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Abstract: A holographic model of probe quarkonia is presented, where the dynamical gravity—dilaton
background was adjusted to the thermodynamics of 2 + 1 flavor QCD with physical quark masses.
The quarkonia action was modified to account for the systematic study of the heavy-quark mass
dependence. We focused on the [/¢ and Y spectral functions and related our model to heavy
quarkonia formation as a special aspect of hadron phenomenology in heavy-ion collisions at LHC.
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1. Introduction

Heavy-quark flavor degrees of freedom are currently receiving strong interest as
valuable probes of hot and dense strong-interaction matter produced by the heavy-ion
collisions at LHC energies. The information encoded, e.g., in quarkonia (c¢, bb) observables,
supplements penetrating electromagnetic probes and hard (jet) probes and the rich flow
observables, thus complementing each other in characterizing the dynamics of quarks
and gluons until the final hadronic states (cf., contributions in [1,2] for the state of the
art). Since heavy quarks essentially emerge in early, hard processes, they witness the
course of heavy-ion collision—either as individual entities or subjects of dissociating and
regenerating bound states [3-5]. Accordingly, the heavy-quark physics addresses such
issues as charm (¢, ¢) and bottom (b, b) dynamics related to transport coefficients [6~10] in
the rapidly evolving and highly anisotropic ambient quark-gluon medium [11,12] as well
as c¢ and bb states as open quantum systems [13-16]. The rich body of experimental data
from LHC, and also from RHIC , enabled a tremendous refinement of our understanding of
heavy-quark dynamics. For a recent survey on quarkonium physics, we refer the interested
reader to [17].

The yields of various hadron species, light nuclei and anti-nuclei—even such ones
which are only very loosely bound [18]—emerging from heavy-ion collisions at LHC ener-
gies are described by the thermo-statistical hadronization model [19] with high accuracy.
These yields span an interval of nine orders of magnitude. The final hadrons and nuclear
clusters are described by two parameters: the freeze-out temperature Ty, = 155 MeV and
a freeze-out volume depending on the system size or centrality of the collision. Due to
the near-perfect matter-antimatter symmetry at top LHC energies, the baryo-chemical
potential yp is exceedingly small, g/ Tf, < 1. It is argued in [19] that the freeze-out of
color-neutral objects only happens in the demarcation region of hadron matter to quark-
gluon plasma, i.e., of confined vs. deconfined strong-interaction matter. In fact, the lattice
QCD results report a pseudo-critical temperature of T, = (156 &+ 1.5) MeV [20]—a value
agreeing with the disappearance of the chiral condensates and the maximum of some
susceptibilities. The key is the adjustment of physical quark masses and the use of 2 + 1
flavors [21,22], in short, QCD , 1 (phys). Details of the (maybe accidental) coincidence of
the deconfinement and chiral symmetry restoration are currently matters of debate [23],
as is the formation of color-neutral objects out of the cooling quark-gluon plasma at T..
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For instance, [24] advocates flavor-dependent freeze-out temperatures. Note that at T,
no phase transition happens, rather the thermodynamics is characterized by a cross-over
accompanied by a pronounced dip in the sound velocity.

Among the tools for describing hadrons as composite strong-interaction systems is
holography. Anchored in the famous AdS/CFT correspondence, holographic bottom-up ap-
proaches have facilitated a successful description of mass spectra, coupling strengths/decay
constants, etc. of various hadron species. While the direct link to QCD by holographic
QCD-dual or rigorous top—down formulations are still missing, one has to restrict the acces-
sible observables to explore certain frameworks and scenarios. We consider here a minimal
framework within the Einstein—dilaton model class, which merges (i) QCD; ; 1(phys) ther-
modynamics, described by a dynamical holographic gravity—dilaton background, with
(ii) holographic probe quarkonia. We envisaged a scenario which embodies the QCD
thermodynamics of QCD; , 1(phys) and the emergence of hadron states at T, at the same
time. One motivation of our work was the exploration of a holographic model, which
is in agreement with the above hadron phenomenology in heavy-ion collisions at LHC
energies. Early holographic attempts [25-27] of hadrons at non-zero temperatures faced
the problem of meson melting at temperatures significantly below the deconfinement
temperature T;. Several proposals have been made [28-31] to determine rescue avenues
which accommodate hadrons at and below T,. Otherwise, a series of holographic models of
hadron melting without reference to QCD thermodynamics, e.g., [31-40], finds quarkonia
states well above, at and below T; in agreement with lattice QCD results [41-44]. It is
therefore tempting to account for the proper QCD-related background.

We followed [45-48] and modelled the holographic background by a gravity-dilaton
set-up, i.e., without adding further fundamental degrees of freedom (as done, e.g., in [49,50]
and Refs. therein (The influence of the tachyon dual to the quark condensate can be
neglected for heavy mesons.)) to the dilaton, which was originally solely related to the
gluon degrees of freedom [51]. That is, the dilaton potential was adjusted to QCD; . 1 (phys)
lattice data. In the temperature region T ~ O(T.), the impact of the charm and bottom
degrees of freedom on the quark-gluon-hadron thermodynamics is minor [52]. Thus, we
considered quarkonia as test particles. If the gravity—dilaton background is considered
to be unique, it is known that there would be no confinement at zero temperature [48].
As we show, this problem can be efficiently solved by a less intricate generalization of the
standard action of the soft-wall model [53] inspired by [54] which evince a principle to bring
together QCD thermodynamics and the confinement of test particles at zero temperature.
Our emphasis is on the formation of quarkonia in a cooling strong-interaction environment
mimicking conditions in heavy-ion collisions at LHC. Thereby, the quarkonia properties
are described by spectral functions.

