
D−2, (16)
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as we expect for curved spacetime assuming null convergence condition holds, this signals
that in a measurement by A characterized by the solid angle Ω(D−2) there is presence
of spurious geodesics, namely of geodesics which A takes as geodesics that trustworthy
represent the direction of the test particle within Ω(D−2) but that actually do not. This
can be regarded as the presence of a probability p 6= 0 that the geodesics taken by A as
representatives within Ω(D−2) of the true geodesic are in reality not reliable for this.

We can try to define more precisely p as follows. We know the van Vleck determinant
∆ = ∆(P′, P) [39–42] (see also [43–45]) is the ratio of density of geodesics from P at P′

between the actual spactime under scrutiny and what would give the flat case [44]. Indeed,
from the relation

θ =
D− 2

λ
− d

dλ
ln ∆, (17)

where θ = ∇blb = 1
a

da
dλ is the expansion of the congruence, we get

ln
a

λD−2 = − ln ∆ + C (18)

with C a constant, which the consideration of flat case identifies as C = ln Ω(D−2). This is

a
Ω(D−2)λ

D−2 =
1
∆

. (19)

We thus interpret a < Ω(D−2)λ
D−2 as the presence of a probability

p(λ) ≡
Ω(D−2)λ

D−2 − a
Ω(D−2)λ

D−2

= 1− 1
∆

> 0 (20)

for the geodesics within Ω(D−2) to be mistakenly taken as a guess to the actual geodesic
of the test particle. Clearly, all this makes sense as far as there is no caustic along γ in
the interval we are considering; we can think this is always satisfied provided we take λ
small enough.

Notice that p turns out to be independent of Ω(D−2). This implies that if circumstances
are such that p 6= 0, i.e., we are mistakenly guessing to some extent, this is something which
cannot be cured on improving in angular resolution (i.e., on taking a vanishing Ω(D−2)).

To characterize things at P, we have to consider the λ → 0 limit. From the expan-
sion [43]

∆1/2(P′, P) = 1 +
1
12

λ2Rablalb + λ2O
(

λ

LR
Rablalb

)
(21)

(with the expression for the magnitude of higher order terms taken from [17]), where
Rablalb is evaluated at P and, we recall, LR ≡ 1/

√
Rablalb is the length scale proper, for the

given la, of the assigned curvature at P, for λ small we get

p =
1
6

λ2Rablalb + λ2O
(

λ

LR
Rablalb

)
, (22)

which, we see, gives p→ 0 when λ→ 0. That is, there is no ineliminable probability to be
mistakenly guessing the actual geodesic of the test particle starting from the track.

We can now proceed to inspect what happens to this in a spacetime endowed with
a limit length. From the mere fact that such a spacetime foresees the existence of a non-
vanishing area orthogonal to the separation in the limit of coincidence P′ → P between the



Particles 2022, 5 436

two points ([46–49] for null geodesics), we can expect that something deeply different is
going on in this case.

The minimum-length metric qab(P′, P) with base at P and for P′ null separated from P
is [48]

qab = A gab +
(
A− 1

α

)
(lanb + nalb),

where la is the tangent to the null geodesic γ connecting P and P′ and na null is
na = Va − 1

2 la with Va the velocity of the observer at P (i.e., of the reference system
A) parallel transported along the geodesic. All these vectors are meant as considered at P′.
The quantities α and A are functions of λ given by

α =
1

dλ̃/dλ

and

A =
λ̃2

λ2

(
∆
∆̃

) 2
D−2

,

where λ̃ is the qmetric-affine parameterization of γ expressing the distance along γ from P
as measured by the observer with velocity Va, with λ̃→ L0 in the coincidence limit P′ → P.
Here ∆̃(P′, P) ≡ ∆(P̃′, P), where P̃′ is that point on γ (on the same side of P′) which has
λ(P̃′, P) = λ̃.

In the qmetric, the expansion θ(q) is [48,49]

θ(q) = ∇(q)
a la

(q)

= α
[
θ + (D− 2)

d
dλ

ln
√
A
]

=
D− 2

λ̃
− d

dλ̃
ln ∆̃. (23)

Here, la
(q) = (d/dλ̃)a = α la is the tangent to the geodesic at P′ according to the qmetric-

affine parameterization λ̃ and the qmetric covariant derivative has the expression∇(q)
b va

(q) =

∂b va
(q) + (Γa

bc)(q) vc
(q) for any qmetric vector va

(q), with the qmetric connection given by

(Γa
bc)(q) = 1

2 qad(−∇dqbc + 2∇(b q c)d) + Γa
bc [50] where qab (from qacqcb = δa

b) is
qab = 1

A gab +
( 1
A − α

)
(lanb + nalb).

