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Abstract: High-energy heavy-ion collisions offer the unique possibility to study fundamental prop-
erties of nuclear matter in the laboratory, which are relevant for our understanding of the structure
of compact stellar objects and the dynamics of neutron star mergers. Of particular interest are the
nuclear matter equation of state (EOS), the in-medium modifications of hadrons and the degrees of
freedom of matter at high densities and temperatures. Pioneering experiments exploring the EOS for
symmetric matter were performed at the SIS18 accelerator of GSI, measuring, as function of beam
energy, the collective flow of protons and of light fragments and subthreshold strangeness production.
These data were reproduced by various microscopic transport model calculations, providing, up
to date, the best constraint for the EOS of symmetric matter with an incompressibility of about 200
MeV for densities up to twice the saturation density. This article reviews the experimental results on
subthreshold kaon production together with the theoretical interpretation and gives a brief outlook
towards future experiments at higher densities.
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1. Introduction

About 4 decades ago, experiments with beams of heavy nuclei such as Au and Pb
started with the motivation to investigate the bulk properties of dense nuclear matter.
In collisions between these heavy nuclei at bombarding energies, in the order of several
hundred MeV per nucleon up to 1A GeV, it was expected that the nucleons piled up in the
reaction volume to densities of up to 2–3 times the saturation density ρ0. The big question
was whether the nucleons would be stopped and form a new kind of nuclear matter, or
whether the nucleons would just undergo binary inelastic collisions. First, Au beams at
this energy became available at the LBL in Berkeley in the early 1980s. The Plastic Ball
collaboration found experimental evidence for proton pile-up at midrapidity and discov-
ered an anisotropic emission pattern of protons in respect to the reaction plane, which was
interpreted as a collective flow phenomenon [1]. The Streamer Chamber collaboration at
LBL measured the excitation function of pion production in La+La collisions and estimated,
from the pion yields, the fireball temperature and the potential part of the compressional
energy, indicating a stiff nuclear matter equation of state (EOS) [2]. However, when taking
into account temperature- and density-dependent pion in-medium effects, the pion yields
could be also reproduced assuming a soft EOS [3]. The observation of a collective flow in
heavy-ion collisions was confirmed by experiments at the SIS18 accelerator at GSI, which
delivered the first Au beams in 1990. The collective flow of both protons and neutrons was
measured in Au+Au collisions at 400, 600 and 800A MeV using a combination of the Four
Pi (FOPI) detector and the Large Neutron Detector (LAND) [4]. In experiments with the
kaon spectrometer (KaoS), the production of strange particles was observed for the first
time in Au+Au collisions [5,6], together with the discovery of the elliptic flow kaons [7]. In
the new millennium, the High Acceptance Dielectron Spectrometer (HADES) was installed
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and commissioned at GSI/SIS18, with the goal to perform systematic investigations of the
production of electron–positron pairs and hadrons in pion-, proton- and heavy-ion-induced
reactions [8]. One of the outstanding experimental results is the direct measurement of the
average fireball temperature in Au+Au collisions at a beam energy of 1.23A GeV [9].

Higher beam energies were reached at the AGS facility in Brookhaven, where the
first measurements with a Au beam at 11.6A GeV/c were performed in 1992 by the E866
and E877 collaborations. In addition, at these energies, a substantial amount of stopping
and a high degree of thermalization were observed in central Au+Au collisions [10]. The
E895 collaboration measured the excitation function of proton-directed and elliptic flow
in Au+Au collisions from 2–8A GeV [11]. The interpretation of these data by microscopic
transport calculations provided a constraint of the high-density EOS, which still serves as a
benchmark for model calculations [12]. In the mid-1990s, Pb beams also became available
at the CERN SPS and several experiments started to search indications for the creation
of the quark–gluon plasma (QGP) in heavy-ion collisions using different observables;
the CERES/NA45 collaboration observed a significant excess of the e+e− pair yield over
the expectation from hadron decays in Pb+Au collisions at 158A GeV/c, an effect which
was attributed to the in-medium broadening of the ρ-meson spectral function [13]. The
NA50 collaboration measured muon pairs as a function of centrality in Pb+Pb collisions at
158A GeV/c and found a strong decrease in the charmonium yield for central collisions,
which was interpreted as anomalous J/Ψ suppression in the QGP [14]. The excitation
function of charged hadron production was studied in the NA49 experiment in Pb+Pb
collisions for beam energies starting from 20A GeV up to 158A GeV. The observed K+/π+

ratio exhibited a peak at a beam energy around 30A GeV, an effect which was regarded
as a signature for the “onset of deconfinement” [15]. The measured particle yields can
be reproduced by statistical models assuming a freeze-out temperature T and a baryon
chemical potential µB for each energy, resulting in the “freeze-out curve” in the QCD phase
diagram T versus µB [16–18].

Since 2000, the Relativistic Heavy-Ion Collider (RHIC) at BNL has provided Au+Au
collisions at a top energy of

√
sNN = 200 GeV, which have been investigated by several

experiments. The major discoveries, which shed light on the creation and the properties
of a new state of deconfined matter, the QGP, include the suppression of high-energetic
particles (“jet quenching”) [19] and the constituent quark number scaling of elliptic flow of
particles [20]. Ten years later, in 2010, Pb beams finally also became available at the LHC at
CERN, starting with collision energies of

√
sNN= 2.76 and, later, 5.02 TeV. In collisions at

this ultra-relativistic beam energy, the number of created antiparticles equals the number
of particles. Under this condition, i.e., at vanishing baryon chemical potential, lattice
QCD calculations find a smooth chiral crossover from the quark–gluon plasma to hadronic
matter at a pseudocritical temperature of Tpc = 155–160 MeV [21,22]. A consistent value
was extracted for the freeze-out temperature from the particle yields measured by the
ALICE collaboration at the LHC using a statistical hadronization model [23]. This finding
suggests that, in heavy-ion collisions at ultra-relativistic energies, the particle freeze-out
coincides with the chiral crossover phase change. However, for larger values of baryon
chemical potential, model calculations predict a first-order phase transition with a critical
endpoint [24].