Our paper is organized as follows. In Section 2, the dynamics of the probe quarkonia
is formulated and the coupling to the thermodynamics-related background is explained
(the recollection of the gravity—dilaton dynamics and the consideration of special fea-
tures are relegated to Appendix A). Numerical solutions in the charm (J/¢) and bottom
(Y) sectors with respect to quarkonium’s spectral functions and systematic formation
are dealt with in Section 3. The tested two-parameter Schrodinger potential facilitates
bottomonium formation through the rapid squeezing of the spectral function towards
a narrow quasi-particle state in a small temperature interval around T.. An analogous
behavior is accomplished for charmonium by a three-parameter potential considered in
Section 4. The squeezing of the charmonium spectral function extends over a somewhat
longer temperature interval and requires a particular parameter setting. We summarize in
Section 5.

2. Quarkonia as Probe Vector Mesons

The action of quarkonia as probe vector mesons in string frame is:

1 _
S = [ dtxdzy/gae? Gul) P, M
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where the function G, (¢) carries the flavor (or heavy-quark mass, labeled by m) depen-
dence and F? is the field strength tensor squared of a U(1) gauge field A in 5D asymptotic
anti-de Sitter (AdS) space time, with or without a black hole (BH), with the bulk coordi-
nate z and metric fundamental determinant gs; ¢ is the scalar dilatonic field with a zero
mass dimension. The gauge field A in the bulk was sourced by a current operator of
the structure Q7,Q at the boundary, where Q stands for the heavy quark field operator.
The structure of (1) is that of a field-dependent gauge kinetic term, familiar, e.g., from
realizations of a localization mechanism in brane world scenarios [55-57].

The action (1) with G, = 1, originally put forward in the soft-wall (SW) model for
light-quark mesons [53], is also used for describing heavy-quark vector mesons [32-34], e.g.,
charmonium [35,36] or bottomonium [58]. As emphasized, e.g., in [35], the holographic
background encoded in g5 and ¢ must be chosen differently to imprint the different
mass scales, since (1) with G,; = 1 as such would be flavor blind. Clearly, the combi-
nation exp{—¢}Gu(¢) in (1) with flavor-dependent function G, (¢) is nothing but ef-
fectively introducing a flavor-dependent dilaton profile ¢, = ¢ — log G;,;, while keeping
the thermodynamics-steered hadron-universal dilaton ¢. In fact, many authors use the form
Sy = LV [d*xdz V/gse Im F? to study the vector meson melting by employing different pa-
rameterizations of ¢, to account for different flavor sectors. Here, we emphasize the use of
a unique gravity—dilaton background for all flavors and include the quark mass (or flavor)
dependence solely in Gy,.

Our procedure to determine G, was based on the import of information from the
hadron sector at T = 0. The action (1) leads via the gauges A, = 0 and 0" A, = 0 and
the ansatz A, = €, ¢(z) exp{ipyx"} with y,v = 0,-- - , 3, which uniformly separates the z
dependence of the gauge field by the bulk-to-boundary propagator ¢ for all components of
A, and the constant polarization vector €, to the equation of motion:

1 (LA 4 (8o G — 1)¢7 + (log 1) @' + P2 = 0 2
97+ 34+ (Oplog G —1)¢" + (log ) |¢" + 779 = 0, 2

where A(z,zp) is the warp factor and f(z,zy) denotes the blackening function in the AdS
+ BH metric with a horizon at zy:

®)

ZZ
st = exp( Az zu)} | £z zm) - @ - =2,

f(zr ZH)

and a prime denotes the derivative with respect to the bulk coordinate z. Both A(z,zp)
and f(z,zy) are solutions of Einstein’s equation with a dilatonic potential adjusted to
QCD thermodynamics with physical quark masses in the temperature range 100 MeV
< T < 400 MeV (cf., Appendix A in [59] and Appendix A for more details); ¢(z,zy) is also
dynamically determined and is consistent with the metric coefficients via field equations.

By the transformation ¢(¢) = ¢(z(&)) exp{3 fog dz S7(¢)} one gets the form of a one-
dimensional Schrodinger equation with the tortoise coordinate ¢:

[02 = (Ur(2(2)) —m2) ] 9u(@) =0, n=0,1,2,--, @

where one has to employ z(¢) from solving 9z = (1/f)d.. The Schrodinger equivalent
potential is:

1 1 1
Ur = <28’T + 4$%> f2+58eff ()
as a function of ¢(z) with:

Sr=-A — ¢ +09.1og Gu(p(z)). (6)

N[ —
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At T =0 (label “0"), f = 1and { — z and Ut — Uy with:

Uo(z) = %55 n %S@, @)
Sy = %Aé(z) — ¢p(2) + 92 1og G (¢o(2)), ®

and (4) becomes:
(2 + (Uo(z) — m2)] g = 0 ©

with normalizable solutions ¥, and discrete states with masses squared m? = p# Pus
n=20,1,2, - for quarkonia at rest. That is, at T = 0, one has to deal with a suitable
Schrodinger equivalent potential Uy (z) to generate the desired spectrum m1,,. In such a way,
the needed hadron physics information at T = 0 is imported by parameterizing Uy in a
suitable manner (see Sections 3 and 4).

