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Abstract: We discuss dispersion representations for the triangle diagram F(q2, p2
1, p2

2), the single
dispersion representation in q2 and the double dispersion representation in p2

1 and p2
2, with

special emphasis on the appearance of the anomalous singularities and the anomalous cuts in
these representations.
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1. Introduction

Triangle diagrams have many applications in quantum field theory; let us recall some such
applications: they give the radiative corrections to the form factors of a relativistic particle, e.g., quark
or electron; they describe the amplitudes of radiative and leptonic decays of hadrons, e.g., π0 → γγ;
they provide essential contributions to the amplitudes of hadronic decays, such as K → 3π; they
give the main contribution to the weak and electromagnetic form factors of relativistic bound states.
In addition, these diagrams are responsible for one of the most interesting phenomenon of quantum
field theory—for quantum anomalies.

In this lecture, we discuss spectral representations for the one-loop triangle Feynman diagram
with spinless particles in the loop (Figure 1) (The inclusion of spin essentially does not change the
analysis and only leads to the technical but not conceptual complications.):

F(q2, p2
1, p2

2) =
1

(2π)4i

∫ dk
(m2 − k2 − i0)(µ2 − (p1 − k)2 − i0)(m2 − (p2 − k)2 − i0)

,

q = p1 − p2. (1)

µ

1
p

2

q

m

mp
Figure 1. The Feynman diagram F(p2

1, p2
2, q2).

The function F is easily calculable in the Euclidean region of all spacelike external momenta but
has complicated analytic properties in the Minkowski space relevant for the description of processes
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with real particles. To handle these processes, dispersion representations of the diagram are known to
be very efficient.

The application of the dispersion representations to the triangle diagram has a long history
(see the original papers [1–4] and the corresponding chapters in handbooks and reviews, e.g., [5–9]).
This lecture is based to a large extent on the material of our paper [10].

One can consider single (in the variable q2) and double (in the variables p2
1 and p2

2) dispersion
representations for the triangle diagram.

An essential feature of the single spectral representation is the appearance of the anomalous
threshold [1] and the anomalous contribution to the spectral representation in a specific region of
the variables p2

1, p2
2, µ, and m: this anomalous threshold in q2 is located below the normal, or unitary,

threshold, related to the possible physical intermediate states in the unitarity relation. As a result, it
is the anomalous singularity that mainly determines the properties of the triangle diagrams in the
region of small q2. The location of the anomalous singularity and the anomalous threshold in the single
spectral representation is obtained by solving the Landau equations [2,8,11,12].

The double spectral representation in p2
1 and p2

2 for the case of the decay kinematics 0 < q2 <

(µ−m)2 also has an anomalous contribution; the latter is, however, of a different kind than the one in
the single representation in q2. In principle, all anomalous contributions are related to the motion of a
branch point of the integrand from the unphysical sheet onto the physical sheet through the normal cut
and the corresponding modification of the integration contour in the complex plane of the appropriate
variable. However, the location of the anomalous threshold in the double spectral representation in the
decay region 0 < q2 < (µ−m)2 is not determined by the Landau rules [13]. The anomalous threshold
in the double spectral representation lies beyond the normal cut, and the anomalous piece dominates
the double dispersion representation for the triangle diagram in the region q2 ' (µ−m)2.

An exhaustive analysis of the single and the double dispersion representations of the triangle
diagram for all values of the external and the internal masses can be found in [3].

We discuss here the single and the double dispersion representations of the triangle diagram,
with the emphasis on the properties of the anomalous contributions. We point out that in many cases
the application of the double spectral representation in p2

1 and p2
2 is technically much simpler than the

application of the single representation in q2.
We start, in Section 2, with the case of particles of the same mass in the loop. We illustrate the

appearance of the anomalous cut in the single spectral representation in q2 for p2
1 > 0, p2

2 > 0, and
p2

1 + p2
2 ≥ 4m2. This spectral representation has a rather complicated form especially for complex

values of p2
1 and p2

2.
In Section 3, we then discuss the double spectral representation in p2

1 and p2
2. This representation

is very simple for q2 < 0 and contains only the normal cut. This makes the application of the double
spectral representation particularly convenient for the analysis of processes described by the triangle
diagram for timelike p1 and p2 in the region p2

1 + p2
2 ≥ 4m2 and for higher overthreshold values of p2

1
and p2

2.
In Section 4, we discuss the double spectral representation in p2

1 and p2
2 for the case of particles of

different masses in the loop. Here, in the case of the decay kinematics 0 < q2 < (µ−m)2, the anomalous
contribution to the double spectral representation emerges. We emphasize that the double spectral
representation in p2

1 and p2
2 provides a very convenient tool for considering processes at overthreshold

values of the variables p2
1 and p2

2, relevant for the decay processes, such as, e.g., K → 3π decays.

