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1. Introduction

At present, the calculation of the Feynman integrals (FIs) provides basic information,
both on the properties of the experimentally investigated processes and on the charac-
teristics of the physical models under study. Calculations of the matrix elements of the
cross sections of the processes under study depend on the internal properties of parti-
cles participating in the interactions, such as masses, spins, etc., and, strictly speaking,
require the calculation of Feynman integrals, including those with massive propagators.
Depending on the kinematics of the processes under study, the values of some masses
can be neglected. Studying the characteristics of physical models (for example, critical
parameters, anomalous particle sizes and operators) usually requires the calculation of
massless Feynman integrals, which have a much simpler structure. This allows obtaining
results for these characteristics in high orders of the perturbation theory.

I would like to draw your attention to the fact that, when calculating FIs, it is rec-
ommended to use analytical methods whenever possible. The point is that the numerical
calculation of FIs is severely limited due to the singularities arising in them, and also
(especially for gauge theories) due to strong mutual cancellations between contributions
from different diagrams or even between parts of the same diagram.

Note that when using the dimensional regularization [1–4], i.e., when calculating
the FIs for an arbitrary dimension of space, once found diagrams for some model of a
field theory (or process) can be applied to other models (or processes), since the main
object of study is the so-called scalar master integrals. Consequently, the complexity
of analytical calculations of FI is compensated by their versatility as applied to various
quantum field models.

Note also the fact that the calculation of complicated diagrams may be of some
independent interest. For example, the use of non-trivial identities, such as the “uniqueness”
relation [5,6], can provide information (see [7–13]) about the properties of some integrals
and series which are not yet in the reference literature. For example, the calculations of
the same Feynman integral carried out in [12–14], using various methods, have made it
possible to find a previously unknown relationship between hypergeometric functions
with arguments 1 and −1. This relation has been neatly proven quite recently [15].

Recently, many powerful original methods for calculating Feynman integrals have
appeared (see, for example, recent reviews in [16,17]), which are often inferior in breadth of
application to standard methods, such as the α-representation and the Feynman parameter
technique (see, for example, [18,19]), however, can significantly increase the computation
accuracy for a limited set of quantities (or processes).
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This short article is devoted to the consideration of two FIs, one with massless propa-
gators, and the other with massive propagators, the calculations of which just demonstrate
the effectiveness of modern methods for calculating Feynman diagrams.

In the massless case, we will consider a single 5-loop master diagram that contributes
to the β-function of the ϕ4-model. In the initial calculations [20] of the 5-loop correction to
the β-function of the ϕ4-model, the results of four FIs were found only numerically. Their
analytical results were obtained by Kazakov (see [7,8,12,13]), but they have been published
without any intermediate results. Moreover, all calculations were performed in x-space,
which can make them difficult to understand. Recently, two of the four diagrams have been
exactly recalculated in [16] in p-space and are presented with intermediate calculations. In
Section 3, we provide a neat calculation for the third diagram.

In the massive case, in Section 5, we consider the computation of one of master-
integrals [21] contributing to the relationship between the MS-mass and the pole-mass
of the Higgs boson in the standard model in the limit of heavy Higgs. Results for the
master-integral, along with the results for other master-integrals, were calculated [22] in
the early 2000s, but unfortunately they have not been published. Some sets of variables for
integration are presented in Appendix A.

2. Basic Formulas for Massless Diagrams

Let us briefly consider the rules for calculation of massless diagrams. All calculations
are carried out in momentum space with d = 4− 2ε.

Propagator is represented as
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1
(q2)α

≡ 1
q2α

=
α→q

. (1)

where α is called the line index.
The following formulas hold:
A. For simple chain:

1
q2α1

1
q2α2

=
1

q2(α1+α2)
,

or graphically

α1 α2→q
=

α1 + α2→q
, (2)

i.e., the product of propagators is equivalent to a new propagator with an index equal
to the sum of the indices of the original propagators.

B. A simple loop can be integrated as

∫ Dk µ2ε

(q − k)2α1k2α2
= Nd

µ2ε

q2(α1+α2−d/2)
A(α1, α2) ,

where

Dk =
ddk

(2π)d (3)

is usual integration in Euclidean measure and

Nd =
1

(4π)d/2 , A(α, β) =
a(α)a(β)

a(α + β − d/2)
, a(α) =

Γ(α̃)
Γ(α)

, α̃ =
d
2
− α . (4)

(1)
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It is convenient to rewrite the equation graphically as
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α1

α2

→q
= Nd µ2ε A(α1, α2)

α1+α2−d/2→q
. (5)

Therefore, all massless diagrams, which can be expressed as combinations of loops
and chains, can be evaluated immediately, even when some indices have arbitrary val-
ues (see [23–33]). However, starting already with the two-loop level, there are diagrams,
which cannot be expressed as combinations of loops and chains (see, for example, Figure
1 in [17]). For these cases there are additional rules.

C. When ∑ αi = d, there is so-called uniqueness ratio [5–7] for the triangle with
indices αi (i = 1, 2, 3)

α2

α1

α3

→
q2−q1

→
q1−q3

→q3−q2

∑ αi=d
= Nd µ2ε A(α2, α3) α̃3 α̃2

α̃1

→
q2−q1

→
q1−q3

→q3−q2

, (6)

The results (6) can be exactly obtained in the following way: perform an inversion
qi → 1/qi (i = 1, 2, 3), k → 1/k in the subintegral expression and in the integral measure.
The inversion keeps angles between momenta. After the inversion, one propagator is
cancelled because ∑ αi = d and the l.h.s. becomes to be equal to a loop. Evaluating it
using the rule (5) and returning after it to the initial momenta, we recover the rule (6).

D. For any triangle with indices αi (i = 1, 2, 3) there is the following relation, which
is based on integration by parts (IBP) procedure [6,34,35]. This paper does not use the
IBP procedure for massless charts and, therefore, is not provided here. However, it can be
obtained directly from the IBP in the massive case (see (48) below) by setting all masses
to zero.

E. Using equation (48) with zero masses allows you to change the indices of the
line diagrams by an integer. One can also change line indices using the point group of
transformations [6,36,37]. The elements of the group are: (a) the transition to momentum
presentation, (b) conformal inversion transformation p → p′ = p/p2, (c) a special series of
transformations that makes it possible to make one of the vertices unique, and then apply
the relation (6) to it.