In order to search systematically for this critical endpoint, the STAR collaboration
has performed a beam energy scan at RHIC. Part of this program was the search for the
disappearance of QGP signals when lowering the beam energy such as the constituent
quark number scaling of the elliptic particle flow [25]. Indications of the breakdown of
this scaling behavior were found at

√
sNN = 3 GeV, an energy which could only be reached

in the fixed target operation mode of the STAR experiment [26]. Another important goal
of the beam energy scan was to search for signatures of a critical endpoint, such as a
non-monotonic variation in the moments of the proton multiplicity distribution as function
of beam energy, which is related to the correlation length and the susceptibilities of the
system. An indication for this effect was found at

√
sNN = 7.7 GeV, the lowest collision
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energy measured in the RHIC collider mode [27]. Recent lattice QCD calculations found
that the temperature of a hypothetical critical point of a chiral phase transition should
not exceed a value of Tc = 132 + 3 − 6 MeV [28,29]. QCD-inspired model calculations
locate the critical endpoint at a temperature of Tcep = 93 MeV and at a baryon chemical
potential of µcep = 672 MeV [24]. Such conditions are reached in collisions with fixed targets
at STAR [26] and will be reached at the future fixed-target CBM experiment at FAIR and at
the MPD experiment at the NICA collider [30]. These experiments, together with the fixed-
target BM@N experiment at JINR, will also contribute to the exploration of the high-density
EOS, hence closing the gap to the FOPI, KaoS and HADES experiments at GSI/SIS18.

This article is devoted to the experimental results obtained with the kaon spectrometer
at GSI. This experiment pioneered subthreshold strangeness production in heavy-ion
collisions and provided a data set which allowed the extraction of information on the
high-density EOS of symmetric nuclear matter and on the in-medium modifications of
particles. The KaoS data, together with the flow data of FOPI, still represent the benchmarks
for transport models used for the extraction of the EOS up to densities of 2 ρ0 [31].

2. The Kaon Spectrometer (KaoS) Experiment at GSI/SIS18

In the late 1980s, a double-focusing QD magnetic spectrometer was developed and
installed at the SIS18 heavy-ion facility at GSI in Darmstadt [32]. The spectrometer’s
primary purpose was to study meson production in energetic nucleus–nucleus collisions. Its
compact design was matched to the requirements of kaon detection with a short flight path
(5–6.5 m), a large solid angle (up to 35 msr), a wide momentum acceptance (pmax/pmin = 2),
a maximum momentum of 1.6 GeV/c (1.9 GeV/c at reduced solid angle) and a reasonable
momentum resolution (=1% without and about 10−3 with track reconstruction). Figure 1
depicts a sketch of the setup in the left panel, together with a photo in the right panel.
A focal plane length of about 1.5 m allows the efficient use of the detectors necessary
for track reconstruction and particle identification, involving wire chambers, time-of-
flight scintillators and Cherenkov detectors, to be carried out. Track reconstruction is
based on three large-area multi-wire proportional counters (MWPC 1–3), one between the
quadrupole and the dipole and two behind the dipole magnet, each of them measuring
two spatial coordinates. The efficiencies for kaon detection are larger than 95% for each of
these detectors.
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Figure 1. (a) Layout of the double-focusing magnetic spectrometer KaoS with its detector system:
time-of-flight (TOF) start and stop detectors, 3 multi-wire proportional chambers (MWPC), Cherenkov
detectors with water, lucite and silica aerogel radiators, two hodoscopes for event characterization at
target (for large angles) and 7 m downstream the target (for small angles, not shown) [32]. (b) Photo
of the setup.
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The time-of-flight (TOF) is measured with segmented plastic scintillator arrays. The
TOF start detector consists of 16 modules and is located between the quadrupole and the
dipole, while the TOF stop detector comprises 30 modules arranged along the focal plane
of the spectrometer. Particle identification is based on momentum determination using the
MWPCs and on time-of-flight (TOF) measurements. For the separation of high momentum
protons from kaons, a threshold Cherenkov detector is used in addition. The kaon trigger is
based on time-of-flight information, which is able to suppress pions and protons by factors
of 100 and 1000, respectively. Collisions can be characterized by two multiple-module
plastic-scintillator hodoscopes detecting reaction fragments in the forward hemisphere; the
large-angle hodoscope (LAH) around the target point consists of 96 modules and covers
polar laboratory angles of 12◦ ≤ θlab ≤ 48◦, while the small-angle hodoscope (SAH) is
located 7 m downstream the target, covers an active area of 2.24 × 192 m2 and comprises
380 modules of increasing size from the center to the outer region (4 × 4 cm2, 8 × 8 cm2

and 16 × 16 cm2). Positively and negatively charged particles are measured separately
using different magnetic field polarities. The spectrometer is mounted on a platform which
can be rotated around the target point on air cushions in a polar angel range from θlab = 0◦