2. Spacelike Momentum Transfers, Equal Masses in the Loop

In this section, we consider the case of particles of the same mass m in the loop and q2 < 0 but do
not restrict the values of p2

1 and p2
2.
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2.1. Single Dispersion Representation in q2

A normal single dispersion representation in q2 may be written as

F(q2, p2
1, p2

2) =
1
π

∫ dt
t− q2 − i0

σ(t, p2
1, p2

2). (2)

For p2
1 < 0 and p2

2 < 0, the absorptive part σ(t, p2
1, p2

2) may be calculated by the Cutkosky rules, i.e.,
by placing particles attached to the q2 vertex on the mass shell (m2− k2− i0)−1 → 2iπθ(k0)δ(m2− k2).
The result reads

σ(t, p2
1, p2

2) =
1

16πλ1/2(t, p2
1, p2

2)
log

(
t− p2

1 − p2
2 + λ1/2(t, p2

1, p2
2)
√

1− 4m2/t

t− p2
1 − p2

2 − λ1/2(t, p2
1, p2

2)
√

1− 4m2/t

)
θ(t− 4m2). (3)

The function σ(t, p2
1, p2

2) has the branch point of the logarithm at q2 = t0(p2
1, p2

2) given by the
solution to the equation (t− p2

1 − p2
2)

2 = λ(t, p2
1, p2

2)(1− 4m2/t), or, equivalently, to the equation

p2
1 p2

2t
m2 + λ(p2

1, p2
2, t) = 0. (4)

Explicitly, one finds [1,2]

t±0 (p2
1, p2

2) = p2
1 + p2

2 −
p2

1 p2
2

2m2 ±
1

2m2 R(p2
1)R(p2

2), (5)

where the function R(p2) at p2 < 0 reads

R(p2) =
√

p2(p2 − 4m2), p2 < 0. (6)

To obtain R(p2
i ) (i = 1, 2) at p2

i > 0, one substitutes [7]

p2
i = −m2 (1− ξi)

2

ξi
, i = 1, 2. (7)

This transformation maps the upper half-plane of the complex variable p2
i onto the internal

semicircle with unit radius in the complex ξ-plane: the region 0 < ξi < 1 corresponds to p2
i < 0,

the boundary of the semicircle ξi = exp(iϕi), 0 < ϕi < π, corresponds to the unphysical region
0 < p2

i < 4m2, and the segment −1 < ξi < 0 corresponds to 4m2 < p2
i . Then,

R(p2
i ) = m2 1− ξ2

i
ξi

, (8)

and, for 0 < p2
i < 4m2, we obtain

R(p2
i ) = −2i sin ϕi. (9)

Finally, R(p2), as obtained by analytic continuation, reads

R(p2) =


√

p2(p2 − 4m2) for p2 < 0,

−i
√

p2(4m2 − p2) for 0 < p2 < 4m2,

−
√

p2(p2 − 4m2) for 4m2 < p2.

(10)

Note the sign of R(p2) for p2 > 4m2, which signals that the square-root function is now on its
negative branch.
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With the definition of t±0 (p2
1, p2

2) given by (5) and (10), one can study the trajectories of t±0 (p2
1, p2

2).

2.2. The Branch Point t+0 (p2
1, p2

2)

The branch point t+0 (p2
1, p2

2), treated as the function of p2
2 at fixed p2

1, has a rather cumbersome
trajectory on the second sheet of the complex plane, but never appears on the physical sheet
(see Figure 2). This means that the motion of this branch point does not influence the single q2-spectral
representation for F(q2, p2

1, p2
2).
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Figure 2. The trajectory of the branch point t+0 (p2
1, p2

2) vs. p2
2 at a fixed value of p2

1 in the complex-q2

plane. Dashed lines denote trajectories on the second (unphysical) sheet. (a) p2
1 ≤ 0 [p2

1 = −7m2];
(b,c) 0 < p2

1 < 4m2: (b) p2
1 = 0.8m2; (c) p2

1 = 3.5m2; (d) 4m2 < p2
1 [p2

1 = 10m2]. The normal cut along
the real axis for q2 > 4m2 is depicted in blue. It is noteworthy that the branch point t+0 (p2

1, p2
2) always

remains on the second (unphysical) sheet of the Riemann surface and never migrates onto the physical
sheet. Therefore, t+0 (p2

1, p2
2) does not influence the location of the cut on the physical sheet.