Note that the presence of momenta, and especially the product of momenta in the
numerators of the propagators, significantly complicates the FI results and requires gener-
alization of the rules for their calculation (see, for example, [38–41]). However, considera-
tion of this case is beyond the scope of this work.

3. kR′-Operation

Calculation of massless diagrams is most important for calculating critical exponents
of models and theories, such as anomalous dimensions and β-functions. One of the most
important recipes is the Bogolyubov–Parasyuk–Hepp–Zimmermann (BPHZ) R-
operation [42–44], which extracts all singularities of any Feynman diagram. Formally,
it has the form

R[FI] = FI − kR′[FI], (7)

where the kR′-operation takes into account all the singularities of the subgraphs of the
considered diagram, except for the singularities of the diagram itself. A very important
property of the kR′-operations is the independence of the result of its application to any

(5)
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property of the kR′-operations is the independence of the result of its application to any
FI diagram (i.e., kR′[FI]) from the external momenta and masses of this FI diagram. This
independence is the basis of of infra-red rearrangement approach [45] (see also [46–49]),
which allows us to consider FI with the minimum possible set of masses and external
momenta: neglecting masses and momenta should not lead to the appearance of infrared
singularities. The ability to remove and change external momenta is widely used (see, for
example, [50] and references and discussions therein). We show it in our example below,
where we will consider in detail the computation of the singular structure of a 5-loop
diagram that contributes to the β-function of the ϕ4-model.

To show the applicability of the kR′-operation, it is convenient to start with the one-
loop and two-loop examples.

One loop. Putting α1 = α2 = 1 in Equation (5), we have
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→q
= Nd A(1, 1)

µ2ε

q2ε
= N4

Γ2(1 − ε)

εΓ(2 − 2ε)

µ2ε

q2ε
, (8)

where µ is the scale the MS-scheme, defined as

µ2ε = µ2ε (4π)ε Γ(1 + ε) . (9)

Then kR′-operation, which in the one-loop case is equal to k-operation, because no
subgraphs, where k-operation is an extraction of the singular part, is the one:

k

[

→q

]
= N4

1
ε

, (10)

which, of course, is q2-independent.
Two loops. Consider the diagram

→q
= N2

d A(1, 1) A(1, 1+ ε)
µ4ε

q4ε
=

N2
4

2ε2(1 − 2ε)

Γ3(1 − ε)Γ(1 + 2ε)

Γ(2 − 3ε)Γ2(1 + ε)

µ2ε

q2ε
. (11)

The R′-operation extracts the singularities of subgraphs. In the considered case, we
have the singular internal loop, which singularity is shown in Equation (10). Therefore,
the R′-operation of the considered two-loop diagram has the following form

R′
[

→q

]
= →q

− N4
1
ε →q

. (12)

Evaluating loops in the r.h.s. of (12) and taking its singular parts (by the k-operation),
we have

(8)

where µ is the scale the MS-scheme, defined as

µ2ε = µ2ε (4π)ε Γ(1 + ε) . (9)

Then kR′-operation, which in the one-loop case is equal to k-operation, because no
subgraphs, where k-operation is an extraction of the singular part, is the one:

Particles 2021, 1 4

FI diagram (i.e., kR′[FI]) from the external momenta and masses of this FI diagram. This
independence is the basis of of infra-red rearrangement approach [45] (see also [46–49]),
which allows us to consider FI with the minimum possible set of masses and external
momenta: neglecting masses and momenta should not lead to the appearance of infrared
singularities. The ability to remove and change external momenta is widely used (see, for
example, [50] and references and discussions therein). We show it in our example below,
where we will consider in detail the computation of the singular structure of a 5-loop
diagram that contributes to the β-function of the ϕ4-model.

To show the applicability of the kR′-operation, it is convenient to start with the one-
loop and two-loop examples.

One loop. Putting α1 = α2 = 1 in Equation (5), we have

→q
= Nd A(1, 1)

µ2ε

q2ε
= N4

Γ2(1 − ε)

εΓ(2 − 2ε)

µ2ε

q2ε
, (8)

where µ is the scale the MS-scheme, defined as

µ2ε = µ2ε (4π)ε Γ(1 + ε) . (9)

Then kR′-operation, which in the one-loop case is equal to k-operation, because no
subgraphs, where k-operation is an extraction of the singular part, is the one:

k

[

→q

]
= N4

1
ε

, (10)

which, of course, is q2-independent.
Two loops. Consider the diagram

→q
= N2

d A(1, 1) A(1, 1+ ε)
µ4ε

q4ε
=

N2
4

2ε2(1 − 2ε)

Γ3(1 − ε)Γ(1 + 2ε)

Γ(2 − 3ε)Γ2(1 + ε)

µ2ε

q2ε
. (11)

The R′-operation extracts the singularities of subgraphs. In the considered case, we
have the singular internal loop, which singularity is shown in Equation (10). Therefore,
the R′-operation of the considered two-loop diagram has the following form

R′
[

→q

]
= →q

− N4
1
ε →q

. (12)

Evaluating loops in the r.h.s. of (12) and taking its singular parts (by the k-operation),
we have

(10)

which, of course, is q2-independent.
Two loops. Consider the diagram

Particles 2021, 1 4

FI diagram (i.e., kR′[FI]) from the external momenta and masses of this FI diagram. This
independence is the basis of of infra-red rearrangement approach [45] (see also [46–49]),
which allows us to consider FI with the minimum possible set of masses and external
momenta: neglecting masses and momenta should not lead to the appearance of infrared
singularities. The ability to remove and change external momenta is widely used (see, for
example, [50] and references and discussions therein). We show it in our example below,
where we will consider in detail the computation of the singular structure of a 5-loop
diagram that contributes to the β-function of the ϕ4-model.

To show the applicability of the kR′-operation, it is convenient to start with the one-
loop and two-loop examples.