The next step is solving (7) to obtain Sy(z) and with (8), then G, (¢) with G, (0) = 1.
This procedure requires the knowledge of the warp factor Ag(z) and the dilaton profile
¢0(z), which are determined by Equations (A2)—(A4) in Appendix A. The governing dilaton
potential V(¢) in turn is found by an adjustment to lattice QCD data. On the one hand,
at T < 100 MeV, there are nearly no lattice QCD data of the needed thermodynamic
quantities, such as sound velocity and entropy etc., at our disposal. On the other hand,
at T > 100 MeV the rich body of lattice QCD data has, despite the great progress made,
still non-negligible error bars. We therefore must assume that the ansatz (A5) delivers
an adequate representation of the QCD input (see Figure 5-left in [59] for the sound
velocity squared). Leaving a dedicated investigation of the potential impact of variations of
V(¢) under constraints of lattice QCD thermodynamics data for follow-up work, we then
used the so determined G, (¢) = G (z(¢o)) as universal (i.e., temperature-independent)
function.

The equation of motion (2) of ¢ can also be employed to compute quarkonia spectral
functions, cf., [25,33-35,60]. For w? = pt pu > 0 fixed, the asymptotic boundary behavior
facilitates two linearly independent solutions by considering the leading order terms on
both sides of the interval [0,zg]. (i) For z — 0, one has, due to the AdS asymptotics
at the boundary, the general solution is:

p(z = 0) - A(w)¢g1 + B(w) 2 (10)

with two w-dependent complex constants A and B, and ¢i1(z — 0) — 1 and
@2(z — 0) — (z/zy)?; (ii) near the horizon, z — zp, the asymptotic behavior of solutions
of (2) is steered by the poles of 1/ f and 1/ f2. The two linearly independent solutions are
p+(z = zy) = (1— %)ii“’/ |f'(z1)l, where ¢+ represent out-going and in-falling solutions,
respectively. The obvious and commonly used side conditions for the bulk-to-boundary
propagator are ¢(0) = 1, which means A(w) =1, and ¢(z — zy) = ¢_(z — zy) (purely
in-falling solution at the black hole horizon).

Then, the corresponding retarded Green function GR of the dual current operator
Q7,Q, defined within the framework of the holographic dictionary via a generating

functional by gR = m <exp{l f d*x ABQ’)/UQ}>, is given by (cf., [61])
52V on-shell 1 2%k
R _ m _ . Lo« / _
g (w) - &Aoy(_w) 5A2(CU) - klli%zq) (Z)q) (Z) Z%_IB((U) (11)

with k = 22’# and A,g = e, exp{ipyx¥} for p € {1, 2, 3}. The quantity S,/ on-shell gorotes
here the action (1) with the solution ¢ from (2). Finally, the spectral function p follows from
p(w) =ImGR(w) = ZZTkIm B(w).

H
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3. Two-Parameter Potential—Bottomonium Formation

Our setting does not explicitly refer to a certain quark mass m. Instead, an ansatz
Uo(z; P) with a parameter n-tuple {§ } was used such to catch a certain quarkonium
mass spectrum. Therefore, m is to be considered as a cumulative label highlighting the
dependence of G, on a parameter set { } which originally enters Uy and which is to be
adjusted to the charmonium and bottomonium masses observed in nature.

As a transparent model, we select the two-parameter potential [33,35]:

2
Uy(z) = Z(i) +a?z?/L* + 4b/L? (12)

which is known to deliver via (9) the normalizable functions ¢, with discrete eigenvalues:
L>m? =4(a+b+na), n=0,1,2,---. (13)

The potential (12) is a slight modification of the SW model [53]. We choose these
parameters as follows. The mass 1y determines the ground state (g.s.) “trajectory” in the
a-b plane, b = %Lzm% — a, and mj determines the first excitation (1st) “trajectory” by b =
%Lzm% — 2a. Using the PDG values of [/, ¢’ and Y(1S, 2S) adjusts the “trajectories” as
solid and dashed lines in Figure 1, where we employ the scale setting with L =1 = 1.99 GeV,
which is related to the QCD thermodynamics sector (see Appendix A in [59]). Allowing for
a 10% variation of m1, one arrives at the colored bands in Figure 1. By such a parameter
choice, one places emphasis on the quarkonia g.s. masses as representatives of the heavy
quark masses and less emphasis on the level spacing of excitations and ignores other
possible constraints.

Figure 1. Constant ground state masses (fat solid lines) and the respective first excitations (dashed
lines; a £5% corridor is depicted by colored bands) at T = 0 over the dimensionless a—b plane of
the potential (12). Color code: green—Y; red—] /1. The bullets mark selected parameters for the
spectral functions exhibited in Figure 2. The black curves exhibit the loci at which the peaks of the
spectral functions completely disappear, i.e., they represent the contours of melting temperatures
T,i:l ,(a,b) = 150, 200, and 250 MeV. That is, for a given point (g, b) in the parameter space, the spectral

function in the energy range of the ground state displays a peak only for T < T8

melt”

As we shall demonstrate below, the ansatz (12) has several drawbacks, and therefore,
is to be considered as an illustrative example. For instance, the sequence of radial Y
excitations in nature does not form a strictly linear Regge trajectory [62]. This prevents an
unambiguous mapping of ny; — (a,b). While the radial excitations of ]/ follow quite
accurately a linear Regge trajectory in nature [62], the request for accommodating further
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]/ properties in U also calls for modifying (12), cf., [35,60]. Despite the mentioned deficits,
the appeal of (12) and (13) is nevertheless the simply invertible relation m?(a, b) yielding
a(mp,) and b(mg ). Since we are going to study the systematic, we retain the primary
parameters a and b in what follows. Instead of discussing the results at isolated points
in parameter space referring to J/¢ and Y ground states mg and first excited states m,
we consider the systematic over the a-b plane.