From θ(q) =
1

a(q)

da(q)
dλ̃

(where a(q) is the (D− 2)-dim transverse area according to the

qmetric), following the same steps as above with λ̃ and a(q) replacing respectively λ and a,
Equation (23) gives

a(q)
Ω(D−2)λ̃

D−2
=

1
∆̃

, (24)

analogous to Equation (19).
Then, we interpret a(q) < Ω(D−2)λ̃

D−2 as a probability

p(λ) ≡
Ω(D−2)λ̃

D−2 − a(q)
Ω(D−2)λ̃

D−2

= 1− 1
∆̃

> 0 (25)
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to be mislead in taking the geodesics within Ω(D−2) as a guess to the actual geodesic of the
test particle.

Using (22), for λ̃� LR (i.e., we are assuming to be close to the coincidence, and that
curvature is not too big and we can have L0 � LR) this gives

p(λ) =
1
6

λ̃2Rablalb + λ̃2O
(

λ̃

LR
Rablalb

)
. (26)

At P, namely in the λ→ 0 limit, we see that

p0 ≡ lim
λ→0

p(λ)

= 1− 1
∆0

=
1
6

L0
2 Rablalb + L0

2O
(

L0

LR
Rablalb

)
6= 0, (27)

where ∆0 ≡ ∆̃|λ̃=L0
. Correspondingly,

a(q) =
(
1− p(λ)

)
Ω(D−2) λ̃D−2

=
1
∆̃

Ω(D−2) λ̃D−2 λ→0−→ 1
∆0

Ω(D−2) L0
D−2 = a0, (28)

with a0 the limit (D− 2)-dim orthogonal area [47–49] in the solid angle Ω(D−2).
We see, Equation (27) may be interpreted as showing that, in a spacetime with a

minimum-length, the reference body A has an ineliminable probability p0 6= 0 to be
mistakenly guessing the actual geodesic at the coincidence P. We can understand this as
follows. Let us take a direction~k as exactly known for the coincidence, and thus described
by the pure state |ψAB〉 = |~k〉 of A ⊗ B associated to the null tangent la = (k,~k). If A
takes a measurement at P along this direction~k, the outcome is not deterministic, even
were the measurement performed with infinite accuracy. Indeed, at ideal experimental
conditions still there is a probability p0 that the system is found in a state |α′〉 6= |α〉, where
|α〉 is the (pure) state of A with direction the assigned~k and |α′〉 is the outcome pure state
corresponding to the ideal measurement of direction performed by A. In other words, the
state ρA of A corresponding to |ψAB〉 would be, prior to the measurement, the mixed state

ρA = trB|ψAB〉
= (1− p0) |α〉〈α|+ p0 ρ′A, (29)

where the density matrix ρ′A on the Hilbert space of A has support in the vector space
orthogonal to |α〉.

Summing up, this result can be expressed as follows. The observer A is supposed
to measure the arrival direction of an incoming photon B nominally coming along some
(null) direction la (p→ P along geodesic with tangent la at P). Because of the existence of a
finite limit area transverse to la, there is an unavoidable (that is, present even assuming
perfect resolution for the measuring apparatus) nonzero probability p0 that A is mistaken
in measuring the actual arrival direction of photon B arriving along la. The observer has
thus a probability (1− p0) to be correct in guessing the arrival direction and a probability
p0 to be not.

On the basis of this we can do a little step more in trying to understand the meaning of
a p0 6= 0. We ask what is the average gain of information G by A in guessing with perfect
resolution the arrival direction of the photon nominally arriving along la. We know it is
given by the probability of correct guessing times the info associated to that guessing + the
probability of incorrect guessing times the info associated to that other guessing (cf. [38]).
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The infos here are log(probabilities) as we require that the info gained in the occurrence
of two independent events is the sum of the infos of each event taken alone. We want
moreover that the less probable is an outcome, the greater is the gain of information we
have in actually getting it. Normalizing to have G = ln n in case of n different, equiprobable
outcomes, we have [38] G = (1− p0) ln(1/(1− p0)) + p0 ln(1/p0), which is the Shannon
entropyH(1− p0, p0) (in base e) of the two-outcome probability distribution (1− p0, p0).