One loop. Putting α1 = α2 = 1 in Equation (5), we have

→q
= Nd A(1, 1)

µ2ε

q2ε
= N4

Γ2(1 − ε)

εΓ(2 − 2ε)

µ2ε

q2ε
, (8)

where µ is the scale the MS-scheme, defined as

µ2ε = µ2ε (4π)ε Γ(1 + ε) . (9)

Then kR′-operation, which in the one-loop case is equal to k-operation, because no
subgraphs, where k-operation is an extraction of the singular part, is the one:

k

[

→q

]
= N4

1
ε

, (10)

which, of course, is q2-independent.
Two loops. Consider the diagram

→q
= N2

d A(1, 1) A(1, 1+ ε)
µ4ε

q4ε
=

N2
4

2ε2(1 − 2ε)

Γ3(1 − ε)Γ(1 + 2ε)

Γ(2 − 3ε)Γ2(1 + ε)

µ2ε

q2ε
. (11)

The R′-operation extracts the singularities of subgraphs. In the considered case, we
have the singular internal loop, which singularity is shown in Equation (10). Therefore,
the R′-operation of the considered two-loop diagram has the following form

R′
[

→q

]
= →q

− N4
1
ε →q

. (12)

Evaluating loops in the r.h.s. of (12) and taking its singular parts (by the k-operation),
we have

(11)

The R′-operation extracts the singularities of subgraphs. In the considered case, we
have the singular internal loop, which singularity is shown in Equation (10). Therefore, the
R′-operation of the considered two-loop diagram has the following form

Particles 2021, 1 4

FI diagram (i.e., kR′[FI]) from the external momenta and masses of this FI diagram. This
independence is the basis of of infra-red rearrangement approach [45] (see also [46–49]),
which allows us to consider FI with the minimum possible set of masses and external
momenta: neglecting masses and momenta should not lead to the appearance of infrared
singularities. The ability to remove and change external momenta is widely used (see, for
example, [50] and references and discussions therein). We show it in our example below,
where we will consider in detail the computation of the singular structure of a 5-loop
diagram that contributes to the β-function of the ϕ4-model.

To show the applicability of the kR′-operation, it is convenient to start with the one-
loop and two-loop examples.
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, (8)
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]
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1
ε
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=
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. (11)

The R′-operation extracts the singularities of subgraphs. In the considered case, we
have the singular internal loop, which singularity is shown in Equation (10). Therefore,
the R′-operation of the considered two-loop diagram has the following form

R′
[

→q

]
= →q

− N4
1
ε →q

. (12)

Evaluating loops in the r.h.s. of (12) and taking its singular parts (by the k-operation),
we have

(12)

Evaluating loops in the r.h.s. of (12) and taking its singular parts (by the k-operation),
we have
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kR′
[

→q

]
= k

[

→q
− N4

1
ε →q

]

= N2
4

[
1

2ε2

(
1 +

(
5 + 2L

)
ε
)
− 1

ε2

(
1 +

(
2 + L

)
ε
)]

= N2
4

[
− 1

2ε2 +
1
2ε

]
, (13)

where

L = ln

(
µ2

q2

)
. (14)

As we can see, the r.h.s. of (13) is q2-independent.
Fifth loops. Consider the fifth-loop diagram contributed to β-function of ϕ4-model.

The kR′-operation of the diagram has the following form

kR′
[

A B
→q

]
= k

[

A B
→q

− N4
1
ε A

B
→q

]
, (15)

which contains the diagram itself and the counter-term, corresponding the singularity of
the internal loop.

Since the right-hand side in (15) is q2-independent, we can cancel the external mo-
menta in the considered points and transfer them to the points A and B:

kR′
[

A B
→q

]
= k

[

A B
→q

− N4
1
ε A

B
→q

]
. (16)

Taking the external momenta in the points A and B as it was done in the r.h.s, we
have the following form for the considered diagrams

I4

A B

→q
− N4

ε
I3

A B

→q
= Nd C4 A(1, 1 + 4ε)

(
µ2

q2

)5ε

− NdN4
C3

ε
A(1, 1+ 3ε)

(
µ2

q2

)4ε

, (17)

where the integrals I4 and I3 are the internal blocks, which produce the diagrams in the
r.h.s. of (16) after integration of the blocks with the propagator between A and B. From
the dimensional property, the integrals I4 and I3 can be represented in the following form

I4

A B

→q
= N4

d C4
(µ2)4ε

(q2)1+4ε
, I3

A B

→q
= N3

d C3
(µ2)3ε

(q2)1+3ε
, (18)

where C4 and C3 are the coefficient functions of the integrals I4 and I3.

Therefore, we get that
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where the integrals I4 and I3 are the internal blocks, which produce the diagrams in the
r.h.s. of (16) after integration of the blocks with the propagator between A and B. From
the dimensional property, the integrals I4 and I3 can be represented in the following form
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which contains the diagram itself and the counter-term, corresponding the singularity of
the internal loop.

Since the right-hand side in (15) is q2-independent, we can cancel the external momenta
in the considered points and transfer them to the points A and B:
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Taking the external momenta in the points A and B as it was done in the r.h.s, we have
the following form for the considered diagrams
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where the integrals I4 and I3 are the internal blocks, which produce the diagrams in the
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Therefore, we get that
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where the integrals I4 and I3 are the internal blocks, which produce the diagrams in the
r.h.s. of (16) after integration of the blocks with the propagator between A and B. From the
dimensional property, the integrals I4 and I3 can be represented in the following form
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, (15)

which contains the diagram itself and the counter-term, corresponding the singularity of
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menta in the considered points and transfer them to the points A and B:
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1
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]
. (16)

Taking the external momenta in the points A and B as it was done in the r.h.s, we
have the following form for the considered diagrams
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ε
I3
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Therefore, we get that

(18)

where C4 and C3 are the coefficient functions of the integrals I4 and I3.
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Therefore, we get that
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kR′
[

A B
→q

]
= N4 Sing

[
C4 A(1, 1+ 4ε) − C3

ε
A(1, 1 + 3ε)

]
, (19)

where all q2-dependence is cancelled in the r.h.s. singular terms.
For the similar diagram but with the index 1− ε in the line between A and B, we have

the following

kR′
[

A B

C

1−ε

→q

]
= N4 Sing

[
C4 A(1 − ε, 1 + 4ε) − C3

ε
A(1 − ε, 1 + 3ε)

]
. (20)

We would like to note that in this diagram we can represent, as an outer line, the line
between points A and C, that is, we get

kR′
[

A B

C

→q

]
= k

[

A B

C

→q

− 1
ε A

B

C

→q

]
(21)

and, thus,

kR′
[

A B
1−ε

→q

C ]
= N4 Sing

[
C4,1 A(1, 1+ 3ε) − C3,1

ε
A(1, 1 + 2ε)

]
, (22)

where C4,1 and C3,1 are the coefficient functions of the integrals I4,1 and I3,1, which are
the internal blocks, which produce the diagrams in the r.h.s. of (21) after integration of
the blocks with the propagator between A and C. From the dimensional property, the
integrals I4,1 and I3,1 can be represented in the following form

I4,1

A C

→q
= N4

d C4,1
(µ2)4ε

(q2)1+3ε
, I3,1

A C

→q
= N3

d C3,1
(µ2)3ε

(q2)1+2ε
, (23)

because they contain one line with the index 1 − ε.

