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Abstract: Magnetars have been observationally determined to have surface magnetic fields of order
of 1014–1015 G, and the implied internal field strength may be even larger. We discuss the effect of
strong field on the dense matter expected to be inside neutron stars. We describe the microphysics,
phenomenology, and astrophysical implications of strong field induced unpairing effect that may
occur in magnetars, if the local magnetic field in the core of a magnetar exceeds a critical value. The
density dependence of the pairing of proton condensate implies that the critical value required for
the unpairing effect to occur is maximal at the crust–core interface and decreases towards the center
of the star. As a consequence, magnetar cores with homogeneous constant fields will be partially
superconducting for “medium-field” magnetars, whereas “strong-field” magnetars will be void of
superconductivity. We also discuss its effect on some observational phenomena which depend on the
nature and composition of matter inside neutron stars.

Keywords: neutron stars; nuclear matter; strong magnetic fields; quark matter; superconductivity;
neutrino emissivity

1. Introduction

The densest matter in the universe is found inside neutron stars with average density of the
order of 1014 g/cm3. The matter density varies inside the neutron stars; from crust to center, it
increases. Theoretical prediction of existence of neutron star was first established with the observation
of pulsars—the pulsating astrophysical objects. Radiation from these objects comes in pulses with
periods in the range of ms–s. These observations [1] indicate that the radiation from rotating neutron
stars is directional, which is the result of the dipolar magnetic field persisting on the neutron star
surface. From these observations, it was soon established that pulsars are neutron stars with strong
surface magnetic fields ranging from 108 to 1012−13 G [2,3].

However, later on, some astrophysical objects, namely soft gamma repeaters (SGRs) and
anomalous X-ray pulsars (AXPs), were observed [4–10]. They are believed to be neutron stars having
very strong surface magnetic fields of the order of 1014–1015 G. Since their discovery, the source of
energy was somewhat a mystery. For example, SGR bursts are much more luminous than ordinary
X-ray bursts. Moreover, unlike ordinary X-ray bursts, SGR bursts exhibit absolutely no correlation
between their energy and the time gap from the previous burst. This indicates that the bursts are not
caused by accretion. On the other hand, the spectra of AXPs are softer than that of typical accreting
X-ray pulsars, and the spin down rate of AXPs is too low to power X-ray emission. Therefore, the
radiation from AXPs is neither accretion-powered nor rotation-powered. The energy released by
SGRs and AXPs and the peak luminosities of the SGR bursts can be explained if the source objects are
modeled as neutron stars having surface magnetic fields ∼1014–1015 G. For reviews of the properties
of these objects, see [11] and references therein. Such objects are called magnetars. In 1992, Thompson
and Duncan [4] showed that a strong magnetic field, as strong as ∼ 1016 G, can be built up inside a
neutron star if the star is born with large rotational frequency. Naturally, during the last few decades,
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due to their extremely powerful magnetic fields, magnetars have attracted increasing attention in
terms of range of interests: from properties of dense matter to the structure and evolution of neutron
stars in strong magnetic fields.

The macroscopic properties of neutron stars as well as some internal processes, such as cooling,
magnetic field evolution, and reheating, depend strongly on properties of matter in strong magnetic
fields, if the central fields are sufficiently strong. For massive neutron stars, the density at the inner core
may be well above 2n0, n0 being the nuclear saturation density. Many plausible theories and models
for the composition of matter at this density are floating around to reproduce the observed properties
of the neutron stars. These include nuclear matter, hyper-nuclear matter, strange quark matter, matter
with some boson condensates, and so on. Moreover, inside the compact objects the matter may be
in a normal state or in a superfluid state. Although the direct evidence of superfluid neutron star
core is absent, many observed phenomena such as pulsar glitches with post glitch relaxations and the
fast cooling of young neutron star Cassiopeia A, can be understood, to a great extent, in terms of the
superfluidity inside the neutron star core. Here, we discuss the properties of dense matter relevant for
compact stellar objects under the influence of a strong magnetic field with two models of neutron star
matter: baryonic matter with and without hyperons and the strange quark matter. In addition, we
discuss the superconducting nature of proton fluid inside the neutron star in the presence of a strong
magnetic field.