to 130◦. The angular range covered at each position is ∆θlab = ±4◦. The beam intensity is
monitored using two scintillator telescopes positioned at backward angles (θlab = ±110◦),
measuring the flux of charged particles produced in the target which is proportional to
the beam intensity. The absolute normalization is obtained in separate measurements at
low beam intensities using a plastic scintillation detector directly in the beam line. The
beam intensities were chosen such that the dead time of the data acquisition system (DAQ)
is always below 50%. The momentum coverage is maximized by measuring different
magnetic field settings (|Bdipole| = 0.6, 0.9 and 1.4 T). The resulting acceptance for kaons as
function of normalized rapidity y/ybeam and of transverse momentum is shown in Figure 2
for three different beam energies (1.0, 1.5 and 1.93A GeV). The shaded areas correspond to
different angular settings θlab of the spectrometer in the laboratory, as denoted in the figure,
and to various magnetic field settings. More details on the experiment can be found in [32].
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Figure 2. Examples of the acceptance of the kaon spectrometer in the plane transverse momentum
versus normalized rapidity y/ybeam for several laboratory angles θlab (as indicated) and for various
magnetic field settings at 1.0A GeV, at 1.5A GeV and at 1.93A GeV beam energy. The angular
acceptance is ∆θlab = ±4◦, corresponding to the width of the pink bands.

3. Experimental Results

In the following, the data on pion and kaon production in nuclear collisions as mea-
sured with the kaon spectrometer at GSI-SIS18 are reviewed.

3.1. Pion Production

In high-energy collisions between nuclei, the nucleons of projectile and target pile up
in the reaction volume. A substantial part of the kinetic energy of the nucleons is dissipated
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into compressional energy, chaotic motion, i.e., thermal energy and intrinsic excitation
of the nucleons. The pressure built up in the dense and hot “fireball” drives the system
apart leading to a collective flow of matter. The fireball temperature is converted into
kinetic energy of the emitted particles. The excited nucleons, i.e., short-lived baryonic
resonances—at SIS18 beam energies, mostly ∆ resonances—subsequently decay again
by emission of pions, which might be reabsorbed again. Figure 3 depicts the number of
pions per participating nucleon as a function of the available energy in a nucleon–nucleon
collision, measured in various nucleus–nucleus (symbols). The red line corresponds to pion
data from nucleon–nucleon (N+N) collisions, which are extracted from pion production
in proton–proton collisions by correction for isospin effects. In the GSI/LBL beam energy
range, the pion yield per participating nucleon measured in N+N collisions clearly exceeds
the corresponding heavy-ion data. This is due to the fact that, in inelastic nucleon–nucleon
collisions, the dissipated energy is fully converted into ∆ excitations and, finally, into
pion production, as no compressional and thermal energy is lost for the creation of a
fireball. Moreover, no pion is reabsorbed in nucleon–nucleon collisions. Similarly, the
pion yield per participating nucleons is higher for light collisions systems such as C+C
than Au+Au, as pion reabsorption is reduced and less energy goes into compression and
heat. With increasing beam energies, multiple collisions in nucleus–nucleus collisions
also happen more abundantly and pion production increasingly exceeds the values for
nucleon–nucleon collisions.
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Figure 3. Pion multiplicity per participating nucleon measured in nucleus–nucleus collisions (sym-
bols) and in nucleon–nucleon collisions as a function of available energy in the NN system (taken
from [33]).

More information on pion production in heavy and light collision system can be ex-
tracted from Figure 4, which depicts differential pion production cross sections as function
of kinetic energy in the c.m. system for different polar emission angles. The left and center
panels depict π+ and π− spectra from Au+Au collisions at a beam energy of 1.5A GeV,
respectively, whereas, in the right panel, π+ spectra from C+C collisions at 1A GeV are
shown [34]. The data were measured by the KaoS collaboration and are compared to
results of calculations with the UrQMD event generator. For the heavy system, data and
model calculations differ in both yield and spectral slope. While the measured soft pion
yield exceeds the UrQMD results, the yield of hard pions is overestimated by the model
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calculations. These discrepancies reflect the difficulty in describing properly the lifetime
and spectral function of the ∆-resonance and the ∆N cross-section in the dense and hot
media, as created in Au+Au collisions.
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Figure 4 also demonstrates that the pion spectra measured in Au+Au collisions deviate
from a single Boltzmann distribution. As the spectral slope of the pions reflects both the
temperature of the fireball and its expansion, which vary over the collision time, the
slope contains information from different stages of the collision, as the pions are emitted
continuously during the fireball lifetime. The pion emission time and its relation to the pion
energy have been investigated by the KaoS collaboration by measuring angular emission
pattern of pions in semi-central Au+Au collisions [35]. If both pions and fragments are
emitted in the same direction, the pions are shadowed by the spectator fragments. This
situation is illustrated in the left panel of Figure 5, which depicts three snapshots of semi-
central Au+Au collisions at a beam energy of 1A GeV as calculated with a QMD model.
In the experiment, pions were selected which were emitted into the reaction plane (±45◦)
near target rapidity (θlab = 84◦), as indicated by the arrows in the left panel of Figure 5.
The reaction plane is defined for each event by the vector sum of the transverse momenta
of all spectator particles measured in the small-angle hodoscope within 0.5◦ ≤ θlab ≤ 5◦