Now we consider the diagram, similar to the initial one, but with lines between A
and B and A and C, having the indices 1 − ε. Taking as above, the line between A and C
as an external one, we have the following results

kR′
[

A B

D E

1−ε

1−ε

→q

C ]
= N4 Sing

[
C4,1 A(1 − ε, 1 + 3ε) − C3,1

ε
A(1 − ε, 1 + 2ε)

]
. (24)

(19)

where all q2-dependence is cancelled in the r.h.s. singular terms.
For the similar diagram but with the index 1− ε in the line between A and B, we have

the following
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We would like to note that in this diagram we can represent, as an outer line, the line
between points A and C, that is, we get
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where the integrals I4 and I3 are the internal blocks, which produce the diagrams in the
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the blocks with the propagator between A and C. From the dimensional property, the
integrals I4,1 and I3,1 can be represented in the following form
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, I3,1

A C

→q
= N3

d C3,1
(µ2)3ε

(q2)1+2ε
, (23)

because they contain one line with the index 1 − ε.

Now we consider the diagram, similar to the initial one, but with lines between A
and B and A and C, having the indices 1 − ε. Taking as above, the line between A and C
as an external one, we have the following results
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where all q2-dependence is cancelled in the r.h.s. singular terms.
For the similar diagram but with the index 1− ε in the line between A and B, we have

the following

kR′
[

A B

C

1−ε

→q

]
= N4 Sing

[
C4 A(1 − ε, 1 + 4ε) − C3

ε
A(1 − ε, 1 + 3ε)
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. (20)
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kR′
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A B
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− 1
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(21)
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where C4,1 and C3,1 are the coefficient functions of the integrals I4,1 and I3,1, which are
the internal blocks, which produce the diagrams in the r.h.s. of (21) after integration of
the blocks with the propagator between A and C. From the dimensional property, the
integrals I4,1 and I3,1 can be represented in the following form
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d C3,1
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, (23)

because they contain one line with the index 1 − ε.

Now we consider the diagram, similar to the initial one, but with lines between A
and B and A and C, having the indices 1 − ε. Taking as above, the line between A and C
as an external one, we have the following results

kR′
[

A B

D E

1−ε
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C ]
= N4 Sing

[
C4,1 A(1 − ε, 1 + 3ε) − C3,1

ε
A(1 − ε, 1 + 2ε)

]
. (24)(24)

The l.h.s. diagram, which contains two lines with the index 1− ε, can be evaluated
exactly. Indeed, we can represent the r.h.s. diagrams as combinations blocks, containing
two lines with the index 1− ε, and some additional line between D and E:
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kR′
[

A B

C
D E

1−ε

1−ε
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]
= k

[

A B

C
D E
→q

1−ε

1−ε
− 1

ε A
B

C
D E

1−ε

1−ε
→q

]

= Nd Sing
[

C4,2 A(1, 1+ 2ε) − C3,2

ε
A(1, 1 + ε)

]
, (25)

where C4,2 and C3,2 are the coefficient functions of the integrals I4,2 and I3,2, which can be
obtained from the diagrams in the r.h.s. taking out the line between D and E. Since they
have two lines with the index 1 − ε, from dimensional properties the integrals I4,2 and I3,2
can be imagined as

I4,2

D E

→q
= N4

d C4,2
(µ2)4ε

(q2)1+2ε
, I3,2

D E

→q
= N3

d C3,2
(µ2)3ε

(q2)1+ε
, (26)

Now we consider the integral I4.2. After integrating of the internal loop, we have

A B

C
D E
→q

1−ε

1−ε
= Nd A(1, 1)

A B

C
D E
→q

ε 1−ε

1−ε
. (27)

The vertex DAC in the r.h.s. diagram is unical and, thus, it can be replaced by triangle
as it was shown in Equation (6). Therefore, we have

Nd A(1, 1)

A B

C
D E
→q

ε 1−ε

1−ε
= D

B

C
D E2−2ε

→q
(28)

Now the triangle CBE in the r.h.s. diagram is unical and, thus, it can be replaced by
vertex in an agreement with (6):

D
B

C
D E2−2ε

→q
= Nd A(1, 1) D

B

C
D E ε

1−ε

1−ε
→q

(29)

Therefore, finally, we have

A B

C
D E
→q

1−ε

1−ε
= Nd A(1, 1) D

B

C
D E ε

1−ε

1−ε
→q

= Nd A(1, 1) J(1)1
1

q2ε
, (30)

(25)

where C4,2 and C3,2 are the coefficient functions of the integrals I4,2 and I3,2, which can be
obtained from the diagrams in the r.h.s. taking out the line between D and E. Since they
have two lines with the index 1− ε, from dimensional properties the integrals I4,2 and I3,2
can be imagined as
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Now we consider the integral I4.2. After integrating of the internal loop, we have
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Now the triangle CBE in the r.h.s. diagram is unical and, thus, it can be replaced by
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Now the triangle CBE in the r.h.s. diagram is unical and, thus, it can be replaced by
vertex in an agreement with (6):
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Therefore, finally, we have
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(q2)1+2ε
, I3,2

D E

→q
= N3

d C3,2
(µ2)3ε

(q2)1+ε
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Now we consider the integral I4.2. After integrating of the internal loop, we have
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1−ε

1−ε
= Nd A(1, 1)

A B

C
D E
→q

ε 1−ε

1−ε
. (27)

The vertex DAC in the r.h.s. diagram is unical and, thus, it can be replaced by triangle
as it was shown in Equation (6). Therefore, we have

Nd A(1, 1)

A B

C
D E
→q

ε 1−ε

1−ε
= D

B

C
D E2−2ε

→q
(28)

Now the triangle CBE in the r.h.s. diagram is unical and, thus, it can be replaced by
vertex in an agreement with (6):

D
B

C
D E2−2ε

→q
= Nd A(1, 1) D

B

C
D E ε

1−ε

1−ε
→q

(29)