2.3. The Branch Point t−0 (p2
1, p2

2)

Treated as the function of p2
2 for a fixed value of p2

1, the branch point t0 ≡ t−0 (p2
1, p2

2) has its
trajectory at p2

2 < 0 on the unphysical sheet of the complex q2-plane. However, at some value of p2
2, it

crosses the cut at t ≥ 4m2. Crossing the cut means that the branch point t0 moves onto the physical
sheet through this cut. The integration contour in the Cauchi theorem is chosen on the physical sheet of
complex variable q2 and embraces (any) region of complex variable q2, where the function F(q2, p2

1, p2
2)

of the complex variable q2 has no singularities. The migration of the branch point t0 onto the physical
sheet pushes the integration contour away from the normal threshold and leads to the appearance
of a new segment of the q2-integration on the physical sheet [10,14]. This new segment is called the
anomalous cut. The trajectories of t0(p2

1, p2
2) vs. p2

2 for four different fixed values of p2
1 are shown

in Figure 3. The dotted lines denote the segments of the trajectory lying on the unphysical sheet; the
solid lines denote those segments that are on the physical sheet.
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Figure 3. The trajectory of the branch point t0(p2
1, p2

2) ≡ t−0 (p2
1, p2

2) vs p2
2 at a fixed value of p2

1 in
the complex-q2 plane: (a) p2

1 ≤ 0 [p2
1 = −7m2]: the (dashed line) trajectory lies on the second sheet,

and does not appear on the physical sheet; (b,c) 0 < p2
1 < 4m2 [(b): p2

1 = 0.8m2, (c): p2
1 = 3.5m2]:

the trajectory first lies on the second sheet (dashed line), but for p2
2 > 4m2 − p2

1 moves around the
normal-cut branch point through the normal cut onto the physical sheet (solid line); (d) 4m2 < p2

1
[p2

1 = 10m2]: for p2
2 < 0, the trajectory runs on the unphysical sheet, but, at p2

2 = 0, it comes up to the
physical sheet and for p2

2 > 0 travels over this physical sheet. As soon as the branch point t0(p2
1, p2

2)

appears on the physical sheet, the q2-integration contour should be modified such that it embraces
both the normal cut and the branch point t0(p2

1, p2
2). The normal cut along the real axis for q2 > 4m2 is

depicted in blue.

Therefore, for external momenta satisfying the relation p2
1 > 0, p2

2 > 0, p2
1 + p2

2 > 4m2, the
integration contour in the dispersion representation for the form factor depends on the values of p2

1
and p2

2: the contour should be chosen such that it embraces both branch points: the normal branch
point at q2 = 4m2 and the anomalous branch point at q2 = t0(p2

1, p2
2).

Let us consider the single dispersion representation for the form factor in the region 0 < p2
1 < 4m2,

0 < p2
2 < 4m2, and 4m2 < p2

1 + p2
2. This case corresponds to the interesting example of a two-particle

bound state, and is necessary for considering the nonrelativistic expansion. The corresponding
t0-trajectory is shown in Figure 3. Figure 4 gives the integration contour for this case: this contour may
be chosen along the real axis from t0(p2

2) to +∞. It contains two pieces: the normal part from 4m2 to
+∞ and the anomalous part from t0 to 4m2.

Let us start with the normal part, which has the form

σnorm(t, p2
1, p2

2) =



1
16π
√

λ(t,p2
1,p2

2)
log
(

t−p2
1−p2

2+λ1/2(t,p2
1,p2

2)
√

1−4m2/t
t−p2

1−p2
2−λ1/2(t,p2

1,p2
2)
√

1−4m2/t

)
, (

√
p2

1 +
√

p2
2)

2 ≤ t,

1
8π
√
−λ(t,p2

1,p2
2)

arctan
(√

−λ(t,p2
1,p2

2)
√

1−4m2/t
t−p2

1−p2
2

)
, p2

1 + p2
2 ≤ t ≤ (

√
p2

1 +
√

p2
2)

2,

1
8π
√
−λ(t,p2

1,p2
2)

[
π + arctan

(√
−λ(t,p2

1,p2
2)
√

1−4m2/t
t−p2

1−p2
2

)]
, 4m2 ≤ t ≤ p2

1 + p2
2.