(see above).
The result of the measurement is shown in the right panel of Figure 5, which depicts

the ratio Nπ
proj/Nπ

targ as a function of the pion transverse momentum, where Nπ
proj and

Nπ
targ are the numbers of pions emitted to the projectile and to the target side within a cone

of polar angles ∆ϕ = ±45◦, respectively [35]. The data indicate that the ratio Nπ
proj/Nπ

targ
decreases with the increase in the pion transverse momentum. This observation suggests
that pions are re-scattered or absorbed by spectator fragments. Pions emitted in the early
stage of the collision towards target rapidity can interact only with the projectile fragment,
but not with the target fragment, as illustrated by the left snapshot in Figure 5, which was
taken 4 fm/c after the first touch of the nuclei. The resulting ratio Nπ

proj/Nπ
targ is smaller

than unity, which is the case for pions with large transverse momenta (see right panel of
Figure 5). However, for pions with small transverse momenta, the ratio Nπ

proj/Nπ
targ

is above unity, indicating that these soft pions are shadowed by the target spectator in
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the late stage of the collision, as illustrated by the right snapshot taken at 16 fm/c. In
conclusion, the experimental results confirm the picture whereby hard pions leave the
fireball early, whereas soft pions freeze out late. This observation is supported by statistical
hadronization models, which reproduce the total particle yields in heavy-ion collisions
assuming freeze-out conditions. This finding also applies to the pion yields, which are
dominated by soft pions. On the other hand, it should be mentioned that theoretical models
predict, for soft quasi-pions, a larger path length in nuclear matter than for hard pions. In
this case, soft pions would leave the fireball earlier than hard pions [36].
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The pion emission pattern perpendicular to the reaction plane also was analyzed for 
the first time by the KaoS collaboration. The left panel of Figure 6 depicts the azimuthal 
distributions of π+ mesons emitted in peripheral, semi-central and central collisions (from 
top to bottom) measured in Au+Au collisions at 1A GeV [37]. The values φ = ±90° and φ = 
±180° correspond to the emission angles perpendicular and parallel to the reaction plane, 
respectively. The pions were analyzed for two momentum ranges, i.e., 160 < pT < 260 
MeV/c (left row) and 260 < pT < 600 MeV/c (right row). The solid lines represent fits to the 
data. In particular, for semi-central collisions (middle row) the pion polar angle distribu-
tions exhibit clear peaks at φ = ±90°. This pattern is more pronounced for hard pions, 
which are emitted early, when the projectile and target spectator still act efficiently as 
shadow. The effect is even more strongly visible for peripheral collisions (top row), when 
the hard pions are shadowed by larger spectator fragments. For central collisions (lower 
row), the azimuthal emission pattern is washed out because the spectator fragments van-
ish. The right panel of Figure 6 sketches the geometry of a semi-central heavy-ion collision, 
illustrating the shadowing effect by the projectile and target spectator fragments, which 
has also been observed for protons [1]. In addition, for π0 mesons, an enhanced emission 
perpendicular to the reaction plane was found in Au+Au collisions at 1A GeV by the TAPS 
collaboration at GSI [38]. 

Figure 5. (a) Three snapshots of a Au+Au collision with a beam kinetic energy of 1A GeV (impact
parameter b = 7 fm) calculated with the QMD transport code for 4 fm/c (left), 10 fm/c (center) and
16 fm/c (right). The pions are emitted in the reaction plane at backward angles corresponding to a
particular detector position. (b) Pion number ratio Nπ

proj/Nπtarg measured as function of transverse
momentum in peripheral Au+Au collisions (b ≥ 5.7 fm) at 1A GeV at target rapidity. Nπ

proj and
Nπtarg denote the numbers of pions emitted to the projectile and to the target side, respectively,
within a cone of ±45◦ [35].

The pion emission pattern perpendicular to the reaction plane also was analyzed
for the first time by the KaoS collaboration. The left panel of Figure 6 depicts the az-
imuthal distributions of π+ mesons emitted in peripheral, semi-central and central col-
lisions (from top to bottom) measured in Au+Au collisions at 1A GeV [37]. The values
ϕ = ±90◦ and ϕ = ±180◦ correspond to the emission angles perpendicular and parallel
to the reaction plane, respectively. The pions were analyzed for two momentum ranges,
i.e., 160 < pT < 260 MeV/c (left row) and 260 < pT < 600 MeV/c (right row). The solid lines
represent fits to the data. In particular, for semi-central collisions (middle row) the pion
polar angle distributions exhibit clear peaks at ϕ = ±90◦. This pattern is more pronounced
for hard pions, which are emitted early, when the projectile and target spectator still act
efficiently as shadow. The effect is even more strongly visible for peripheral collisions
(top row), when the hard pions are shadowed by larger spectator fragments. For central
collisions (lower row), the azimuthal emission pattern is washed out because the spectator
fragments vanish. The right panel of Figure 6 sketches the geometry of a semi-central
heavy-ion collision, illustrating the shadowing effect by the projectile and target spectator
fragments, which has also been observed for protons [1]. In addition, for π0 mesons, an
enhanced emission perpendicular to the reaction plane was found in Au+Au collisions at
1A GeV by the TAPS collaboration at GSI [38].
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sion of pions perpendicular to the reaction plane. (b) Illustration of the particle emission pattern for 
semi-central collisions at intermediate beam energies perpendicular to the reaction plane (“off-plane 
squeeze-out”) and parallel to the reaction plane (“bounce off”). 