Therefore, finally, we have

A B

C
D E
→q

1−ε

1−ε
= Nd A(1, 1) D

B

C
D E ε

1−ε

1−ε
→q

= Nd A(1, 1) J(1)1
1

q2ε
, (30)(30)

where the integral J(1)1 is the table one (see [16]) (Note that the results obtained in [16] are
a simple recalculation of the corresponding results [7,8,12,13] found in the x-space. For
recalculation, it is convenient to use the concept of the so-called dual diagrams (see, for
example, [38–41]), which are obtained from the original ones by replacing all momenta with
coordinates. With this replacement, the results of the FIs themselves remain unchanged, and
only their graphical representation changes. In general, dual diagrams are used [38–41])
in the massless case, but they can also be used [51–53] for propagators with masses.):
J(1)1 = J1(1, 1, 1, 1, 1, 1− ε, 1− ε). Here
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where the integral J(1)1 is the table one (see [16]) (Note that the results obtained in [16] are
a simple recalculation of the corresponding results [7,8,12,13] found in the x-space. For
recalculation, it is convenient to use the concept of the so-called dual diagrams (see, for ex-
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coordinates. With this replacement, the results of the FIs themselves remain unchanged,
and only their graphical representation changes. In general, dual diagrams are used [38–
41]) in the massless case, but they can also be used [51–53] for propagators with masses.):
J(1)1 = J1(1, 1, 1, 1, 1, 1− ε, 1 − ε). Here

J1(a1, a2, a3, a4, a5, a6, a7)(q2) =

a1

a3

a2

a6

a7

a5

→q
a6

= N3
4 C1(a1, a2, a3, a4, a5, a6, a7)

(µ2)3ε

(q2)a−3d/2 , (31)

where a = ∑7
k=1 ai, and

C1(a1, a2, a3, a4, a5, a6, a7) =
1

1 − 2ε

[
B0ζ5 +

(
B1ζ6 + B2ζ3

3
)
ε + O(ε2)

]
(32)

with

ai = 1 + aiε, B0 = 20, B1 = 50, B2 = 20 + 6
7

∑
k=4

ai (33)

It is convenient to write C(1)
1 = C1(1, 1, 1, 1, 1, 1− ε, 1 − ε) as

C(1)
1 = C(0)

1

(
1 − 3ζ2

3
5ζ5

ε

)
, (34)

where
C(0)

1 = C1(1, 1, 1, 1, 1, 1, 1) =
10

1 − 2ε

[
2ζ5 +

(
5ζ6 + 2ζ3

3
)
ε +O(ε2)

]
(35)

The counter-terms I3(q2), I3,1(q2) and I3,2(q2) can be expressed also though
J1(a1, a2, a3, a4, a5, a6, a7) in the following from:

I3,2(q2) = J1(1, 1− ε, 1 − ε, 1, 1, 1, 1), I3,1(q2) = J1(1 − ε, 1, 1, 1, 1, 1, 1), I3(q2) = J1(1, 1, 1, 1, 1, 1, 1) . (36)

Therefore, within the accuracy O(ε2) their coefficient functions are coincide:

C3 = C3,1 + O(ε2) = C3,2 + O(ε2) = C(0)
1 +O(ε2) . (37)

Taking into account above relations and the results for the one-loop results A(α, β),
it is possible to show that within the accuracy O(ε2) the results for four-loop coefficient
functions are also coincide. Indeed,

C4,1 = C4,2
A(1, 1+ 2ε)

A(1 − ε, 1 + 3ε)
− C3,1

ε

e(−Lε)

A(1 − ε, 1 + 3ε)

[
A(1, 1 + ε)− A(1 − ε, 1 + 2ε)

]
+O(ε2),

C4 = C4,1
A(1, 1+ 3ε)

A(1 − ε, 1 + 4ε)
− C3

ε

e(−Lε)

A(1 − ε, 1 + 4ε)

[
A(1, 1+ 2ε)− A(1 − ε, 1 + 3ε)

]
+O(ε2)

and the terms ∼ C3,1 and ∼ C3 are suppressed and we have

C4 = C4,1 + O(ε2) = C4,2 + O(ε2) (38)

and, thus,

C4 = C(1)
1 + O(ε2) = C(0)

1

(
1 +

3ζ2
3

10ζ5
ε

)
+ O(ε2) (39)
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A(1− ε, 1 + 3ε)

[
A(1, 1 + ε)− A(1− ε, 1 + 2ε)

]
+ O(ε2),

C4 = C4,1
A(1, 1 + 3ε)

A(1− ε, 1 + 4ε)
− C3

ε

e(−Lε)

A(1− ε, 1 + 4ε)

[
A(1, 1 + 2ε)− A(1− ε, 1 + 3ε)

]
+ O(ε2)

and the terms ∼ C3,1 and ∼ C3 are suppressed and we have

C4 = C4,1 + O(ε2) = C4,2 + O(ε2) (38)

and, thus,

C4 = C(1)
1 + O(ε2) = C(0)

1

(
1 +

3ζ2
3

10ζ5
ε

)
+ O(ε2) (39)

Therefore, for the initial diagrams, shown in the r.h.s of Equation (15), using the r.h.s
of (19), we have
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→q
= N5

4
C(1)

1
5ε2(1 − 2ε)(1 − 6ε)

(
µ2

q2

)5ε

(40)

and

→q
= N4

4
C(0)

1
4ε2(1 − 5ε)

(
µ2

q2

)4ε

. (41)

Therefore, for the initial combination shown in (15), we have

(4π)10 kR′
[

A B
→q

]
= Sing

[
C(1)

1 e5Lε

5ε2(1 − 2ε)(1 − 6ε)
− C(0)

1 e4Lε

4ε2(1 − 5ε)

]
, (42)

where L is give in Equation (14). Taking the results for C(1)
1 and C(0)

1 , given in
Equations (34) and (35), respectively, we have

(4π)10 kR′
[

→q

]
= − ζ5

ε2 − 1
ε

(
5
2

ζ6 +
17
5

ζ2
3 − 5ζ5

)
. (43)

4. Calculation of Massive Feynman Integrals (Basic Formulas)

Feynman integrals with massive propagators are significantly more complicated ob-
jects compared to the massless case (see, for example, the recent review [54]). The basic
rules for calculating such diagrams are discussed in Section 2, which are supplemented
by new ones containing directly massive propagators.