(11)
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Notice that the normal spectral density does not vanish at the normal threshold t = 4m2.
The discontinuity of the form factor F(q2, p2

1, p2
2) on the anomalous cut is related to the

discontinuity of the function σnorm(t, p2
1, p2

2) and reads

σanom(t, p2
1, p2

2) =
1

8
√
−λ(t, p2

1, p2
2)

, t0 ≤ t ≤ 4m2. (12)

Therefore, the full spectral density has the form

σ(t, p2
1, p2

2) = θ(p2
1 + p2

2 − 4m2)θ(t0 ≤ t ≤ 4m2)σanom(t, p2
1, p2

2) + θ(4m2 ≤ t)σnorm(t, p2
1, p2

2). (13)

Clearly, the spectral density given by Equations (11) and (12) is a continuous function
for t > t0. The spectral representation for the form factor then contains the normal and the
anomalous contributions:

F(q2, p2
1, p2

2) = θ(p2
1)θ(p2

2)θ(p2
1 + p2

2 − 4m2)

4m2∫
t0(p2

1,p2
2)

dt
π(t− q2 − i0)

σanom(t, p2
1, p2

2)

+

∞∫
4m2

dt
π(t− q2 − i0)

σnorm(t, p2
1, p2

2). (14)

For t0(p2
1, p2

2) < q2 < 4m2 (in case p2
1 + p2

2 > 4m2), the imaginary part of the form factor comes
from the anomalous part, while for q2 > 4m2 it comes from the normal part.

2
2

0t  (p  ,2

1
p  ) 2

2
4m

q

.

Figure 4. The integration contour (green) in the complex q2-plane for 0 < p2
1 < 4m2, 0 < p2

2 < 4m2,
and p2

1 + p2
2 > 4m2: it embraces the anomalous cut (the solid red segment from t0(p2

1, p2
2) to 4m2) and

the normal cut (blue line from 4m2 to +∞). The dotted red line displays the trajectory of the branch
point t0(p2

1, p2
2) on the unphysical sheet.

2.4. An Illustration for the Case of Equal External Masses p2
1 = p2

2

Let us now specify the general formulas given above for the case of the equal “external” masses.
We set p2

1 = p2
2 = M2, and aim at obtaining the dispersion representation for the case 2m2 < M2 < 4m2.

Notice that both p2
1 and p2

2 are below the normal thresholds; the latter are located at p2
1 = 4m2 and p2

2 = 4m2.
Nevertheless, we shall see that the anomalous threshold in the single dispersion representation in q2

will emerge.
We start with calculating the spectral density in the region M2 < 0, where it is given by

Cutkosky rules:

σnorm(t, M2) =
1

16π
√

t(t− 4M2)
log

(
t− 2M2 +

√
t(t− 4M2)

√
1− 4m2/t

t− 2M2 −
√

t(t− 4M2)
√

1− 4m2/t

)
, M2 < 0. (15)

It turns out that this expression is also valid in a broader domain, namely, M2 < m2 (see Figure 5a).
Performing the analytic continuation in variable M2 from the domain M2 < m2, we obtain the spectral
density for the region of interest 2m2 < M2 < 4m2:
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σnorm(t, M2) =



1
16π
√

t(t−4M2)
log
(

t−2M2+
√

t(t−4M2)
√

1−4m2/t

t−2M2−
√

t(t−4M2)
√

1−4m2/t

)
, 4M2 ≤ t,

1
8π
√
−t(t−4M2)

arctan
(√

t(t−4M2)
√

1−4m2/t
t−2M2

)
, 2M2 ≤ t ≤ 4M2,

1
8π
√
−t(t−4M2)

[
π + arctan

(√
t(t−4M2)

√
1−4m2/t

t−2M2

)]
, 4m2 ≤ t ≤ 2M2.

(16)

Figure 5b,c shows the cases m2 < M2 < 2m2 and 2m2 < M2 < 4m2, respectively. In the latter case,
the normal spectral density does not vanish at the normal threshold t = 4m2. The discontinuity of the
form factor F(q2, M2) on the anomalous cut is related to the discontinuity of the function σnorm(t, M2)

and reads

σanom(t, M2) =
1

8
√
−t(t− 4M2)

, t0 ≤ t ≤ 4m2, t0 =
M2

m2 (4m2 −M2). (17)

Therefore, the full spectral density has the form

σ(t, M2) = θ(M2 − 2m2)θ(t0 ≤ t ≤ 4m2)σanom(t, M2) + θ(4m2 ≤ t)σnorm(t, M2). (18)