3.2. Kaon Production 
The production of strange particles in heavy ion collisions at SIS18 energies is a very 

promising probe of the collision dynamics and the matter properties in the reaction vol-
ume, as the available beam energies per nucleon are mostly below the threshold energy 
for strangeness production in nucleon–nucleon collisions. The creation of a K+ meson via 
the process p + p → K+ Λ p requires a proton kinetic energy of 1.58 GeV and K− mesons 
can be produced via p + p → K+K− pp above a proton energy of 2.5 GeV. A parameteriza-
tion of the excitation function of K+ and K− mesons per participating nucleon in nucleon–
nucleon collisions is presented in Figure 7 as a blue line and a red dashed line, respec-
tively, as functions of the Q-value, i.e., the available energy above the threshold. The open 
blue squares and the open cyan circles indicate the K+ yields per participating nucleons 
measured in C+C and Ni+Ni collisions, respectively, while the full read squares and the 
full green dots show the corresponding yields for K- mesons [39,40]. Figure 7 demonstrates 
that kaon production in heavy-ion collisions at SIS18 energies requires processes in addi-
tion to binary nucleon–nucleon collisions. According to microscopic transport models, the 
production of strange particles in nucleus–nucleus collisions at subthreshold beam ener-
gies proceeds via multi-step processes in the reaction volume, involving Δ resonances, N* 
and pions, such as π p → K+Λ π. 

Figure 6. (a) Azimuthal distributions of positively charged pions for peripheral, semi-central and
central collisions (from top to bottom) measured in Au+Au collisions at 1A GeV [37]. The ordinate
is linear starting at zero. Left column: π+ in the range 160 < pT < 260 MeV/c. Right column: π+ in
the range 260 < pT < 600 MeV/c. Solid lines: fits to the data with cos (ϕ) and cos (2ϕ) terms. ϕ = 0◦

and ϕ = ±180◦ represent emission of pions parallel to the reaction plane and ϕ = ±90◦ corresponds
to emission of pions perpendicular to the reaction plane. (b) Illustration of the particle emission
pattern for semi-central collisions at intermediate beam energies perpendicular to the reaction plane
(“off-plane squeeze-out”) and parallel to the reaction plane (“bounce off”).

3.2. Kaon Production

The production of strange particles in heavy ion collisions at SIS18 energies is a very
promising probe of the collision dynamics and the matter properties in the reaction volume,
as the available beam energies per nucleon are mostly below the threshold energy for
strangeness production in nucleon–nucleon collisions. The creation of a K+ meson via the
process p + p→ K+ Λ p requires a proton kinetic energy of 1.58 GeV and K− mesons can
be produced via p + p→ K+K− pp above a proton energy of 2.5 GeV. A parameterization
of the excitation function of K+ and K− mesons per participating nucleon in nucleon–
nucleon collisions is presented in Figure 7 as a blue line and a red dashed line, respectively,
as functions of the Q-value, i.e., the available energy above the threshold. The open
blue squares and the open cyan circles indicate the K+ yields per participating nucleons
measured in C+C and Ni+Ni collisions, respectively, while the full read squares and the full
green dots show the corresponding yields for K- mesons [39,40]. Figure 7 demonstrates that
kaon production in heavy-ion collisions at SIS18 energies requires processes in addition
to binary nucleon–nucleon collisions. According to microscopic transport models, the
production of strange particles in nucleus–nucleus collisions at subthreshold beam energies
proceeds via multi-step processes in the reaction volume, involving ∆ resonances, N* and
pions, such as π p→ K+Λ π.
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pidity distributions” were produced by selecting data points within θc.m.= 90° ± 10° from 
measurements at various laboratory angles. The lines are Maxwell–Boltzmann distribu-
tions E d3σ/dp3∼Ec.m. exp(−Ec.m./T) fitted to the data with T the inverse slope parameter 
[41]. The total K+ and K- multiplicities measured in Au+Au, Ni+Ni and C+C collisions are 
presented in Figure 9, together with fits to the data [41]. 
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Figure 7. K+ and K− multiplicity per number of participating nucleons as a function of the available
energy above threshold in first-chance collisions for C+C and Ni+Ni collisions (for symbols, see
legend) and parameterizations of the kaon production cross sections in nucleon–nucleon collisions
(for lines, see insert). Taken from [40].

A selection of KaoS results on kaon production measured for different collision sys-
tems and beam energies are displayed in Figure 8. The invariant production cross-sections
σinv = E d3σ/dp3 for K+ mesons (left panel) and K− mesons (right panel) at mid-rapidity
are plotted as functions of the kinetic energy in the c.m. system Ec.m. −m0c2. These “mid-
rapidity distributions” were produced by selecting data points within θc.m.= 90◦ ± 10◦

from measurements at various laboratory angles. The lines are Maxwell–Boltzmann dis-
tributions E d3σ/dp3∼Ec.m. exp(−Ec.m./T) fitted to the data with T the inverse slope
parameter [41]. The total K+ and K- multiplicities measured in Au+Au, Ni+Ni and C+C
collisions are presented in Figure 9, together with fits to the data [41].

The KaoS collaboration also investigated the azimuthal angular distribution of K+

mesons and discovered a strong anisotropy. The results are presented in Figure 10, which de-
picts the K+ azimuthal angular distribution measured in Au+Au collisions at 1A GeV [7]. The
kaons were analyzed within a range of transverse momenta of 0.2 GeV/c ≤ pt ≤ 0.8 GeV/c
and for two normalized rapidity bins, 0.4≤ y/yproj ≤ 0.6 (left panel) and 0.2 ≤ y/yproj ≤ 0.8
(right panel). The K+ distribution exhibits a peak aroundϕ =±90◦, i.e., perpendicular to the
reaction plane. Such an emission pattern was also observed for pions (see Figure 6), where
it was attributed to the interaction with the spectator fragments. However, in contrast to
the pions, the K+ mean free path in nuclear matter is about 5 fm and rescattering at the
spectators should be less important. This is illustrated by the dotted lines in Figure 10,
which represent the results of transport calculations, taking into account K+ rescattering
only ([42]; left) and additional Coulomb effects ([43]; right). However, the data are well re-
produced when taking into account a repulsive in-medium K+N potential, as demonstrated
by the solid lines.