Let us briefly consider the rules for calculating diagrams with the
massive propagators.

Propagator with mass M is represented as

1
(q2 + M2)α

=
M

α→q
. (44)

The following formulas hold:

(40)

and
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Feynman integrals with massive propagators are significantly more complicated
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=
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The following formulas hold:
A. For simple chain of two massive propagators with the same mass, we have

1
(q2 + M2)α1

1
(q2 + M2)α2

=
1

(q2 + M2)(α1+α2)

or graphically
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A. For simple chain of two massive propagators with the same mass, we have

1
(q2 + M2)α1

1
(q2 + M2)α2

=
1

(q2 + M2)(α1+α2)
,

or graphically

M M

α1 α2→q
=

M

α1 + α2→q
, (45)

i.e., the product of propagators with the same mass M is equivalent to a new propagator
with the mass M and an index equal to the sum of the indices of the original propagators.

B. Massive tadpole is integrated as

∫ Dk
k2α1(k2 + M2)α2

= Nd
R(α1, α2)

M2(α1+α2−d/2)

where

R(α, β) =
Γ(d/2 − α1)Γ(α1 + α2 − d/2)

Γ(d/2)Γ(α2)
. (46)

C. A simple loop of two massive propagators with masses M1 and M2 can be repre-
sented as hypergeometric function, which can be calculated in a general form, for example,
by Feynman-parameter method. With this approach, it is very convenient to represent the
loop as the integral of the propagator with the “effective mass” µ [55–67]:

(4π)d/2 ×
∫ Dk

[(q − k)2 + M2
1]

α1 [k2 + M2
2 ]

α2

=
Γ(α1 + α2 − d/2)

Γ(α1)Γ(α2)

∫ 1

0

ds sα1−1 (1 − s)α2−1

[s(1 − s)q2 + M2
1s + M2

2(1 − s)]α1+α2−d/2

=
Γ(α1 + α2 − d/2)

Γ(α1)Γ(α2)

∫ 1

0

ds
s1−α̃2 (1 − s)1−α̃1

1
[q2 + µ2]α1+α2−d/2 ,

(
µ2 =

M2
1

1 − s
+

M2
2

s

)
.

It is useful to rewrite the equation graphically as

M2

M1

α1

α2

→q
= Nd

Γ(α1 + α2 − d/2)
Γ(α1)Γ(α2)

∫ 1

0

ds
s1−α̃2 (1 − s)1−α̃1

µ

α1+α2−d/2→q
. (47)

D. For any triangle with indices αi (i = 1, 2, 3) and masses Mi there is the following
relation, which is based on integration by parts (IBP) procedure [6,34,35,57–59]
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(d − 2α1 − α2 − α3)
M1

M2 M3
α2

α1

α3

→
q2−q1

→
q1−q3

→
q3−q2

= α2

[ M1

M2 M3

α2+1

α1−1

α3

→
q2−q1

→
q1−q3

→
q3−q2

−
[
(q2 − q1)

2 + M2
1 + M2

2

]
×

M1

M2 M3

α2+1

α1

α3

→
q2−q1

→
q1−q3

→
q3−q2

]

+α3

[
α2 ↔ α3, M2 ↔ M3

]
− 2M2

1α1 ×
M1

M2 M3
α2

α1+1

α3

→
q2−q1

→
q1−q3

→
q3−q2

. (48)

Equation (48) can be obtained by entering the factor (∂/∂kµ) (k − q1)
µ into the trian-

gle integrand, shown below as [...]. Indeed, using the procedure of integration by parts,
we obtain

d
∫

Dk
[
...
]
=
∫

Dk
(

∂

∂kµ
(k − q1)

µ

) [
...
]
=
∫

Dk
∂

∂kµ

(
(k − q1)

µ
[
...
])

−
∫

Dk (k − q1)
µ ∂

∂kµ

([
...
])

(49)

The first term in the r.h.s. becomes to be zero because it can be represented as a sur-
face integral on the infinite surface. Evaluating the second term in the r.h.s. we reproduce
Equation (48).

As it is possible to see from Equations (48) and (49) the line with the index α1 is distin-
guished. The contributions of the other lines are the same. Therefore, we will call below
the line with the index α1 as a “distinguished line”. It is clear that a various choices of the
distinguished line produce different types of the IBP relations.

The IBP relations lead to differential equations [57–59,68–72] for the considered dia-
grams (see an example in Section 5) with inhomogeneous terms containing simpler dia-
grams, i.e., diagrams containing fewer propagators. By repeating the IBP procedure sev-
eral times, in the last step we can obtain an inhomogeneous term containing only very
simple diagrams that can be computed using the A–C rules discussed above, as well as
the rules discussed in Section 2. By integrating successively the terms in all other inhomo-
geneous terms, in the last step we can get the result for the original diagram.

E. I would also like to note the importance of the inverse-mass expansions of mas-
sive FIs depending on one mass (or on two masses in the on-shall case). The structure of
the coefficients of such expansions often has some universality, preserving the complexity
(or rang) of harmonic (or nested) sums [73,74] (a more detailed discussion can be found
in a recent review [75]). This property simplifies the structure of the results (and the cor-
responding ansatz for it), and also makes it possible to predict the unknown terms of the
expansion. This property is associated with a specific form of differential equations (see
discussions in [76–80]) and is most successfully used in the so-called canonical approach
[71,72], which is currently the most popular.

Note also that a similar property (in reality, even more strict) takes place in the N = 4
super Yang–Mills (SYM) model not only for some master integrals, but for the kernel of the
Balitsky–Fadin–Lipatov–Kuraev (BFKL) equation [81–88], as well as for the anomalous di-
mensions contributed to the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAR) equa-
tions [89–93], and for Wilson coefficient functions (see, respectively, [94–99]). This prop-
erty was called [94] the principle of maximal transcendentality and allows us to obtain
anomalous dimensions of Wilson operators and Wilson coefficient functions without any
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kernel of the Balitsky–Fadin–Lipatov–Kuraev (BFKL) equation [81–88], as well as for the
anomalous dimensions contributed to the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
(DGLAR) equations [89–93], and for Wilson coefficient functions (see, respectively, [94–99]).
This property was called [94] the principle of maximal transcendentality and allows us to
obtain anomalous dimensions of Wilson operators and Wilson coefficient functions without
any calculations, directly from the corresponding QCD results (if they exist). Moreover,
this property (together with the rules [100,101] for analytic continuation) allows predicting
the ansatz [102,103] for finding the solution of the corresponding Bethe-ansatz [104–106]
and obtaining results for anomalous dimensions in high orders of perturbation theory (see,
respectively, [95–98,107–111]. Thus, the anomalous dimensions of the Wilson operators
were found [111] in the seven-loop approximation.