A meaning for p0 = p0(la) can be drawn from the first term I = I(la), expressing the
average gain of info in correct guessing, of the just given expression for G,

I(la) = (1− p0) ln
1

1− p0
(30)

(this same term is present also in the expression of von Neumann’s entropy S(ρA) of state ρA

of (29) (cf. [38]): S(ρA) = H(1− p0, p0) + (1− p0)S(|α〉〈α|) + p0S(ρ′A) = H(1− p0, p0) +
p0S(ρ′A) = (1− p0) ln(1/(1− p0)) + p0 ln(1/p0) + p0S(ρ′A), where second equality is
from being |α〉〈α| pure). Indeed, in the p0 � 1 limit it reduces to

I(la) = (1− p0)
(

p0 +O(p0
2)
)

= p0 +O(p0
2)

=
1
6

L0
2 Rablalb + L0

2O
(

L0

LR
Rablalb

)
, (31)

where in the last equality we used the explicit expression of p0 from (27).
We see p0 ' I(la) for p0 small, and thus p0 has the meaning of average gain of

information by A in correct guessing of arrival direction (or correct guessing of state |α〉
in von Neumann entropy’s description). Point is that with perfect resolution the observer
A would be supposed to always have correct guessing (thus with no gain in info when
finding the nominal value la), were not for the indeterminacy connected with the existence
of finite limit area.

The understanding of p0 as a gain of information and its explicit expression (27)
suggests it might be reconnected with horizon entropy. Together with the photon from
direction la let us consider a local Rindler horizon at event P [51] (then with expansion and
shear exactly vanishing at P in addition to an identically vanishing twist from hypersurface-
orthogonality) with generator la (clearly this horizon is not the null congruence emerging
from P we used all along the paper). The variation δa of area of a small patch a of horizon
at event P can be written as

δa =

( ∫ 0

−λ̄
θ dλ

)
a =

(
−
∫ 0

−λ̄
λ Rablalb dλ

)
a =

λ̄2

2
Rablalb a, (32)

where the second equality stems from Raychaudhuri equation dθ
dλ = − 1

D−2 θ2− σ2−Rablalb

as applied to the horizon, with the first and the second term in the r.h.s. of higher order
with respect to the last. In these expressions, λ̄ is the width of the small affine interval
associated to the crossing of the horizon by the test particle; Rab is the Ricci tensor at P.
Based on field equations, this area variation is associated with a variation of horizon entropy,
which precise expression (Wald entropy [52,53]) depends on the actual gravitational theory
under consideration.

But, we see that the expression (32) is very similar to expression (27) for p0, also
reported in (31) where p0 finds interpretation as average gain of information of A in correct
guessing the arrival direction of the photon. This suggests to reconnect the variation of
horizon area (32) with the gain of information by the observer at a single elementary event,
this hinting to horizon area possessing an information content prior and regardless of any
invoking of gravitational field equations (in the paper we never resort to field equations,
thus in particular they do not enter in deriving Equation (31)). In [51] the association
between horizon entropy and area is motivated outside gravity by quantum field theory
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arguments (entanglement entropy between vacuum fluctuations just inside and just outside
the horizon); here it is made on the basis of kind of operational and quantum-information
arguments in a limit-length spacetime.

Expression (31) also matches the formula for the number of gravitational degrees of

freedom ln ng ∝
(
1− L2

Pl
2π Rablalb) given in [54] (LPl is Planck length and ng is the density

of quantum states of spacetime), used in the statistical derivation of gravitational field
equations. This is not surprising since here as there the starting point is the existence of
a non-vanishing limit area orthogonal to the geodesic when P′ → P in a spacetime with
qmetric, and we borrow from that approach the individuation as key quantity the ratio
actual area/anticipated flat space area and its λ → 0 limit, first considered in [46]. The
difference is in that in [46,54] this has been introduced to capture the number of microscopic
dofs of the (quantum) spacetime; here to try to operationally show the mixedness of the
quantum state associated to coincidence according to reference body A, and the ensuing
arising of entropy.

The results presented in this section might be summarized as follows. The quantity
Rab lalb, ubiquitous in spacetime thermodynamics and responsible for horizon entropy in
Einstein’s gravity, has been here found to be connected to the presence of unavoidable
mixedness (p0 6= 0) in the states describing spacetime, according to any observer, at the
most elementary level of a single (classical) event, thus to kind of intrinsic ineliminable
blurring in any observer’s vision, due to (the nature of) gravity itself not to limitations on
observer’s side.