2. Anisotropic Nature of Matter

In the presence of a magnetic field, the motion of charged particles is Landau-quantized.
Considering the z direction along the present static magnetic field B, the energy of a particle of
mass m and charge Q in a unit of proton charge e is modified as

εn =
√

k2
z + m2 + 2ne|Q|B (1)

where εn is the energy in the n-th Landau level, and kz is the component of momentum along the
z direction.

Now, the total energy density and the pressure of the combined system can be obtained from the
energy momentum tensor of the system

Tµν = Tµν
m + Tµν

f . (2)

Tµν
m = Emuµuν − Pm(gµν − uµuν) +

1
2
(MµλFν

λ + MνλFµ
λ ) (3)

is the matter part and

Tµν
f = − 1

4π
FµλFν

λ +
1

16π
gµνFρσFρσ (4)

is the field part. Here, Em is the matter energy density, Pm is the thermodynamic pressure, Mµν is the
magnetization tensor of the matter, and Fµν is the electromagnetic field tensor. Now, with the presence
of the magnetic field only and with the above-mentioned choice of the axes, Equations (3) and (4)
reduce, respectively, to [12–15]

Tµν
m =


Em 0 0 0
0 Pm −MB 0 0
0 0 Pm −MB 0
0 0 0 Pm

 (5)
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and

Tµν
f =


B2

8π 0 0 0
0 B2

8π 0 0
0 0 B2

8π 0
0 0 0 − B2

8π

 . (6)

Thus, for the whole system, the total energy density is

E = Em +
B2

8π
(7)

and the pressure becomes anisotropic with the pressure in the plane perpendicular to the field

P⊥ = Pm −MB +
B2

8π
(8)

and in the parallel direction to the field

P‖ = Pm −
B2

8π
. (9)

Thus, the presence of magnetic field leads to anisotropicity in pressure.

2.1. Baryonic Matter

The simplest model of matter inside neutron stars is nucleonic matter composed of nucleons
with some electrons as leptons. Within this model, there is a possibility of appearance of heavier
baryons and leptons with the increase in density towards the center of the star. Thus, most general
description of matter is baryonic matter composed of nucleons as well as hyperons—known as the
hyper-nuclear matter.

Among many ways dense baryonic matter can be described by the non-linear Walecka model,
which is based on a relativistic mean field approach [16–21] and can successfully describe both the
elastic scattering and nuclear saturation properties. Within this model, the baryons interact among
themselves through mesons. Considering three meson fields of the isoscalar-scalar meson σ, the
isoscalar-vector meson ω, and the isovector-vector meson ρ, within the non-linear Walecka model, the
energy density of matter in the presence of the magnetic field is [15]

Em = ∑
b

Eb + ∑
b′

Eb′ + ∑
l

El +
1
2

m2
σσ2 + U(σ) +

1
2

m2
ωω02

+
1
2

m2
ρρ02

3 (10)

where the indices b and b′ indicate the uncharged and charged baryons, respectively, l denotes the
leptons present in the matter, and

Eb =
1

8π2 ∑
b

[
2k(b)F µ(b)3 −m∗

2

b k(b)F µ(b) −m∗
4

b ln

(
k(b)F + µ(b)

m̄b

)]
. (11)

Eb′ =
e|Q|B
2π2

nmax

∑
n=0

(2− δn,0)

k(b
′)

F,n µ(b′) +
(

m∗
2

b′ + 2ne|Q|B
)

ln

 k(b
′)

F,n + µb′√
m∗2

b′ + 2ne|Q|B

 (12)

and
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El =
e|Q|B
(2π)2

nmax

∑
n=0

(2− δn,0)

k(l)F,nµ(l) + (m2
l + 2ne|Q|B) ln

 k(l)F,n + µ(l)√
m2

l + 2ne|Q|B

 . (13)