5. Two-Loop on-Shall Master Integral

Consider the two-loop on-shall master integral (with q2 = −m2)
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5. Two-Loop on-Shall Master Integral

Consider the two-loop on-shall master integral (with q2 = −m2)

I(m2, M2) =

m

m
M

M

→q
, (50)

contributing to the αs-correction to the ratio between the pole and MS masses of the Higgs
boson in the standard model.

Except for special places, below we will not indicate the masses m and M, but will
use rather thin and thick lines for propagators with m and M, respectively.

Applying the IBP relation for the inner loop of the integral I(m2, M2), we have

(d − 3) I(m2, M2) =

2

− 2 − (4M2 − m2)

2

. (51)

It is possible to see that the last integral in the r.h.s. can be represented as

− 1
2

∂

∂M2 I(m2, M2) (52)

and, thus, Equation (51) can be rewritten as the differential equation

(4M2 − m2)
1
2

∂

∂M2 I(m2, M2) = (d − 3) I(m2, M2) + J(m2, M2) , (53)

where the inhomogeneous term

J(m2, M2) = 2 −
2

(54)

contains only less complicated diagrams. The solution of the equation with the boundary
condition T(M2 → ∞, m2) = 0 has the following form

I(M2, m2) = N2
4 I(x)

(µ2)2ε

(m2)2ε
, J(M2, m2) = N2

4 J(x)
µ2

(m2)2ε
, (55)

I(x) = −(4x − 1)1/2−ε
∫ ∞

x

2I1(x1)dx1

(4x1 − 1)3/2−ε
= − (4 − z)1/2−ε

z1/2−ε

∫ z

0

2J(z1)dz1

z1/2+ε
1 (4 − z1)(3/2−ε)

, (56)

where
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obtaining results for anomalous dimensions in high orders of perturbation theory (see,
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where

x =
M2

m2 , z =
M2

m2 =
1
x

. (57)

5.1. J(x)

The result for the first diagram of J(x) can be written in the following form [112,113]:
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The result for the first diagram of J(x) can be written in the following form [112,113]:

2 = N2
4
(µ2)2ε

(M2)2ε

[
1

2ε2 +
1
2ε

− 1
2
+ ln z +

1 − z
z

Li2(z)
]

, (58)

where
Li2(z) = Li2(z) + ln z ln(1 − z) (59)

and Li2(z) is dilogarithm [114] (more complicated functions can be found in Refs. [115–
117]).

The result for off-shall one-loop can be presented in the form (by using, for example,
the rule C)

→q
=

N4

(1 − 2ε)

(µ2)ε

(m2)ε

[
1
ε
+

1 + y
1 − y

[
ln y + ε

(
1
2

ln2 y − 2 ln y ln(1 + y)− 2Li2(−y)− ζ2

)]]
, (60)

where y is so-called conformal variable (see Appendix A with the substitution m2 → −q2),
which is very convenient in the case of massive FIs (see, for example, [55,56,66,118])

Taking on-shall limit (see also Appendix A), i.e.,

z = 1, y =

√
3 + i√
3 + i

,
1 + y
1 − y

=

√
3

i
, ln y = −πi

3
, Li2(−y) = −1

3
ζ2 +

2i
3

Cl2
(π

3

)
i2 = −1 , (61)

where Cl2(π/3) is the Clausen function, we have

=
N4

(1 − 2ε)

(µ2)ε

(m2)ε

[
1
ε
− a1 − a2ε

]
, (62)

with
a1 = − π√

3
, a2 =

4√
3

Cl2
(π

3

)
− π√

3
ln 3 . (63)

Then, the result for the second diagram of J(x) can be written in the following form

2

=
N2

4
(1 − 2ε)

(µ2)2ε

(M2)ε(m2)ε

[
1
ε2 − a1

ε
− a2

]
. (64)

Thus, for J(x) we have the following result

J(z) =
[
− 1

2ε2 +

(
a1 −

3
2

)
1
ε
+ a2 + 2a1 −

9
2
+ a1 ln z +

1 − z
z

Li2(z) +
1
2

ln2 z
]

. (65)

5.2. I(x)
To find the result for the initial diagram I(x), see Equation (56), we have to calculate

several integrals.
The first integrals, which corresponds to z-independent part of J(x), is very simple:

I1(x) = (4x − 1)1/2−ε
∫ ∞

x

dx1

(4x1 − 1)3/2−ε
=

1
2(1 − 2ε)

. (66)

Other integrals can be calculated at the accuracy ε = 0. The integral ∼ ln z in J(x) can
be evaluated using integration by parts (A similar application of the integration by parts
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several integrals.
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The first integrals, which corresponds to z-independent part of J(x), is very simple:

I1(x) = (4x− 1)1/2−ε
∫ ∞

x

dx1

(4x1 − 1)3/2−ε
=

1
2(1− 2ε)

. (66)

Other integrals can be calculated at the accuracy ε = 0. The integral ∼ ln z in J(x) can
be evaluated using integration by parts (A similar application of the integration by parts
procedure for integral representations can be found in the recent article [119], where FIs
containing elliptic structures were considered.) as

I2(x) = (4x− 1)1/2
∫ ∞

x

dx1

(4x1 − 1)3/2 ln
(

1
x1

)
=

1
2

[
ln
(

1
x

)
− Ĩ(x)

]
, (67)

where (see Appendix A)

Ĩ(x) = (4x− 1)1/2
∫ ∞

x

dx1

x1(4x1 − 1)1/2 =
(4− z)1/2

z1/2

∫ z

0

dz1

z1/2
1 (4− x1)1/2

=
2
t

∫ t

0

dt1

1 + t2
1
= −1 + y

1− y
ln y (68)

and, thus,

I2(x) =
1
2

[
ln z +

1 + y
1− y

ln y
]

. (69)

The integral ∼ ln2 z in J(x) can be evaluated using integration by parts similarly to
the previous one. We have