The black curves in Figure 1 exhibit the contours Ti:l ;(a,b) = 150, 200, and 250 MeV.
The melting temperature Ti’:l' ; is determined by the disappearance of the peak of the
g.s. spectral function upon the temperature increase. One observes a strong parameter
dependence as well, which determines the spectral functions, as can be seen in Figure 2.
Changing the parameters (a,b) deforms the potential (12) in a characteristic manner [59],
e.g., going on a g.s. trajectory to the right squeezes the excited states to higher energies,
as can be identified in Figure 1, in particular for the Y. Such changes immediately affect
the spectral functions.

10* T T 10 T T 10* T T
1°F Y 1 mg, (0.6595,4.99) T 10°F Y 2 mg, (1.069, 4.58)) 1 1°F Y 1y, (1.5238, 4] 1257)]
10°F 10°F 10
N :\:q ':L‘
10'F 10'F 10'F
[ —
10°-/K/‘"‘- 10°F / I 10%F 4
10;1.5 22‘.0 22‘. 23.0 10;1.5 22‘.0 22‘.5 23.0 10;1.5 22‘.0 225 23.0
L* W L’ o L* W
10* T T T T 10 T T T v 10* T T T T
10°r T/ 2 my, (0.2842, 0.3212)] 10°r T/ mg, (0.4056,0.1999) 10° (0.6027, 0.0027)
10° 4 10°
Q U
D
10'F 4 10’
10°F 10° p
10;.0 2?2 274 276 2?8 3.0 105.0 272 2.4 2?6 278 3.0 10;.0 . 276 278 3.0

L*u? L} L*o?

Figure 2. Spectral functions sz(w, T) of Y (top row) and ]/ (bottom row) in the ground state (g.s.)
energy region at T = 100 (blue), 150 (green), and 200 MeV (red). For parameters (g, b) on the g.s.
trajectories, i.e., for PDG values of my. The values of (a, b) are given in the legends; these positions
are marked in Figure 1 by bullets.

In Figure 1, it looks like an accidental coincidence that, at the crossing points of the
g.s. and first excitation trajectories of J /¢ and Y, the melting temperature is 150 MeV. In
other words, in a cooling system, the formation of the quarkonium ground state seems to
start when passing the temperature of 150 MeV. This is consistent with the claim in [19]
which advocates the formation of hadron states at T ~ 155 MeV ~ T,. Consistency does
not necessarily mean perfect agreement. The criteria for “melting” or “onset of formation”
are not very precise. For instance, [60] uses the relative high of the spectral function’s peak
over the smooth background as a threshold value to define “melting”. The transition to
a quasi-particle with sharp spectral function does not happen instantaneously but within
some temperature span, as can be seen in the top panels in Figures 3 and 4. Considering the
dynamics of the cooling system as a sequence of equilibrium states, the spectral-function
contour-plots in Figures 3 and 4 are suggestive: upon cooling, the strength of a hadron
state is consecutively concentrated to a narrow energy range, eventually forming the quasi-
particle. Displaying a spectral function at a few selected temperatures, as in Figure 2, and
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bottom panels of Figures 3 and 4 as well, only insufficiently illustrates such a feature but is
useful for a more quantitative account.

The inspection of the top panels of Figures 3 and 4 unravels that the temperature
difference from wasl , until the formation of a sharp quasi-particle state is quite large. Sharp
quasi-particles can be identified by the squeezed contour lines which eventually nearly
coincide with the peak position of the spectral functions depicted by the red dashed curves
in the top panels of Figures 3 and 4. Keeping the quarkonia ground state masses m and
artificially allowing for a somewhat larger value of the first excited state 7y moves the
quarkonia formation temperatures to larger values, in particular for Y, as can be seen
in the right panels in Figure 3. In such a way, the quasi-particle formation temperature

T}Z(rlj) ~ T, copes with the claim in [19] of hadron formation at T;. The |/, in contrast,
would be formed at T//¥

Form < T, (see Figure 4) in conflict with the advertisement of [19].

Section 4 provides a potential ansatz Uy(z; P ) which accomplishes T}O/ ;fn ~ T,.

200 . . 200
180} 180
160} 160
> >
= 2
& &
S 10} = 140
‘\
120F 120} \ J
Y : mo, My + 5% :
\
]
1 1
1995 22.0 22.5 23.0 1995 22.0 22.5 23.0
L'.Z w? L2 UJZ
104 1 ] T 1 ] 1 ] 104 T T L)
Y:m Y : mg, my + 5%
0%k 0,1 i 0%k 0, M1 o i
10%f 10%f g
QU QU
" 7
10'F 10'F 1
10°F 10°F -
10-1 3 10-1 1 1 1
20 22 24 26 28 30 20 22 24 26 28 30
L2 w2 L2 UJ2

Figure 3. Bottomonium formation. Top row: contour plots of the spectral functions L?p(w, T)
(the red dashed curves depict the peak position of the respective spectral function; they terminate
at Ty,,;;; dashed horizontal lines indicate T = 150 MeV), bottom row: spectral functions L?p(w, T)
at several temperatures (T = 100 (blue), 150 (green), and 200 MeV (red), left column: for potential
parameters (g, b) = (0.6924, 4.9571), i.e., at such values where the m 1(a,b) trajectories cross; right
column: (g, b) = (1.3266, 4.3229), i.e., at crossing points of the m trajectory with the upper limit of the