In Equations (11)–(13), kF =
√

µ2 −m∗2 and kF,n =
√

µ2 −m∗2 − 2ne|Q|B, µ being the Fermi
energy of the respective particle and m∗ the effective mass of baryons. The matter pressure is derived
from Equation (10) using the thermodynamic relation

Pm = ∑
b

µbnb + ∑
l

µlnl − Em. (14)

For detailed calculations, see [15].
Here, we illustrate the result numerically with the choice of potential parameters as the binding

energy E/B = −16.3 MeV, the saturation density n0 = 0.153 fm−3, the asymmetry energy coefficient
aasy = 32.5 MeV, the incompressibility K = 240 MeV, and the effective nucleon mass at the saturation
m∗/m = 0.8 compatible with bulk properties of nuclear matter [15,18–21]. The potential parameters
in the hyperonic sector are fixed to reproduce the potential depth of the hyperons obtained from
the experimental data of respective hypernulei as UΛ = −30 MeV [22,23], UΞ = −18 MeV [23], and
UΣ = 30 MeV [24].

The effect of the magnetic field on the EoS and abundances are important when the field strength
is high enough. Figure 1 shows the dependence of pressure on the baryon number density in the
presence of the magnetic field. Here, we consider that the field inside the star increases gradually from
the surface to the center, and the variation of field strength is modeled with the density profile of the
field as [25]

B
(

nb
n0

)
= Bs + Bc

{
1− exp

[
−β

(
nb
n0

)γ]}
. (15)

The parameters β and γ control the variation in the magnetic field from its surface value Bs to its
central value Bc.

From the figure, it is evident that in the presence of a magnetic field, the pressure splits into two
components, parallel and perpendicular to the field direction. With the varying field strength, which
increases towards the center, both the parallel and perpendicular pressures are practically equal to the
pressure as in the absence of a magnetic field in a lower density regime, i.e., near the surface. With
the increase in density, the deviation increases. In the transverse component, the field contribution is
positive and pushes it up, while in the parallel component the field contribution pulls it down due
to its negative contribution. For each value of Bc, it is possible to find a set of β and γ, for which
we obtain a plateau in the pressure–density curve. This shows an onset of instability in the matter.
This is due to the pressure in the parallel direction of the field, which decreases with the increase in
field strength. In Figure 1, the variation in pressure for a constant magnetic field through the star is
shown by dashed-dotted curves for theoretical consideration only. Within this range of field strength,
the magnetization of matter is so small that any contribution from this term is negligible. Thus, the
presence of a magnetic field renders matter properties anisotropic [15].

It should be noted here that the field profile taken as in Equation (15) is merely a parameterization
to illustrate it varies inside the star. It neither shows nor signifies any physical phenomena—for
example, that the magnetic field should be density-dependent. The internal field cannot be several
orders of magnitude stronger than the surface field. In this parameterization, by tuning the parameters
used in the profile, the relative strengths of the surface and center fields can be controlled. Therefore, a
general picture of academic interest has been shown to be a result that may not be relevant for physical
systems currently observed.
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Figure 1. Dependence of total pressure on the normalized baryon number density for central magnetic
fields Bc = 1018 G and Bs = 1016 G with different field profiles, β = 10−3, γ = 6 (dashed lines),
β = 10−1, and γ = 4 (dashed-double-dotted lines). The dashed-dotted curves indicate the variation in
pressure for a constant field of B = 1018 G and the solid line for the field-free case. [15]. For each pair
of curves, the upper branch is for P⊥ and the lower branch for P‖.