I3(x) = (4x− 1)1/2
∫ ∞

x

dx1

(4x1 − 1)3/2 ln2
(

1
x1

)
=

1
2

[
ln2
(

1
x

)
+ 2 Ĩ1(x)

]
, (70)

where (see Appendix A)

Ĩ1(x) = (4x− 1)1/2
∫ ∞

x

dx1

x1(4x1 − 1)1/2 ln x1 = − (4− z)1/2

z1/2

∫ z

0

dz1

z1/2
1 (4− x1)1/2

ln z1

= −2
t

∫ t

0

dt1

1 + t2
1

ln[z1(t1)] = −
1 + y
1− y

∫ 1

y

dy1

y1
ln[z1(y1)] . (71)

The last integral can be calculated using integration by parts as

−
∫ 1

y

dy1

y1
ln[z1(y1)] = ln y ln z−

∫ 1

y

dy1(1 + y1)

y1(1− y1)
ln y1 = ln y ln z +

1
2

ln2 y + 2Li2(1− y) ≡ T1(y) , (72)

and, thus,

Ĩ1(x) =
1 + y
1− y

T1(y) and I3(x) =
1
2

ln2 z +
1 + y
1− y

T1(y) . (73)

The last term ∼ Li2(z) in J(x) can be evaluated using integration by parts similarly to
the previous ones. It can be represented as

I4(x) = (4x− 1)1/2
∫ ∞

x

dx1 (x1 − 1)
(4x1 − 1)3/2 Li2(1/x1) =

1
2

[
−2 + z

2z
Li2(z) + Ĩ2(x)

]
, (74)
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where

Ĩ2(x) = −(4x− 1)1/2
∫ ∞

x

dx1 (x1 + 1/2)
x1(4x1 − 1)1/2

∂

∂x1
Li2(1/x1)

=
(4− z)1/2

z1/2

∫ z

0

dz1 (2 + z1)

2z1/2
1 (4− z1)1/2

∂

∂z1
Li2(z1) (75)

Since
∂

∂z
Li2(z) = −

ln z
1− z

(76)

we have

Ĩ2(x) = − (4− z)1/2

z1/2

∫ z

0

dz1 (2 + z1)

2z1/2
1 (4− z1)1/2

ln z1

1− z1
= −2

t

∫ t

0

dt1 (1 + 3t2
1)

(1 + t2
1)(1− 3t2

1)
ln[z1(t1)]

=
1
t

∫ t

0
dt1

[
1

1 + t2
1
− 3

1− 3t2
1

]
ln[z1(t1)] = −

1
2

1 + y
1− y

T1(y)− 3 Ĩ21(x) . (77)

Now, we study the term Ĩ21(x). Considering the integral

∫ t

0
dt1

1
1− 3t2

1
= − 1

2
√

3
ln

(
1−
√

3t
1 +
√

3t

)
, (78)

we see an appearance of the new variable

ξ =
1−
√

3t
1 +
√

3t
(79)

Using the new variable ξ (see Appendix A), we have for Ĩ21(x):

Ĩ21(x) =
1

2
√

3t

∫ 1

ξ

dξ1

ξ1
ln

(
(1− ξ1)

2

(1 + ξ1 + ξ2
1)

)
(80)

Since
(1− ξ1)

2

(1 + ξ1 + ξ2
1)

=
(1− ξ1)

3

(1− ξ3
1)

and
1√
3t

=
1 + ξ

1− ξ
, (81)

we can evaluate the integral Ĩ21(x) in the following form (We see the appearance of a
polynomial structure (1 + ξ1 + ξ2

1) in the integrand (80), which leads to the appearance of
the poly-logarithms with the argument ξ3 below in (82). A similar polynomial structure has
already been developed, for example, in [55,56,67,120–124] and in the more complicated
cases the structure leads to the appearance of the cyclotronic poly-logarithms [125–127].)

Ĩ21(x) =
1 + ξ

2(1− ξ)

[
3Li2(ξ)−

1
3

Li2(ξ3)− 8
3

ζ2

]
≡ 1 + ξ

2(1− ξ)
T2(ξ) (82)

and, thus,

Ĩ2(x) = − 1 + y
2(1− y)

T1(y)−
3(1 + ξ)

2(1− ξ)
T2(ξ) ,

I4(x) = −2 + z
4z

Li2(z)−
1 + y

4(1− y)
T1(y)−

3(1 + ξ)

4(1− ξ)
T2(ξ) . (83)
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Thus, the initial master integral I(x) can be expressed as

I(x) =
1
2

(
1
ε2 +

5− 2a1

ε
+ 19− 8a1 − 2a2

)
− a1

[
ln z +

1 + y
1− y

ln y
]
− 1

2
ln2z

+
2 + z

2z
Li2(z)−

1 + y
2(1− y)

T1(y) +
3(1 + ξ)

2(1− ξ)
T2(ξ) . (84)

6. Conclusions

In this short review, we have presented the results of calculating some massless and
massive Feynman integrals.

In the massless case, we considered a 5-loop master diagram that contributes to the
β-function of the ϕ4-model. The results for this diagram were obtained [7,8,12,13] by
Dmitry Kazakov, but it published without any intermediate calculations. Our calculations
are performed in detail (the other two diagrams were discussed in [16]) and the final result
coincides with that obtained by Kazakov.

In the massive case, we considered the computation of one of the master integrals
contributing to the relationship between the MS-mass and the pole-mass of the Higgs
boson in the standard model in the limit of heavy Higgs. The results for this master integral
contain dilogarithms with unusual arguments.
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Appendix A

Here we present the sets of the new variables that are useful for integrations in the
case of massive diagrams:

t2 =
z

4− z
, z =

4t2

1 + t2 , 4− z =
4

1 + t2 , (dz) =
8t(dt)

(1 + t2)2 ;

y =
1− it
1 + it

, t =
1− y

i(1 + y)
, 1 + t2 =

4y
(1 + y)2 , (dt) = −2

i
(dy)

(1 + y)2 ,
(dt)

1 + t2 = − 1
2i

(dy)
y

;

ξ =
1−
√

3t
1 +
√

3t
, t =

1√
3

1− ξ

1 + ξ
, z =

4t2

1 + t2 =
(1− ξ)2

1 + ξ + ξ2 =
(1− ξ)3

1− ξ3 ,

(dt) = − 2(dy)√
3(1 + y)2

,
(dt)

1− 3t2 = − 1
2
√

3
(dξ)

ξ
. (A1)
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