As illustrated in Figure 10, experiments on strangeness production in heavy-ion
collisions are well suited to investigate the in-medium properties of kaons for different
matter densities. The behavior of kaons and antikaons in dense nuclear matter has been
studied by various model calculations [44,45]. The models predict an attractive kaon
nucleon (scalar) potential and a kaon nucleon vector potential, which is repulsive for
kaons but attractive for antikaons. Consequently, the total K+N in-medium potential is
weakly repulsive, while the K−N potential is strongly attractive. These potentials affect the
propagation of K+ and K− in nuclear matter; while K+ mesons are repelled from the high-
density regions, K− mesons are attracted. This effect results in a characteristic azimuthal
emission pattern for K+ mesons, as shown in Figure 10.
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Figure 8. Inclusive invariant cross-sections at mid-rapidity as a function of the kinetic energy
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ments at different polar angles [41]. The lines represent fits to the data (see text).
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Figure 10. Azimuthal distribution of K+ mesons measured in semi-central Au+Au collisions
at 1A GeV (full dots). The kaons are analyzed for transverse momenta within a range of
0.2 GeV/c ≤ pt ≤ 0.8 GeV/c and for the normalized rapidity ranges of 0.4 ≤ y/yproj ≤ 0.6 (a)
and 0.2 ≤ y/yproj ≤ 0.8 (b) [7]. The lines show the results of transport calculations using a RBUU
model (left; [42]) and a QMD model (right; [43]), which both take into account rescattering; QMD
also calculates Coulomb effects. Solid and dashed lines: calculations with and without in-medium
K+N potential, respectively. Taken from [40].

The beam energy of 1A GeV is too low to perform a high statistics measurement for K−

mesons, the production of which requires 2.5 GeV in nucleon–nucleon collisions. Therefore,
Ni+Ni collisions were performed at GSI with a beam energy of 1.93 A. The azimuthal
angular distribution for π+, K+ and K− mesons measured by the KaoS collaboration in
semi-central Ni+Ni collisions are depicted in Figure 11 [46]. The distributions of π+ and K+

mesons are similar but less pronounced than in Au+Au collisions, which is expected for
smaller spectator fragments. However, the emission pattern of K− mesons exhibits peaks at
±180◦, corresponding to an in-plane elliptic flow. This effect was observed for the first time
in collisions at SIS18 energies. Although K− mesons are expected to be strongly absorbed
in spectator matter by strangeness exchange reactions such as K−n→ Λπ−, their strongly
attractive in-medium K−N potential overcompensates absorption effects, resulting in an
in-plane elliptic flow.
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repulsive K+N in-medium potential results in a K+ effective mass moderately increasing 
with nuclear density, whereas the strongly attractive K−N potential leads to a K− effective 
mass, which considerably decreases with the increase in density. The latter effect may also 
result in a reduced K− absorption cross-section in nuclear matter. The in-medium mass 
modification of kaons manifests itself in the kaon production yields, as illustrated in Fig-
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Figure 11. Azimuthal angular distributions of π+, K+ and K−mesons (from left to right) measured in
semi-central Ni+Ni collisions at 1.93A·GeV [46]. The mesons are measured within a rapidity range
of 0.3 < y/ybeam < 0.7 and a momentum range of 0.2 GeV/c < pt < 0.8 GeV/c. The data are fitted
using the first two components of a Fourier series dN/dΦ∼2 v1 cos (ϕ) + 2 v2 cos (2ϕ). The resulting
values for v1 and v2 are indicated.

A further consequence of the in-medium KN potentials is a modification of the K+

and K− effective mass in nuclear matter. According to model calculations [44], the slightly
repulsive K+N in-medium potential results in a K+ effective mass moderately increasing
with nuclear density, whereas the strongly attractive K−N potential leads to a K− effective
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mass, which considerably decreases with the increase in density. The latter effect may
also result in a reduced K− absorption cross-section in nuclear matter. The in-medium
mass modification of kaons manifests itself in the kaon production yields, as illustrated
in Figure 12, which depicts the rapidity distributions of K+ mesons (upper panel), of K−

mesons (center panel) and of the K+/K− ratio (lower panel) as measured by the KaoS [47]
and FOPI [48,49] collaborations in Ni+Ni collisions at 1.93 A GeV. The measured data are
represented by full dots, the open symbols are mirrored at yCM = 0. The lines correspond
to BUU calculations with in-medium masses (solid lines) and without in-medium effects
(dotted lines) [50]. The calculations without in-medium mass modification overestimate
the K+ meson multiplicity and strongly underestimate the K− yield, as expected for the
increased K+ in-medium mass and the decreased K− in-medium mass.
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4. The High-Density Nuclear Matter Equation-of-State

High-energy heavy-ion collisions offer the unique opportunity to study the properties
of nuclear matter at high densities in the laboratory. Of fundamental interest is the equa-
tion of state (EOS), which is relevant for our understanding of neutron stars, supernova
explosions and neutron star mergers. For the temperature T=0, the EOS can be expressed
as P = ρ2 d(E/A)/dρ, where P is the pressure, ρ is the density and E/A is the energy per
nucleon, which depends on density and isospin, E/A(ρ,δ) = E/A(ρ,0) + Esym(ρ)·δ2. The
first term describes isospin-symmetric matter, while the second term refers to neutron-rich
matter, i.e., the symmetry energy times the asymmetry parameter δ = (ρn–ρp)/ρ. For
isospin-symmetric nuclear matter, as it is approximately realized in nuclei and heavy-ion
collisions, E/A has a minimum at saturation density E/A(ρ0,0) = -16 MeV and a curvature
parametrized by nuclear incompressibility Knm = 9ρ2·δ2(E/A)/δρ2. From the experimental
study of giant monopole resonances in heavy nuclei, i.e., for saturation density, a value of
Knm (ρ0) = 240 ± 20 MeV has been extracted [51], although somewhat higher values in the
range 250 ≤ Knm (ρ0) ≤ 315 MeV are not excluded [52].