2.2. Strange Quark Matter

Another possible form of matter at high density is strange quark matter (SQM)—composed of
deconfined up, down, and strange quarks. Among many proposed phenomenological models for
SQM in the following discussion, we employ the model that uses the Richardson potential [26]:

V(q2) = −4
9

π

ln[1 + (q2 + m2
g)/Λ2]

1
(q2 + m2

g)
(16)

and density dependent quark masses as

mi = Mi + Mq sech
(

ν
nb
n0

)
, i = u, d, s. (17)

In the potential (Equation (16)), Λ is a scale parameter, and mg is the finite gluon mass given by

m2
g = D−2 =

2α0

π ∑
i=u,d,s

ki
Fµ∗i , (18)

which is responsible for screening in medium, with D being the screening length. In this expression,
α0 is the perturbative quark gluon coupling, µ∗i the Fermi energy, and ki

F the Fermi momentum.
In Equation (17), nb is the baryon number density, and n0 the nuclear matter saturation density with ν

as a parameter. With the increase in density, nb the quark mass mi falls off from its constituent value
Mq to its current value Mi. This model was originally proposed by Dey et al. [27].

In the presence of a magnetic field, the kinetic energy density of matter is modified because of
Landau quantization as [28]

Ekin =
3

(2π)3 e|Q|B
∞

∑
n=0

(2− δn,0)
∫ 2π

0
dφ
∫ ∞

−∞
f (ε)ε dkz (19)

where ε is the single particle energy as given by Equation (1), and f (ε) is the Fermi distribution
function. The potential part is modified as [28]
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Eij
pot = −

e2|Qi||Qj|
(2π)5 B2 ∑

ni

∑
nj

(2− δni ,0)(2− δnj ,0)

∫ 2π

0
dφi

∫ 2π

0
dφj

∫ ∞

−∞
dki

z

∫ ∞

−∞
dkj

z f (εi) f (εj)NV(q2)S

(20)

where

N =
(εi + mi)(εj + mj)

4εiεj
,

S = 1 +
k2

i k2
j

(εi + mi)2(εj + mj)2 +
2ki · kj

(εi + mi)(εj + mj)
.

The total energy density of the matter is then

Em = ∑
i

Ekin +
1
2 ∑

i,j
Eij

pot, i, j = u, d, s (21)

and the thermodynamic pressure is

p = ∑
i

µini + Ts− E, i = u, d, s (22)

where

s = − 3
(2π)3 e ∑

i
|Qi|B

∞

∑
n=0

∫ 2π

0
dφ
∫ ∞

∞
dkz × { f (εi)ln f (εi) + [1− f (εi)]ln[1− f (εi)]} (23)

is the net entropy density. Here, we should note that the lepton abundances are negligible for SQM.
We present the effect of magnetic field on SQM within the frame work of the Richardson potential

as well as the MIT bag model in Figure 2, choosing the numerical values of the parameters as
Λ = 100 MeV, ν = 0.333, α0 = 0.2, Mq = 310 MeV, Mu = 4 MeV, Md = 7 MeV, and M = 150 MeV [28].
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Figure 2. Variation in the normalized pressure in parallel and perpendicular directions to the magnetic
field with the strength of the magnetic field at nb = 6n0 and T = 20 MeV [28]. The solid curve is for
the model under consideration, the dashed and the dash-dotted curves for the MIT bag model with
values of bag constants 60 and 72 MeV fm−3, respectively. The upper curves correspond to the parallel
pressure, the lower curves to the perpendicular pressure.
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From the figure, it is evident that, when the field is below B = 3× 1018 G, both p‖ and p⊥ differ
very little from the matter pressure in the absence of a magnetic field. Thus, the effect of the magnetic
field for the SQM is not significant below B ∼ 1018 G. With the increase in the field, p‖ increases,
whereas p⊥ decreases.

3. Quenched Superconductivity

Matter inside neutron stars may exist in a superfluid state through the pair forming of the
constituent particles. To study the effect of the magnetic field on matter in a superfluid state, we
consider the simple nucleonic matter with electrons and muons. From a microscopic point of view
with the model under consideration, protons form type-II superconductivity inside a neutron star core,
although there may be some arguments for the existence of type-I proton superconductivity inside
neutron stars with some recent observational data [29–34].