5. Conclusions

What we did in the paper, has been to try to explore further the idea that the intriguing
results [14,15] (and [16] for null separations) concerning the form of the Ricci scalar in a
spacetime endowed with a minimum length somehow might allow to sneak a look at a
quantum structure for spacetime at a point. We did so with the conviction that those results,
far from being artifacts of a mathematical model, come about as direct expression of a
sound (possible) physical request, as it is that of (consistently) requiring the existence of a
minimum length.

For this further investigation, we have chosen kind of an operational angle. This being
in part motivated by the belief that a most convenient way to proceed in physics is to keep
close contact with experiment, through use of (at least in principle) as-well-as-possible
operationally defined concepts. It is prompted also by the present flourishing of activity
in operational approaches to gravity, with concrete hope of a direct experimental test of
a non-classicality of gravity foreseeable in a hopefully not-so-far future (Refs. [23,24] and
subsequent proposals).

The results and main conclusions can be summarized as follows. Building on the
findings of the qmetric in the coincidence limit p → P of two events and limit length
L0 → 0, it seems natural and possible to associate to a classical event P a finite-dimensional
Hilbert space describing the structure of the qmetric spacetime at P. A Hilbert space H at P
has been explicitly built as well as an operator version of the Ricci scalar; this Hilbert space
describes crossing events at P between an observer (state space A) and a test particle (state
space B) with the latter geodesically approaching P (p → P); H can then be taken A⊗ B.
It has been found that to pure states of A⊗ B (exactly defined crossings) do correspond
(reduced density operator) mixed states of A even with perfect experimental resolution on
observer’s side, this inherent mixedness arising from the area transverse to the geodesic
remaining finite when p→ P; related to this, it has been found that there is an ineliminable
(that is, present even with perfect angular resolution) probability p0, explicitly computed,
for the observer to incorrectly guess the arrival direction. We have seen how this p0 6= 0
can be reinterpreted as average gain of information of the observer when guessing correctly.
Because the expression for p0 is essentially analogous to the area variation of a suitable
local Rindler horizon at P, we noticed how this might be used to provide an operational
motivation for endowing a patch of horizon with an entropy related to the area, and this
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regardless of field equations (horizon entropy is not based on use of field equations). In
other terms, the qmetric appears to give the means to (operationally) introduce gravitational
degrees of freedom before field equations.

We can consider our results in the context of other approaches also aiming to explore
the consequences of a finite L0 for spacetime description. In [55] for example (see also [34])
an effective metric is introduced coming as what one gets if in the propagator the source
is smeared on a scale length L0. It has been usefully exploited to compute corrections to
the metric of black hole solutions due to a limit L0 (getting in particular singularity free
spacetimes). At variance with the qmetric, this is an ordinary metric (distance→ 0 in the
coincidence limit between any two events), even if corrected for effects due to L0. What the
qmetric approach adds to this is a handle to investigate the microstructure of the spacetime
one gets if the limit length L0 is embodied directly in spacetime (distance → L0 in the
coincidence limit). The study of this microstructure is what we dealt with here.

What we have presented is essentially the observation that a puzzling result in the
qmetric might find a description in terms of a quantum structure for spacetime at P,
provided P is considered operationally as a coincidence event. No emphasis has been put
on the direct experimental scrutiny of this phenomenon since as mentioned this seems
hard to achieve, at least as long as no signs of a limit-length L0 6= 0 are found at colliders.
We may speculate however that what described might have if true a significance with
consequences in a sense also at low-energy lab scales. The described quantum structure
brings indeed with it that spacetime at a point P might be considered as a superposition of
classical geometries at P. The limit length L0 sets the scale at which the quantum features
are expected to unavoidably show up, where ‘unavoidably’ means for spacetime generic.
We can expect that for specific spacetimes, the quantum features might show up at much
larger scales. For example we can consider the spacetime sourced by a delocalized particle:
the point is that if superpositions are unavoidably found at scale L0 for undelocalized
sources, it is not unreasonable to expect that they might appear, at larger scales, also due to
the delocalization of the source. This spacetime might then consist of a superposition of
the classical spacetimes corresponding each to a superposed position of the particle, and
the related effects might be in principle detectable also at low-energy lab scales (as in the
proposals [23,24]).
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