In central heavy-ion collisions at SIS18 beam energies, nuclear densities above 2 ρ0
are reached over a time span of at least 10 fm [53]. According to microscopic transport
models, subthreshold K+ production in heavy-ion collisions also exhibits a sensitivity to the
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density in the fireball. This is illustrated in Figure 13, which, in the upper panel, illustrates
the density reached in a central Au+Au collision at 1A GeV as a function of collision time,
while, in the lower panel, the corresponding multiplicities of the created ∆ resonances,
pions and K+ mesons are shown. The ∆ resonances are produced in the course of the
collision and finally decay into pions, while the K+ mesons are created predominantly at
densities above 2 ρ0, as illustrated by the two vertical lines and the blue curve representing
the K+ multiplicity in Figure 13. The key mechanism for subthreshold K+ production is the
accumulation of the required energy by multiple collisions of particles in the fireball, as
described in the previous section. The yield of the created K+ mesons increases with the
matter density according to its incompressibility.
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Figure 13. Upper panel: Density in the reaction volume as function of time for a central Au+Au
collision at 1A GeV as calculated by a RBUU transport model. Lower panel: Multiplicities of produced
∆ resonances (green dotted line), pions (red dashed line) and K+ mesons (blue line) as functions
of time.

The black diamonds in the left panel of Figure 14 represent the production cross-
sections of K+ mesons measured in Au+Au and C+C collisions as functions of beam
energy [54]. The small C+C system serves as a reference, which differs from the large
system only in volume and density, hence exhibiting less sensitivity to the EOS. The data
are compared to results of QMD transport calculations, assuming a different EOS [55–58].
Calculations without in-medium calculations for C+C collisions overshoot the data by a
factor of up to 2 (open symbols), whereas the calculations with in-medium effects are close
to the data. It is worthwhile to note that the yield of K+ produced in the light C+C system
does not depend on the EOS. The Au+Au data are compared with the results of calculations
for a soft EOS (Knm = 200 MeV; blue dots) and a hard EOS (Knm = 380 MeV; cyan squares).

In order to illustrate the influence of the EOS more clearly, the ratio of K+ multiplicities
per mass number in Au+Au over C+C collisions is depicted in the right panel of Figure 14.
The advantage of this representation is that systematic uncertainties of both data and
model calculations are reduced and effects such as in-medium modifications, momentum-
dependent interactions, Fermi motion and short-range correlations largely cancel. The data
(black diamonds) strongly rise with the decrease in beam energy, i.e., with the increase
in “subthresholdness”. This trend can be reproduced by different transport calculations
when taking into account a soft EOS (Knm = 200 MeV; red symbols), whereas calculations
assuming a hard EOS (Knm = 380 MeV; blue symbols) exhibit a much less pronounced
energy dependence [57]. The data clearly favor a soft EOS with an incompressibility of
Knm = 200 MeV for symmetric nuclear matter at about twice the saturation density.
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Figure 14. (a) Production cross-sections of K+ mesons measured in Au+Au and C+C collisions
as functions of the projectile energy per nucleon (black diamonds). The data are compared to
QMD calculations with (full symbols) and without (open symbols) kaon in-medium modifications,
assuming a soft EOS (Knm = 200 MeV; blue dots) or a hard EOS (Knm = 380 MeV; cyan squares).
(b) Ratio of the K+ multiplicity per mass number in Au+Au over C+C collisions as a function of beam
energy. The data are compared to different QMD calculations assuming a soft EOS (Knm = 200 MeV;
red symbols) or a hard EOS (Knm = 380 MeV; blue symbols). Taken from [57].

The finding of the KaoS collaboration concerning the EOS was corroborated by results
of the FOPI collaboration at GSI, which measured the elliptic flow of protons and light
fragments in Au+Au collisions at beam kinetic energies from 0.4A to 1.5A GeV [59]. This
observable is very sensitive to the EOS, as the collective flow of nucleons is driven by
the pressure gradient in the reaction volume [12]. The FOPI flow data could be well
reproduced by IQMD transport calculations when assuming a nuclear incompressibility of
Knm = 190 ± 30 MeV and taking into account momentum-dependent interactions [59].

However, in order to contribute to our understanding of neutron stars, the symmetry
energy Esym also has to be determined. According to transport models, Esym can be ex-
tracted from the elliptic flow of neutrons and protons generated in heavy-ion collisions [60].
Such a measurement has been pioneered at GSI [4] and recently repeated with an upgraded
setup by the ASY–EOS collaboration at GSI by measuring the elliptic flow of neutrons
and of charged particles in Au+Au collisions at a beam energy of 0.4A GeV [61]. Using
a UrQMD transport code, values for the symmetry energy could be extracted from the
comparison of the measured neutron flow and the flow of charged particles up to densities
of 2 ρ0, where Esym reaches a value of 55 ± 5 MeV. When adding the measured Esym distri-
bution to the results for the EOS of symmetric matter as measured by the KaoS and FOPI
experiments, one obtains the first experimental EOS for neutron matter extracted from
heavy-ion data. The experimental EOSs for both neutron matter (upper green area) and
symmetric nuclear matter (lower green area) are shown together with different theoretical
calculations in Figure 15, which depicts the binding energy as a function of the density [62].
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Figure 15. Binding energy as a function of nuclear matter density in units of ρ0. The lines represent
the results of various calculations for neutron matter (upper curves) and for symmetric matter (lower
curves) [62]. Lower green area: EOS for symmetric matter as extracted from data of the KaoS [54,55]
and FOPI [59] experiments. Upper green area: Symmetry energy Esym as extracted from the data of
the ASY–EOS experiment [61] added to the experimental EOS for symmetric matter (see text).