The spectral density given by Equations (16) and (17) is a continuous function for t > t0

(see Figure 5c).
The spectral representation for the form factor reads

F(q2, M2) = θ(M2 − 2m2)

4m2∫
t0

dt
π(t− q2 − i0)

σanom(t, M2) +

∞∫
4m2

dt
π(t− q2 − i0)

σnorm(t, M2). (19)

It can be also written in the usual form

F(q2, M2) =

∞∫
t0

dt
π(t− q2 − i0)

σ(t, M2), (20)

where σ(t, M2) contains the normal and the anomalous pieces.
Figure 6 shows the calculated real parts of the normal and the anomalous contributions to the form

factor F(q2 = M2
R, M2) depending on the value of the mass of the decaying resonance M2

R = q2 > 0.
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Figure 5. Cont.
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Figure 5. The spectral density σ(t, M2) for different values of m and M. (a) M2 < m2; (b) m2 <

M2 < 2m2; (c) 2m2 < M2 < 4m2. σnorm,1 (blue line) corresponds to the analytic expression in the
first line of Equation (16); σnorm,2 (magenta line) corresponds to the analytic expression in the second
line of Equation (16); and σnorm,3 (red line) corresponds to the analytic expression in the third line of
Equation (16). σanom (black line) is given by Equation (17). Notice that, for M2 < 2m2, plots (a) and (b),
the spectral density vanishes at the normal threshold t = 4m2, whereas, in the case M2 > 2m2, plot
(c), the spectral density does not vanish neither at the normal threshold 4m2, nor at the anomalous
threshold t0.
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M = MJ/ψ = 3.1 GeV, and Mηb = 9.46 GeV.
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3. Double Dispersion Representation in p2
1 and p2

2 for Particles of Mass m in the Loop

The previous section presented the single dispersion representation in q2 for the triangle diagram
with particles of mass m in the loop. For the same triangle diagram, a double dispersion representation
in p2

1 and p2
2 may be written [15–19].

At q2 < 0, such a double dispersion representation in p2
1 and p2

2 has the form:

F(q2, p2
1, p2

2) =
∫ ds1

π(s1 − p2
1 − i0)

ds2

π(s2 − p2
2 − i0)

∆(q2, s1, s2). (21)

The double spectral density ∆(q2, s1, s2) may be obtained by placing all three particles in the loop
on the mass shell and taking the off-shell external momenta p1 → p̃1, p2 → p̃2, such that p̃2

1 = s1,
p̃2

2 = s2, and ( p̃1 − p̃2)
2 = q2 is fixed [15,16]:

∆(q2, s1, s2) =
1

8π

∫
dk1dk2dk3δ( p̃1 − k2 − k3)δ( p̃2 − k3 − k1)

×θ(k0
1)δ(k

2
1 −m2)θ(k0

2)δ(k
2
2 −m2)θ(k0

3)δ(k
3
2 −m2),

p̃2
1 = s1, p̃2

2 = s2, ( p̃1 − p̃2)
2 = q2. (22)

Explicitly, one finds

∆(q2, s1, s2) =
1

16λ1/2(s1, s2, q2)
θ
(

s1 − 4m2
)

θ
(

s2 − 4m2
)

×θ

[(
q2(s1 + s2 − q2)

)2
− λ(s1, s2, q2)λ(q2, m2, m2)

]
. (23)

The solution of the θ-function gives the following allowed intervals for the integration variables
s1 and s2:

4m2 < s2,

s−1 (s2, q2) < s1 < s+1 (s2, q2), (24)

where

s±1 (s2, q2) = s2 + q2 − s2q2

2m2 ±
√

s2(s2 − 4m2)
√

q2(q2 − 4m2)

2m2 . (25)

The final double dispersion representation for the triangle diagram at q2 < 0 takes the form
(The easiest way to obtain this double dispersion representation is to introduce light-cone variables
in the Feynman expression, and to choose the reference frame where q+ = 0 (which restricts q2 to
q2 < 0). Then, the k− integral is easily done, and the remaining y and k⊥ integrals may be written in
the form (21); details can be found in [15,16].)

F(q2, p2
1, p2

2) =

∞∫
4m2

ds2

π(s2 − p2
2 − i0)

s+1 (s2,q2)∫
s−1 (s2,q2)

ds1

π(s1 − p2
1 − i0)

1
16λ1/2(s1, s2, q2)

. (26)

Notice the relation s−1 (s2, q2) > 4m2, which holds for all s2 > 4m2 at q2 < 0: this guarantees that
the integration region in s1 always remains above the normal threshold. Clearly, the integration region
does not depend on the values of p2

1 and p2
2. It is essential for us is that no anomalous cuts emerge in the

double dispersion representation in p2
1 and p2

2 for q2 < 0. This makes the double dispersion representation
particularly convenient for treating the triangle diagram for values of p2

1 and p2
2 above the thresholds.