The variation in matter pressure and the abundances of the constituent particles with the
normalized baryon density are shown in the two panels of Figure 3. For this calculation, we
choose the matter EoS using density-dependent couplings as derived in [35]. The parameterization
is chosen to reproduce nuclear saturation density n0 = 0.152 fm−3, binding energy per nucleon
E/A = −16.14 MeV, incompressibility K0 = 250.90 MeV, symmetry energy J = 32.30 MeV, symmetry
energy slope L = 51.24 MeV, and symmetry incompressibility Ksym = −87.19 MeV [36]. As mentioned
earlier, the EoS as well as the composition of matter is affected by the presence of the magnetic field.
However, the magnetic field effect is evident only when the interaction energy with the magnetic field
for the particles are comparable with their Fermi energy. Below, the field value ∼1018 G, the effect of
magnetic field on matter composition and EoS is insignificant.

(a) (b)
Figure 3. (a) Zero-temperature equation of state. (b) Variation in particle abundances on the normalized
baryon density. The vertical line indicates the approximate Urca threshold.

In the crust of a compact star, low density neutrons pair in the 1S0 channel. Towards the center,
as the density increases, the S-wave interaction becomes repulsive and the neutron pairing in the
3P2 −3 F2 channel becomes important. However, protons are much less abundant throughout the core
and hence proton pairing in the 1S0 channel is admissible inside the core. Figure 4 shows variation in
gap energies for the dominant channels with Fermi momenta of the respective particles relevant for
the interior of the neutron star adopted from [37–39].
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Figure 4. Variation in pairing gaps of neutrons (dash-dotted and solid lines) and protons (dashed line)
on their respective Fermi-momenta.

Type-II proton superconductivity can exist if the persisting magnetic field is greater than the
lower critical field Hc1 but less than the upper critical field Hc2. The critical field is determined by
the microscopic properties of matter and can be described in terms of Ginzburg–Landau (GL) theory.
The GL functional for the fluid containing both the superfluid neutron and superconducting proton
can be written as [40]

F[φ, ψ] = Fn[φ] + ατ|ψ|2 + b
2
|ψ|4 + b′

2
|ψ|2|φ|2 + 1

4mp

∣∣∣∣∣
(
−ih̄∇− 2e

c
A
)

ψ

∣∣∣∣∣
2

+
B2

8π
(24)

where ψ and φ are the proton and neutron condensate wave-functions, Fn[φ] is the GL functional for
neutron superfluid, mp is the proton mass, and τ = (T− Tcp)/Tcp, Tcp being the critical temperature
of superconducting phase transition of protons. Here, α, b, and b′ are the constants. For detailed
discussion, see [34]. Then, the upper critical field can be calculated to the linear order of ψ as [40]

Hc2 =
Φ0

2πξ2
p

[
1 +
|b′||φ|2

α|τ|

]
(25)

with Φ0 being the flux quantum and ξ the coherence length. Equation (25) reduces to the standard
result [41] if b′ = 0.

The dependence of pairing gaps on baryon density is shown in the upper panel of Figure 5, and
the dependence of Hc2 field on density is shown in the lower panel of the same figure.

The critical field has a maximum near baryon density nb = 0.7n0, which is close to the crust–core
interface with maxHc2 ' 6.25× 1016 G. Thus, for a magnetar with interior field less than the maximum
critical field will be partially superconducting. The regions where fields are less than the local critical
field will be superconducting, whereas the regions where fields are greater than the local critical
field are not. For this kind of magnetar where the interior field is less than maxHc2 the proton
superconductivity will be removed from the inner core, whereas the outer core may contain the
superconducting protons as clear from Figure 5.
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Figure 5. (Upper panel): Variation in pairing gaps for neutrons and for protons on normalized baryon
density. (Lower panel): Dependence of the upper critical field on normalized baryon density with the
coupling between the neutron and proton condensates (full line) and without (dashed line).

4. Neutrino Emissivity

The absence of superconducting protons inside the entire part of neutron star interior, or in some
part of the neutron star interior in the presence of the magnetic field has great impacts on neutrino
emission processes from matter inside magnetars. Here, we discuss two dominant neutrino emission
processes—the direct Urca and the pair-breaking processes.