10% corridor of the respective first excitation (Ti‘:l' ; = 234 MeV).
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200 T . r r 200 T T r r
'\/
180} 180} -
160} 160}
% >
= 140f = 140f
S S
120} 120}
100} 100}

10 T r T 10* T T T
3 J/ 9 moj 3 J/¢ : mg, my + 5%
10°F - 10 -
10? 10%f .
QU QU
S S
10’ 10" -
10° 10° ; __ / :
10-1 1 10-1 L L L
2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0 3.5 4.0
L2 w2 L2 UJZ

Figure 4. Charmonium formation. Top row: contour plots of the spectral functions L?o(w, T),
bottom row: spectral functions L?p(w, T) in the energy region of g.s. and first excitation at several
temperatures (T = 100 (blue), 150 (green), and 200 MeV (red)), left column: (a, b) = (0.2522, 0.3533)
i.e., at such values where the 11 (a,b) trajectories cross; right column: (g, b) = (0.338, 0.2675), i.e., at
crossing points of the m trajectory with the upper limit of the 10% corridor of the respective first
excitation.

To understand why the [ /1 (Y) reacts so sluggishly (violently) on a modification of m1;
while keeping m fixed, we mention that the parameter a in (12) changes by 33% (92%, i.e.,
a factor of nearly two) upon a 5% increase in 717, (due to the non-linearity of the J*¢ =17~
bottomonium Regge trajectory, the energy of m; + 5% is between the 33S;/Y(3S) and
4351 /Y (4S) states. For charmonium, in contrast, m; + 5% is well below the 33S; /1(4040)
state, cf., [62].) which is to been seen in connection with the curvature 842 of Uy at the

minimum z,,;,, /L = (3/(4a?)) /% The more the potential Uj is squeezed by parameter
variation, e.g., by larger values of 4, the less sensitive the temperature of is Ur, as can be
seen in Figure 2 in [59] and Figure 6 below. At the origin of these differences is the ratio of
m% /m3 which is 1.42 for ] /1 and 1.12 for Y, respectively. It enters the scaled potential (12)
Uo(2 = moz,{ = m%/m% - 1)/m% = %2’2 + f—ééziz — { + 1 solely as a parameter.

A second issue refers to the formation of excited states. It seems to be a generic feature
of the holographic model class considered here that higher excited states would form at
lower temperatures than the respective g.s.—in particular Tg:r'm > T}S:m > T};‘fm -, as
can be seen in the bottom panels in Figures 3 and 4. The conjecture of [19], in contrast,

advocates Tfosrm ~ Tlgﬁ " This feature is to be seen in relation to the considered ansatz of

Up(z; a,b) with the IR behavior « z?: a much steeper increase in Uy at larger values of z
would concentrate the melting temperatures in a narrow corridor.
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In addition to the ansat, (12) facilitates a sequential quarkonium formation upon de-
creasing temperature, T?oim > Tt > 7204 etc., which potentially allows for some flavor

form form
Yo(rlys) > T! g :fn The thermal mass shifts have a non-trivial temperature
dependence as evidenced in Figure 5. Such thermal mass shifts are employed in [9] to
pin down the heavy-quark (HQ) transport coefficient y which can be considered as the
dispersive counterpart of the HQ momentum diffusion coefficient x = 273/ (DT), where
D stands for the HQ spatial diffusion coefficient. In [17], the author seemingly stresses a
tension within previous holographic results [36], where positive mass shifts are reported,
in contrast to negative shifts, e.g., in [34]. Our set-up qualitatively resolves this issue
since, depending on the considered temperature, the thermal mass shift can be negative or
positive, see Figure 5. One should note, however, that our thermal mass shifts of |/ and
Y are larger than the lattice QCD-based values quoted in [9,44].

dependence, e.g., T

~.. 25k g oL L -

3 Y £32r gy

= 24k i 5 3.0k i
2.8 -

21100 120 140 160 180 200 220 240 2'¥OO 120 140 160 180 200

T/ MeV T/ MeV

Figure 5. Positions of the peaks of the spectral functions of Y (left panel) and ]/ (right panel) as a
function of temperature. The right end points of the solid curves define T,,.;; fore the g.s. (lower blue
solid curves) and first excitation (upper green dotted curves). The dashed lines depict the masses
squared at T = 0. The difference of the solid or dotted curves to the dashed lines is termed “thermal
mass shift” squared. For (a, b) = (1.3266, 4.3229)|y and (0.338, 0.2675)|; /y- as in the right columns of
Figures 3 and 4.

Finally, let us remind that the two-parameter ansatz (12) is appealing since it allows
for analytic solutions with respect to the excitation spectrum and an easy overview of the
parameter dependencies. However, the authors of [35,60] already promoted (12) a “shift
and dip potential” to catch more properties of the |/ states rather than only masses.