One should just take care about the appearance of the absorptive parts.
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4. Double Spectral Representation for the Decay Kinematics

Now, we discuss the triangle diagram with particles of different masses in the loop, m < µ, and
consider the decay kinematics 0 < q2 < (µ − m)2 [13,20–23]. We have in mind the application to
processes corresponding to the overthreshold values p2

1 > (µ + m)2 and p2
2 > 4m2, such as, e.g., the

K → 3π decay. As we have seen in the previous section, the single dispersion representation in q2 is
rather complicated for p2

1 and p2
2 above the two-particle thresholds already for equal masses in the

loop. The situation is much worse for unequal masses in the loop. On the other hand, we shall see that
the double spectral representation in p2

1 and p2
2 is rather simple for q2 < (µ−m)2.

We start with the region q2 < 0, where the double dispersion representation has the standard
form both for equal and unequal masses in the loop. We then perform the analytic continuation in q2

and observe the appearance of the anomalous contribution in the double spectral representation.

4.1. Transition Form Factor at q2 < 0

For q2 < 0, the double dispersion representation has a form very similar to the case of equal
masses [23]:

F(q2, p2
1, p2

2) =

∞∫
4m2

ds2

π(s2 − p2
2)

s+1 (s2,q2)∫
s−1 (s2,q2)

ds1

π(s1 − p2
1)

1
16λ1/2(s1, s2, q2)

, (27)

where

s±1 (s2, q2) =
s2(m2 + µ2 − q2) + 2m2q2

2m2 ± λ1/2(s2, m2, m2)λ1/2(q2, µ2, m2)

2m2 . (28)

A new feature compared with the case of equal masses in the loop is the appearance of the region
0 < q2 < (µ−m)2, which was absent in the equal-mass case. This region corresponds to the decay of
a particle of mass µ to a particle of mass m with the emission of a particle of mass

√
q2.

4.2. Transition Form Factors at q2 > 0

The form factor in the region 0 < q2 < (µ−m)2 may be obtained by analytic continuation of the
expression (26). Let us consider the structure of the singularities of the integrand in Equation (27) in
the complex s1-plane for a fixed real value of s2 in the interval s2 > 4m2.

The integrand has singularities (branch points) related to the zeros of the function λ(s1, s2, q2)

at sL
1 = (

√
s2 −

√
q2)2 and sR

1 = (
√

s2 +
√

q2)2. As q2 ≤ 0, these singularities lie on the unphysical
sheet. However, as q2 becomes positive, the point sR

1 may move onto the physical sheet through the
cut from s−1 to s+1 . This happens for values of the variable s2 > s0

2, with s0
2 obtained as the solution to

the equation sR
1 (s2, q2) = s−1 (s2, q2). Explicitly, one finds

√
s0

2 =
µ2 −m2 − q2√

q2
. (29)

The trajectory of the point sR
1 (s2, q2) in the complex s1-plane at fixed q2 > 0 vs. s2 is shown

in Figure 7. As q2 > 0, for s2 > s0
2(q

2), the integration contour in the complex s1-plane should be
deformed such that it embraces the points sR

1 and s+1 . Respectively, the s1-integration contour contains
the two segments: the normal part from s−1 to s+1 , and the anomalous part from sR

1 to s−1 . The double
spectral density for the anomalous piece is just the discontinuity of the function 1/

√
λ(s1, s2, q2).

It can be easily calculated as follows: Recall the relation
√

λ(s1, s2, q2) =
√

s1 − sL
1

√
s1 − sR

1 . The

branch point sL
1 lies on the unphysical sheet, therefore the function

√
s1 − sL

1 is continuous on the
anomalous cut located on the physical sheet. Thus, we have to calculate the discontinuity of the

function 1/
√

s1 − sR
1 which is just twice the function itself. As a result, the discontinuity of the function
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1/
√

λ(s1, s2, q2) on the anomalous cut is 2/
√

λ(s1, s2, q2). Finally, the full double spectral density,
including the normal and the anomalous pieces, takes the form

∆(q2, s1, s2|µ, m, m) =
θ(s2 − 4m2)θ(s−1 < s1 < s+1 )

16λ1/2(s1, s2, q2)
+

2θ(q2)θ(s2 − s0
2)θ(s

R
1 < s1 < s−1 )

16λ1/2(s1, s2, q2)
. (30)

The first term in Equation (30) relates to the Landau-type contribution emerging when all
intermediate particles go on mass shell, while the second term describes the anomalous contribution.