In order to contribute to our understanding of the structure of neutron stars and
of the dynamics of neutron star mergers, the EOS has to be determined up to 5–6 times
the saturation density [63]. Such densities are reached in heavy-ion collisions with beam
kinetic energies between 5A and 10A GeV [64]. The first investigations of the EOS in
heavy-ion collisions at these beam energies were performed at the AGS at BNL, where
the collective flow of protons was studied in Au+Au collisions at energies between 2
and 8A GeV [11]. However, the interpretation of the data by relativistic transport model
calculations was not very conclusive; while the transverse flow data could be reproduced
under the assumption of a soft EOS (Knm = 210 MeV), the elliptic flow data seem to support
a stiff EOS (Knm = 300 MeV) [12]. Figure 16 depicts the result of the analysis of the AGS
proton flow data as a grey shaded area, plotted as pressure versus density. The blue and red
line correspond to a soft and a hard EOS, respectively [12]. The yellow area corresponds
to the EOS extracted from the FOPI and KaoS measurements as discussed above. In
conclusion, Figure 16 represents the present constraints for the EOS of symmetric nuclear
matter above the saturation density, illustrating that the analysis of the heavy-ion data by
microscopic transport models find a soft EOS up to densities of about 2 ρ0, whereas, at
higher nuclear densities, only very soft or very hard EOSs are excluded.

The uncertainties concerning the high-density EOS of symmetric nuclear matter as
illustrated in Figure 16 clearly call for improved data and calculations. Measurements of a
particle flow at beam energies around 3A GeV have been already performed by the STAR
experiment at BNL in the fixed target mode [26]. In addition to the flow measurements, sub-
threshold particle production may also be a very sensitive probe of the high-density EOS of
symmetric nuclear matter. At beam energies between 2A GeV and 10A GeV, multi-strange
(anti-hyperons) are expected to be the most promising candidates in this respect. This
has been studied using the new Parton-Hadron-Quantum-Molecular Dynamics (PHQMD)
transport code by simulating hyperon production in central Au+Au collisions at a beam
energy of 4A·GeV. According to preliminary calculations, the yield of Ξ± and Ω± hyperons
clearly depends on the stiffness of the EOS for symmetric nuclear matter [65].
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In order to contribute to our understanding of neutron stars and neutron star mergers,
the symmetry energy Esym also has to be experimentally studied at densities up to about
5 ρ0. Possible observables sensitive to Esym include the flow of neutrons compared to
the flow of charged fragments, as measured by the ASY-EOS collaboration at GSI-SIS18,
and the ratio of particles with opposite isospin, which reflect the density distributions of
protons and neutrons. For example, the π−/π+ ratio has been investigated as a probe for
the Esym, but it has turned out that the sensitivity to Esym vanishes at beam energies well
above the pion production threshold. In addition, the pion ratio depends on the ∆(1232)
in-medium potential, which is not well known [66]. A more promising observable might be
particles with higher production thresholds and different isospin projections I3 = ±1, such
as Σ hyperons. The Σ− (dds)/Σ+(uus) ratio could be used as a proxy of the n(ddu)/p(uud)
ratio [67].

The EOS for symmetric nuclear matter will be investigated in the near future by the
upgraded BM@N experiment at the JINR-Nuclotron, where both proton flow and hyperons
will be measured in Au+Au collisions at beam at energies of up to 3.8A GeV [68]. The
CBM experiment at FAIR-SIS100 will study these observables for higher densities, i.e., in
Au+Au collisions at beam energies up to 11A GeV [69]. The Esym at neutron star core
densities will be explored by measuring the Σ−/Σ+ ratio for different collision systems and
beam energies.

Information on the EOS of neutron matter can also be obtained by the analysis of
astronomical observations, such as simultaneous measurements of radii and masses of
neutron stars by the NICER experiment [70] and the detection of gravitational waves
emitted from mergers of compact stars [71]. A recent theoretical study demonstrates
that the combination of astronomical observations and results of laboratory experiments
reduces the uncertainties of the complementary approaches and provides an improved
experimental constrain of the high-density EOS [72].

5. Summary

The KaoS collaboration performed pioneering measurements of subthreshold
strangeness production in heavy-ion collisions at the SIS18 accelerator at GSI. The experi-
ments were performed with a double-focusing dipole magnetic spectrometer, equipped
with detectors for particle identification and for the determination of collision centrality and
orientation of the reaction plane. The measured data provide information on in-medium
properties of kaons and on the equation-of-state of dense symmetric nuclear matter. To-
gether with the data on collective flow of protons and light fragments measured by the FOPI
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collaboration at GSI, the up-to-date KaoS data constrain the EOS of symmetric matter up to
densities of twice the saturation density. Future experiments planned at NICA and FAIR
will extend our knowledge relative to the high-density EOS. The combined information
from the interpretation of astronomical observations and laboratory experiments will open
a truly multi-messenger era of fundamental studies of matter at neutron star core densities.
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