4. Three-Parameter Potential with Dip—Charmonium Formation

The two-parameter potential Uy(z;a,b) from (12) with the realistic values of a(m )
and b(myg 1) facilitate ] /1 formation at too low temperatures. This failure can be repaired
by turning to more appropriate parameterizations. For instance, [35,60] proposed a four-
parameter “dip and shift potential” which allows for ] /¢ melting temperatures significantly
above T, as does the construction in [31-34,36] deploying three parameters. The essence
is a dip in Up(z; P ) which holds together the spectral strength despite large temperatures.
Here, we consider such an option. The difference to previous work is the use of the dynam-
ical background related to QCD, as described in Appendix A.
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The construction of a particular three-parameter potential Uy (z; M, k, T') is as follows. Use
Ap(z) = —2logz/L and ¢o(z; M, k,T) = k222 + Mz + tanh x [58] with x = 1/Mz — k/V/T.
Dueto Uy = 3 (3A5 — ¢}) + 1 (3 Ay — ¢})? (see (7) and (8)) the potential is given by

Up(z Mk T) = 25+ iM? + k2% + 51 + K2 Mz
3 1 K2 1
- (W""ﬁ"'m)m (14

+ b [4sinhx coshx +1]—1

4M2z4 cosh* x”

The first three terms in the top line suggest a correspondence M=4v/b/L and k=y/a/L
by a comparison with (12), while the next two terms cause some modification of (12) at
intermediate values of z. The second line of (14) is essentially responsible for the dip—
somewhat modified by terms in the third line. The dip position is determined to a large
extent by the 1/ cosh® term which peaks at z = v/T/(kM); the sinh term in the third
line shifts the dip tip to smaller values of z. The UV and IR asymptotics are the same as
for the potential (12). The dip position and the dip depth are interrelated, in contrast to
the construction in [35,60].

The potential (14) might exhibit some non-trivial local structures as a function of z for
particular parameters. In [58], the author advocates the optimum parameters M = 2.2 GeV
(representing a mass scale of non-hadronic decays); k = 1.2 GeV (representing the quark
mass); and VT = 0.55 GeV (representing the QQ string tension) to yield the J/¢ () mass
of 2.943 (3.959) GeV) and the decay constant of 399 (255) MeV (see Table I in [58], the entries
displaying “Holographic Results for Charmonium”). Note the resulting overestimated
level spacing quantified by m?/m3 = 1.81, in contrast to the PDG value of 1.42, when
deploying these parameters.

Completely analog to the two-parameter potential (12), increasing the parameter k at
M = const, the potential (14) is squeezed and becomes deeper. Analogously, decreasing
the parameter /T at constant values of k and M lets drop the absolute minimum of Uy.
One may select such parameter pairs of (k, M) at a constant /T to keep the g.s. mass g
constant, see the horizontal dashed line the in left panel of Figure 6. Due to the squeezing
of the potential, the interior (left) part was less influenced when imposing a horizon at zy,
where Ur(z = zy) = 0 is facilitated according to (5). As a result, the more the potential
is squeezed, the smaller the values of zy are which are allowed to hold the /¢ prior to
melting. This is the very reason which forces us to enlarge the parameter k (or a in (12))
to achieve quarkonium formation at sufficiently high temperatures in agreement with the
perspective put forward in [19]. The dip in the potential (14) is useful in that respect since
enlarging the parameter 4 in the flat potential (12) influenced the quarkonium formation
in a less effective manner for /1. Let us emphasize that we put more weight on the g.s.
mass 1y (see the fat solid curve in the right panel of Figure 6) as the representative of the
quark mass, while we relaxed the constraint on the excited state 77 to be in a realistic range
(see the dashed curve and colored band in the right panel of Figure 6), thus following the
rationale in [35].

Having Uy at our disposal, we proceed as in Section 3. The contour plots of the
J /¢ spectral function are exhibited in the top panels of Figure 7. One observes again
the tendency of charmonium formation as a narrow corridor of contour lines at too low
temperatures for parameters delivering exactly the PDG values of 1 1, as can be seen in
the left top panel. This is quantified by the spectral functions shown in the left bottom panel
of Figure 7 which display only a broad peak at T = 150 MeV. Modifying the parameters
as such to catch mg and m; + 5% DPG values significantly improves the approach to
charmonium formation near T, as can be seen in the right panels of Figure 7, despite
the yet imperfect squeezing of the contour lines in the right top panel. Nevertheless,
the spectral function becomes well peaked at T = 150 MeV, as can be seen in the right
bottom panel of Figure 7.
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Figure 6. Left panel: the potential Uy from (14) (upper fat solid curves) and the resulting Ut from
(5)-(8) (lower dashed curves) as a function of z for v/T = 1.5 GeV and values (k, M) = (0.676,4.007)
(blue), (1.053,2.90) (green), and (1.44,1.87) (red). The dashed horizontal line depicts the J/¢ g.s.
mass squared m% from Uy which is the same for all three parameter selections. Right panel: the 1 ;
trajectories with PDG values in the k-M plane at v/T = 1.5 GeV. The m; + 5% corridor is depicted as
a colored band. The three parameter pairs (k, M) of the left panel are shown by bullets.
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Figure 7. Charmonium formation in the three-parameter potential (14). Top row: contour plots of
the spectral functions (the red dashed red curves depict the peak positions of the spectral functions);
bottom row: spectral functions for a few selected values of the temperature, T = 100 (blue), 150
(green), and 200 MeV (red); left column: (ﬁ ,k, M) = (1.0,0.825,3.656) GeV (yielding PDG values
of mgy, TS, = 228 MeV); right column: (v/T,k, M) = (1.0,0.9818,3.1398) GeV (yielding mo and

m

my + 5%, T&S = 361 MeV).
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Finally, we exhibit in Figure 8 the contour plot of the charmonium spectral function
(left panel) and the spectral function at selected temperatures (right panel) for the param-
eter set (\/f ,k, M) = (0.55,1.2,2.2) GeV favored in [58]. These parameters, albeit with
noticeable deviations to the PDG values of my 1, realize the charmonium formation as
a transition from the spectral function to a narrow, quasi-particle state at temperatures
slightly below T.. While the squeezing of the contour lines near T; in the left panel of
Figure 8 is apparently not so pronounced as in the case of bottomonium (see right top panel
in Figure 3), the spectral function displays a sharp peak at T¢, see right panel of Figure 8.
Insofar, it is justified to speak on charmonium formation at T; for the given parameter set.
We emphasize the QCD-related background employed here, in contrast to the schematic
background in [58].