The result (30) for ∆ holds for µ > m implying the “external” s2-integration, and the “internal”
s1-integration. The location of the integration region for this case is shown in Figure 7. Figure 8 gives
the integration contour in the complex s2 plane for the opposite integration order.

s
2

(   +m)µ

2
s  = s (q )

20

2

R

1 2
   s (s )

   s (s )
21

−    s (s )
21

+

.

1

.

Figure 7. Singularities of the function ∆(q2, s1, s2) in the complex s1 plane as a function of s2 for q2 > 0.
(This corresponds to the external s2 and the internal s1 integration). The plot shows the trajectory sR

1 (s2)

vs s2 at fixed q2 > 0: for s2 < s0
2, the branch point sR

1 (s2) moves on the unphysical sheet (dashed red
line). However, as soon as s2 > s0

2, sR
1 (s2) travels around the branch point s−1 (s2) through the normal

cut [s−1 (s2), s+1 (s2)], appears on the physical sheet, and further moves to the left from s−1 (s2) (solid red
line). Respectively, for s2 < s0

2, the integration contour in the complex s1-plane may be chosen along
the interval [s−1 (s2), s+1 (s2)]. For s2 > s0

2, however, the contour should embrace the point sR
1 (s2), and

therefore the integration contour (green line) contains two segments: the “anomalous” segment from
sR

1 (s2) to s−1 (s2) (solid red line), and the “normal” segment from s−1 (s2) to s+1 (s2) (blue line). The real
axis of the variable s1 is shown as black line.

s (s )2
4m

2s  = s (q )
1 1

0

.

−
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L
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2
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Figure 8. Singularities of the function ∆(q2, s1, s2) in the complex s2 plane as a function of s1 for q2 > 0.
(This corresponds to the external s1 and the internal s2 integration). The trajectory sL

2 (s1) vs s1 at fixed
q2 > 0 is shown by the red line: for s1 < s0

1 the branch point sL
2 (s1) remains on the unphysical sheet

(dashed red line), but, as soon as s1 > s0
1, it goes onto the physical sheet and moves to the right from

the right boundary of the normal cut s+2 (solid red line). Respectively, for s1 > s0
1, the contour should

embrace the point sL
2 , and the integration contour (green line) contains two segments: the “normal”

segment from s−2 to s+2 (blue line) and the “anomalous” segment from s+2 to sL
2 (solid red line). The real

axis of the variable s2 is shown as black line.

The final representation for the form factors at 0 < q2 < (µ−m)2 takes the form

F(q2, p2
1, p2

2) =

∞∫
4m2

ds2

π(s2 − p2
2 − i0)

s+1 (s2,q2)∫
s−1 (s2,q2)

ds1

π(s1 − p2
1)

1
16λ1/2(s1, s2, q2)

(31)

+2θ
(

0 < q2 < (µ−m)2
) ∞∫

s0
2(q

2)

ds2

π(s2 − p2
2 − i0)

s−1 (s2,q2)∫
sR

1 (s2,q2)

ds1

π(s1 − p2
1)

1
16λ1/2(s1, s2, q2)

.
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A typical behavior of the anomalous and the normal contributions is plotted in Figure 9: the
normal contribution first rises at small positive values of q2 but then falls down steeply and vanishes
at zero recoil. The anomalous contribution is zero at q2 = 0, remains small at small q2 > 0, but rises
steeply near zero recoil, providing a smooth behavior of the full form factor.
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F

Figure 9. A typical behavior of the function F(q2, p2
1, p2

2) vs. q2 for 0 < q2 < (µ−m)2 at fixed p2
1 and

p2
2. The parameters are chosen such that (µ−m)2 = 1 GeV2. Dashed: normal part, solid: anomalous

part, dotted: full function (sum of both parts).