4.1. The Direct Urca Process

Inside the dense neutron star matter, the direct Urca process is allowed only when the proton
fraction in the matter is above a threshold YUrca = np/nb > 11% [42–44]. However, the presence of
a strong magnetic field changes the phase space of nucleons. As a consequence, it smears out the
sharp boundary between the closed and open direct Urca regimes leading the direct Urca process to
be allowed even below YUrca with substantial suppression in its emissivity [45–47]. The allowed and
forbidden region for direct Urca in the field-free case can be described conveniently by introducing
the parameter [47]

x =
k2

Fn − (kFe + kFp)
2

k2
Fn

n2/3
Fp (26)

where nFp is the number of Landau levels populated by protons. The direct Urca process is forbidden
for x > 0 in the field-free case, while it can become operative in the presence of strong magnetic fields.
The variation in neutrino emissivity due to the Urca process with the magnetic field in the forbidden
regime is shown in Figure 6 by the dotted curve [45–47], when the matter is normal.

If matter is in a superfluid state, the available phase space for the process is restricted by
proton and neutron pairing. Consequently, the direct Urca process is suppressed by an exponential
factor exp(−∆/T) for each participating nucleon, with ∆ being the relevant pairing gap and T the
temperature. Detailed calculations are given in [48,49]. The suppression in emissivity due to the
presence of pairs is shown by the dashed-dotted curves in Figure 6 for two different temperatures.
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Figure 6. The direct Urca emissivity in the forbidden region in units of the zero-field emissivity at a
fixed density n = n0 and for two temperatures T = 0.01 and 0.1 MeV. The emissivity for normal matter
(dotted line) [45–47], paired neutrons and normal protons (dashed lines), and paired neutrons and
protons (dashed-dotted lines) [40].

However, the presence of a strong magnetic field unpairs the proton superconductor if the field
strength is larger than the local upper critical field [40]. In that case, the suppression of the Urca process
due to the proton pairing gap is absent and the suppression for the pairing gap is only due to neutron
pairing. This effect is shown by the dashed curves in the same figure (Figure 6). The suppression
strongly deviates from that expected in the case of superconducting protons as the gap for neutron
pairing in the P-wave channel is smaller than the one in the S channel for protons (see Figure 5).

In the allowed region, the effect of magnetic field is the introduction of de-Haas–van Alfven type
oscillations in the emissivity around its value in the zero B-field limit, as expected [45–47]. This is
shown in the panel a of Figure 7, which is the case for normal matter. In the case of paired nucleons
the emissivity is suppressed due to pairing gaps of both protons and neutrons in the low field regime,
as shown by panel c of Figure 7. When the field crosses the value of the local upper critical field, the
protons are unpaired and the suppression due to proton pairing disappears leading to enhancement in
emissivity, as shown by the panel b of the same Figure 7. Here it should be noted that a sharp jump
seen in the emissivity is in fact a smooth transition because, in the range of fields Hc1 < B < Hc2, the
superconductor is in the mixed (flux-tube) state. The emissivity in the mixed state has not been studied
by us, so we present only the asymptotic results for B ≤ Hc1 and B ≥ Hc2.
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Figure 7. The direct Urca emissivity in the allowed region in units of the zero-field emissivity at fixed
density n = 1.5 n0 for temperature T = 0.1 MeV. The emissivity for (a) unpaired matter, (b) paired
neutrons and unpaired protons when B > Hc2, and (c) both paired neutrons and protons when
B < Hc2.

4.2. Pair-Breaking Processes

The neutrino emission due to pair-breaking (PB) from each nucleonic BCS condensates [50–56]
is also affected by the unpairing of protons when the field strength is larger than the upper critical
field Hc2.