300 10* T r y T T
3
250 10°F .
J/¢
107 -
E 200 N
= ~
™~ ~
& 10" —
150
10° .
100
10-1 3 3 3 3

1.5 20 25 30 35 40 45
L? ?

Figure 8. Charmonium formation in the potential (14) for the parameter set (vT,k, M) =
(0.55,1.2,2.2) GeV favored in [58], here combined with the QCD-related background. Left panel:
contour plot of the charmonium spectral function L2p. The dashed red curves are for the first two
peak positions (T}ifl ; = 464 MeV). The dashed horizontal line indicates T = 150 MeV; Right panel:
spectral functions L?p at temperatures of 100 (blue), 150 (green), and 200 (red) MeV.

To complete the systematic related to charmonium, we exhibit in Figure 9 the quantity
—log Gy, as a function of ¢. Note the huge variation of G, (¢). In general, G, (¢) sensitively
depends on the parameters in Uy and is tightly related to the background.

An analog study of the Y formation is hampered by some uncomfortable structures
of Uy(z; M, k,T'). References [31,32,36] advocate parameters which avoid such obstacles,
however, these result in a value of m3(Y(1S)) being only one half of the PDG value. We
therefore did not perform an analysis of the potential ansatz (14) in the QCD-related
background since the two-parameter potential (12) was already shown to successfully
accomplish bottomonium formation at Te.
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Figure 9. The quantity —log G, (¢) calculated from Equations (7) and (8) with Ay, ¢, deduced from the
thermodynamics in Appendix A and the potential (14) with (v/T,k, M) = (1.0,0.825,3.656) GeV yielding
PDG values of charmonium masses 11y 1. G, (¢) is supposed to be independent of temperature.

5. Summary

In summary, we introduced a modification of the holographic vector meson action
for quarkonia such to join (i) the QCD, . 1(phys) thermodynamics, dynamically and con-
sistently described by a dilaton and the metric coefficients in AdS + BH, with (ii) realistic
quarkonia masses at zero temperature. Both pillars, thermodynamics and quarkonium
mass spectra, are anchored in QCD as a common footing. The formal holographic con-
struction was based on an effective dilaton ¢, = ¢ — log G;,;, where ¢ is solely tight to the
light-quark-gluon thermodynamics background, while the flavor-dependent quantity G,
is determined by a combination of ¢ and the adopted Schrodinger equivalent potential Uy
at zero temperature. Uy encodes the flavor (or quark mass) dependence and can be chosen
with much sophistication to accommodate many quarkonia properties. We explore here the
systematic of a two-parameter model to demonstrate the features of our scheme, where the
thermodynamic background at T > 0 and meson spectra at T = 0 serve as a QCD-based
input to analyze the quarkonia formation at T > 0. We tested a scenario where quarkonium
formation was considered as an adiabatic process, i.e., a sequence of equilibrium states,
and characterized by the shrinking of the respective spectral functions towards narrow
quasi-particle states, in qualitative agreement with lattice QCD studies [44]. Realistic values
of Y(15,2S) masses in fact allow the formation temperature Tf,,, of Y(1S) nearby T, in line
with the claim of [18,19] that hadrons form themselves at temperatures Tc ~ Ty, ~ 155 MeV.
Insofar, the mystery “why T, ~ Tc?” could be resolved by a dynamical process within
such a scenario: hadronization is the transit of a broad-to-narrow spectral functions within
a few-MeV temperature intervals at 7.

While quite promising, the proposed scenario was hampered by at least three issues.
First, the finding of T, ~ Tc looks somewhat accidental and is not explicitly locked
to a certain microscopic process; in addition, there is a slight tension due to the tendency of
Ttorm < Tc when deploying the exact PDG value of the Y(25) mass together with the Y(15)

PDG value. Second, the formation of the Y(2S) quasi-particle occurs at T;}(rz nf ) < T; due

to the sequential formation, which, however, could be an artifact of the two-parameter
model of Uy. Third, the envisaged scenario quantitatively fails for |/ since T < T,

form
for the two-parameter model. It happens, however, that an improved three-parameter
model Uy overcomes such problems to some extent, i.e., charmonium formation at T; is

accomplished. An ideal choice of Uy should deliver the quarkonia mass spectra (and other
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properties as well) and quarkonia formation as the rapid shrinking of the spectral functions
in a narrow temperature interval at T¢, including the excited states.

Formally, the hadronization of heavy-flavor probe quarkonia is determined by the
potential Uy, which governs the crucial function G;,, thus partially decoupling it from
the holographic background.

The herein proposed bottom-up scenario of quarkonia formation solely accommodates
the properties of vector c¢ and bb states in the holographic bulk vector field A. This is
in contrast to microscopic studies, e.g., in [3,5,63-65], where the heavy-quark interaction
with constituents of the ambient medium was dealt with in detail. Primordial contributions,
early off-equilibrium yields as well as the corresponding feedings were also not accounted
for. An important (yet) missing issue of the proposed scenario is a direct relation to
observables in relativistic heavy-ion collisions. All this calls for further investigations.
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Appendix A. Specific Features of the Holographic Gravity-Dilaton Background
Adjusted to QCD Thermodynamics

The QCD; ; 1(phys) equation of state obeys certain features. Among them are the min-
imum of the sound velocity at T ~ 145 MeV, v2(145 MeV) =~ 0.15, and the maximum of the
interaction measure at T ~ 200 MeV, (¢ — 3p)/ T4 l200 Mev = 4 [21,22]. The contributions
of charm and bottom quarks are negligible at T < 200 MeV [52]. The quoted temperature
values bracket the pseudo-critical temperature T, = (156 & 1.5) MeV which is determined
by a peak of the chiral susceptibility [20]. We focus here on the local minimum of the sound
velocity and its mapping onto the gravity—dilaton background.