We point out that the representation (31) is particularly suitable for application to processes
where p2

1 and p2
2 are above two-particle thresholds: in this case, the single spectral representation in

q2 becomes extremely complicated, with a nontrivial integration contour in the complex q2-plane,
whereas the double dispersion representation in p2

1 and p2
2 has the simple form given above. For values

of p2
1 and p2

2 above the thresholds, one just has to take into account the appearance of the absorptive
parts in the s1 and s2 integrals. A possible application of this representation may be the calculation of
the triangle-diagram contribution to the three-body decay [24,25], e.g., to the K → 3π decay [26,27],
Figure 10. In this case, the diagram with the pion loop may be represented as the µ2 integral of the
triangle diagram considered here, and one obtains the expression for the values p2

1 = M2
K > 9m2

π ,
p2

2 > 4m2
π , and q2 = m2

π . The emerging absorptive parts may then be easily calculated from the
double spectral representation. The problem would be technically very involved if one uses the single
spectral representation in q2, as can be seen from the complicated structure of the integration contour
in Section 2.
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2
p

1
p

2

m

m

µm m

m

q q

p

Figure 10. The triangle-diagram contribution to the K → 3π amplitude may be reduced to the integral
over µ2 of the diagram F.
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5. Summary and Conclusions

I have presented a detailed analysis of dispersion representations for the triangle diagram,
laying main emphasis on the appearance of the anomalous contributions in these representations.
These anomalous singularities play an important role in the analysis of physical processes,
see, e.g., [28–39] and a recent review [40] for details. In some kinematic regions, the properties of
the triangle diagram and the amplitudes of the corresponding processes are mainly determined by the
anomalous contributions. A message I would like to convey to the reader is that in many cases the
double spectral representations in p2

1 and p2
2 provide great technical advantages compared to the use

of the single representation in q2. This is clearly the case for p2
1 and p2

2 above the thresholds and q2 in
the decay region 0 < q2 < (µ−m)2. Several realistic physical cases belong to this class of problems.

Let me highlight a few points presented in this lecture:

• The single dispersion representation for the triangle diagram in the variable q2 develops an
anomalous threshold, related to a migration of the logarithmic branch point from the unphysical
(second) sheet of the Riemann surface onto the physical sheet through the normal q2-cut.
This migration occurs for the specific relationship between the squares of the external momenta
p2

1 and p2
2 and the masses of the particles propagating in the loop. For instance, for the case

p2
1 = p2

2 = M2, and the particles with mass m in the loop, the anomalous threshold occurs for all
M2 > 2m2, i.e., for the external masses below the unitary thresholds M2 = 4m2. This means, in
particular, that the anomalous thresholds occur for weakly-bound states, when M− 2m = −εB and
εB � m. In this case, the location of the anomalous threshold in q2 is responsible for the (large)
radius of the weakly-bound state.

It should be taken into account that the appearance of the anomalous cut in the single dispersion
representation changes the leading singularity of the triangle diagram on the physical sheet:

(a) In the “normal” case, M2 < 2m2, the spectral density of the triangle function has zero at the
threshold, σ(t) ∼

√
t− 4m2 (Figure 5a,b), thus yielding the

√
q2 − 4m2 leading singularity of the

triangle function.

(b) In the “anomalous” case, 2m2 < M2, the spectral density of the triangle function does not
vanish at the anomalous threshold t = t0 (Figure 5c), thus yielding the log(q2 − t0) leading
singularity. Emphasize that the logarithmic singularity does not emerge on the physical sheet in
the “normal” case.

• We pointed out that at spacelike momentum transfer q, q2 < 0, and for any values of p2
1 and

p2
2, the double dispersion representation in p2

1 and p2
2 is particularly simple and contains only

the normal cuts. The calculation of the triangle diagram in this case may be easily done for all
values of p2

1 and p2
2, including the values above the thresholds and complex values. In the same

situation, the single spectral representation in q2 contains, in addition, the anomalous cut, making
the application of the single dispersion representation a very involved problem.

• For the decay kinematics 0 < q2 < (µ − m)2, the anomalous thresholds and the anomalous
cuts emerge in the double dispersion representations in the variables p2

1 and p2
2. In this case,

the anomalous threshold in the variable p2
1 (or p2

2) is absent at q2 < 0 but emerges for positive
values of q2. This anomalous threshold in this case lies above the normal unitary threshold at
p2

1 = (µ + m)2 and p2
2 = 4m2. The anomalous contribution is small at small positive q2, but steeply

rises when q2 approaches the point q2 = (µ − m)2. On the contrary, the normal contribution
dominates the form factor at small q2 but vanishes at q2 = (µ−m)2.

In the decay region 0 < q2 < (µ−m)2, the double spectral representation in p2
1 and p2

2 provides a
very convenient tool for considering processes at p2

1 and p2
2 above the thresholds. The application

of the single spectral representation in q2 faces in this case severe technical problems.
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