The neutrino emissivity due to pair breaking process is given by (h̄ = c = 1)

εn =
4G2

Fm∗nkFn

15π5 T7aS/P
n

(
∆S/P

n
T

)2

I (27)

εp =
4G2

Fm∗pkFp

15π5 T7aS
p

(
∆p

T

)2
I (28)

where GF is the Fermi coupling constant, the subscripts n and p stand for neutrons and protons,
respectively, and superscripts S and P stand for the 1S0 and 3P2 pairing of neutrons. ∆P

n in Equation (27)
refers to the angle averaged value of the spin-triplet neutron gap, in which case it can be factored out
of the integral I . The coefficients a’s are defined as follows:

an(
1S0) =

4
81

c2
nVv4

Fn +
11
42

c2
nAv2

Fnχn (29)

ap(
1S0) =

4
81

c2
pVv4

Fp +
11
42

c2
pAv2

Fpχp (30)

an(
3P2) =

c2
nA
2

(31)

where χn/p = 1 + (42/11)(m∗n/p/mn/p)
2, cnV = 1, CnA = gA, CpV = 4 sin2 θW − 1, and CpA = −gA,

with gA ' 1.26 and sin2 θW = 0.23.
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Figure 8 displays the functions

Qn/p(B) =
m∗n/pkFn/Fp

mn/p
aS/P

n/p

(
∆S/P

n
T

)2

, (32)

which are more convenient for the present analysis than the emissivities as a whole as all other common
factors appearing in the emissivity Equations (27) and (28), which are constants throughout the interior
of the star that are discarded.

Figure 8. Neutrino emissivity via pair-breaking processes in units of zero-field emissivity as a function
of normalized baryon number density for different field strengths B16 = 0, B16 = 0.5, B16 = 1, and
B16 = 5. The total pair-breaking emissivity is shown by solid lines. It is a result of neutron pair emission
for nb/n0 < 0.5, and the sum of proton and neutron pair emission for larger densities. The separate
contributions of proton and neutron pairs are shown by dash-dotted and dashed lines, respectively.

In the crust of the star where n ≤ 0.5n0, the pair-breaking emission is only due to the neutron
Cooper pairs, which are unaffected by the unpairing effect. In the core where the densities are large,
both the neutron and proton Cooper pair-breaking processes are present, which is shown by the solid
curve in Figure 8. Assuming the constant field strength inside the star, the influence of the unpairing
effect for the proton pairs is seen in the same figure by dashed-dotted curves for different constant
field strengths as B16 = 0.1, 0.5, 1, and 5 G. The presence of the field removes the proton pairs where
B > Hc2 locally. Consequently, the total emission rate reduces to its value corresponding to the rate
due to only neutron pairs.

5. Summary and Conclusions

We have studied the properties of highly dense matter under the influence of a strong magnetic
field in the context of magnetars. We have considered two different forms of matter—the baryonic
matter with and without hyperons and deconfined strange quark matter. However, it should be noted
that, in the present calculations, the sea effect has not been considered for simplicity, which should be
considered for a more precise result. We also studied the effect of the magnetic field on the proton pair
if the matter is considered in a superconducting state.

We found that the presence of a magnetic field introduces anisotropic pressure in the system
and that, at a high field strength, the matter becomes unstable. The negative contribution from
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field pressure or from the interaction of matter with field to pressure leads to an instability above a
critical field.

We have shown another important effect of magnetic fields on matter if the matter inside the
magnetar is considered to be in a superconducting phase. This effect is the unpairing of proton
condensates in the presence of a magnetic field. Consequently, magnetars are fully or partially free of
proton superconductivity depending on the strength of the field inside the magnetars.

Calculating the critical field Hc2 for the unpairing of the proton condensate, considering its
coupling to the neutron condensate present, we have shown that, near the crust–core boundary, the
critical field is maximum and decreases towards the center of the star. Thus, magnetars with interior
fields B < maxHc2 are partially non-superconducting, whereas magnetars with B > maxHc2 are
fully non-superconducting, under the assumption that the field is constant throughout the interior of
the star.

The unpairing of proton condensates affect neutrino emissivity. For the direct Urca, it removes the
suppression of the process because the proton gap enhances the emissivity, compared to the low-field
case. On the other hand, in the case of neutrino emissivity, due to the Cooper pair-breaking processes,
the unpairing of protons due to a high magnetic field removes the pair-breaking emissivity for proton
pairing, reducing the total pair-breaking emissivity to a low extent.
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