Deforming the AdS metric by putting a black hole with horizon at zy yields the metric
for the infinitesimal line elements squared (3) where f(z,zp)|;=z;, = 0is a simple zero. In
identifying the Hawking temperature T(zy) = —0,f(2, 21 )|2=z,, /47 with the temperature
of the system at bulk boundary z — 0 and the attributed Bekenstein—-Hawking entropy den-
sity s(zy) = 2= exp{3 A(z,zn) |2z, }, one holographically describes the thermodynamics.
f =1at T = 0 refers to the vacuum.

The gravity—dilaton background is determined by the action in the Einstein frame:

1 1
S= 5 /d4x dz\/gT-,{R — 509 = V(9)], (A1)

where R stands for the curvature invariant and x = 87tGs. (For our purposes, the numerical
values of k¥ and G5 as well as ky in (1) are irrelevant.) The field equations and equation of
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motion for the metric coefficients and the dilaton follow from (A1) as

" . 1 2 1 12

AT = A% g, (A2)
f// — _%A/f/’ (A3)
¢ = —(éA’+f;>¢/+}eAa¢v (A4)

to be solved with boundary conditions A(z — 0) — —2log(z/L), ¢(0) = 0, ¢'(0) =0,
f(0) =1, f(zy) = 0; the prime means differentiation with respect to z. The dilaton
potential V(¢) is the central quantity [48]. If imposing certain conditions, one can describe
the QCD-relevant cross-over (instead of the phase transitions of first or second order or
a Hawking-Page transition). A necessary condition for a cross-over is (i) dyV/V, as a
function of ¢, which has a local maximum and (ii) dpV/V < V/2/3 (for refinements,
cf., [48]). Note that the adjustment of V to given lattice data is a non-local problem because
there does not exist a point-to-point relation between V(¢) and relevant thermodynamic
quantities (e.g., sound velocity as a function of the temperature).
The three-parameter ansatz:

— L2V = 12cosh(y¢) + oo + ps¢* (A5)

is sufficient for a satisfactory description of the lattice QCD; . 1 (phys) data [21,22] (more
parameters are required for a perfect match of the various thermodynamic state variables
as a function of the temperature within the full data range) by coefficients (1, ¢2, P1) =
(0.568, —1.92, —0.04) together with L=! = 1.99 GeV, see Figure 5-left in [59]. In fact,
the aforementioned conditions are met: a maximum of 9,V /V = 0.58 at ¢ = 1.84.

Togs
s(T), or s(T)/T* has an inflection point. Surprisingly, neither T(zp) nor s(zy) display
such a feature. Instead, both T(zy) and s(zp ) are monotonous functions of zy, as can be
seen in Figure Al. This means, the minimum of the sound velocity is caused by a subtle
interplay of derivatives of T(zy) and s(zy). Displaying the sound velocity squared by

v2(zy) = 92,,log T/9s,, logss, the local minimum is determined by

In general, the sound velocity squared, v2 =

acquires a local minimum if

92, T/0:yT — 0., T/T — 92, A(z = z1) /9y A(z = zpy) = 0. (A6)

These individual terms are exhibited in Figure A2. It turns out that the actually chosen
parameters facilitate the minimum of sound velocity at the crossing of the fat solid and thin
solid curves at zyy /L = 5.17, corresponding to T = 152 MeV, i.e., nearby T and thus Tfo.

In contrast to T(zy) and A(z,zp)|z=z, the dilaton profile ¢(z,zy) has a marked
imprint of the QCD specifics: this exhibits inflection points in both the z direction and zy
direction, as can be seen in Figure A3. This is a remarkable property which makes the use
of the QCD-related gravity—dilaton background distinct in comparison with the schematic
ansidtze, which additionally misses the consistent interrelations of the quantities A, f and ¢
via field equations. Note that the dilaton explicitly enters the quarkonium action (1), thus
directly leaving its imprints related to quarkonium formation.
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Figure Al. The logarithms of temperature, log LT (left panel), and entropy density, logs —
log2m/x = %A(ZH, zpy) (right panel), as a function of zy; /L. Dashed curves are for LT = 1/ (7z)
(left) and %le = —3logzy/L (right). The colored regions are for zy = [szg, ZL], which are deter-
mined by T;* = 145 MeV (position of the minimum sound velocity) and T! = 200 MeV (position of
the maximum of interaction measure [ = (e — 3p) /T*) according to [22].
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Figure A2. The terms entering (A6) multiplied by zy: 92, T/0.,, T—dashed curve; 9., T/ T—dotted
curve; BEH T/0z, T — 0z, T/T—fat solid curve; and agHA / 90z, A—thin solid curve. The yellow region
is as in Figure Al.
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Figure A3. The dilaton profile ¢(z,zp) as a function of z/zy (left panel, for z; /L = 9.28,5.22 and
3.52 corresponding to T = 100 (blue), 150 (green), 200 (red) MeV with inflection points at z/zy = 0.20,
0.33,0.44) and ¢(z, zpy ) |z=z, as a function of zy (right panel, the inflection point is at z;; /L = 2.91).
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