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Abstract: Dysfunction of the neuroglia can have profound consequences on the blood–brain barrier
(BBB). Studies have shown that the disruption of astrocytic–endothelial interaction can compromise
the permeability of BBB and its effectiveness in selectively regulating the exchange of substances.
Microglia have recently been recognized to have a significant role in the initiation of chronic pain
and in its interactions with various nerve blockers and anesthetic agents. Microglia have a role
in pain resolution via a pathway that involves Cannabinoid receptor type 2 activation and MAP
kinase phosphorylation. Understanding the role of these cells in the context of neuropathic pain
and neurological disorders can aid in improving clinical outcomes and the challenging nature of
managing pain. Advancing studies have proposed pharmacological and genetic modulation of
microglia as a potential treatment option for patients with chronic pain.
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1. Introduction

The blood–brain barrier (BBB) plays a crucial role in protecting the central nervous
system (CNS). The BBB is comprised of tightly sealed endothelial cells lining the blood
vessels of the brain, which serve to strictly block the passage of undesired molecules into
the brain. The role of the BBB is to safeguard what molecules, drugs, and nutrients are
able to cross from the peripheral bloodstream into the brain tissue [1]. The semipermeable
nature of the BBB selectively allows the passage of nutrients and desired molecules into
the brain tissue and prevents the passage of potentially harmful toxins, pathogens, or
autoantibodies [2].

Neuroglia constitute a diverse group of cells within the CNS, comprising astrocytes,
microglia, oligodendrocytes, and ependymal cells [3]. While neurons are traditionally
considered the primary functional units of the nervous system, neuroglia provide crucial
support, maintaining the structural and functional integrity of the neural environment [3].
A comprehensive representation of all the various types of neuroglial cells is presented in
Figure 1.

Astrocytes are the most abundant type of neuroglia and are particularly noteworthy
for their intricate association with the BBB. They closely interact with the endothelial
cells of the CNS and regulate the permeability of BBB by releasing various signaling
molecules, including growth factors and cytokines, and maintaining the tight junctions in
the blood vessels [4]. Astrocytes have a protrusion called “end-feet”, which allows them to
sheath brain vasculature to maintain tight junctions and regulate blood flow [5]. Moreover,
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astrocytes play a role in regulating the transport of nutrients and waste products across the
BBB, contributing to the overall homeostasis of the neural environment [6].
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Furthermore, pericytes serve the BBB by promoting blood vessel formation, main-
taining the BBB, regulating immune cell entry, and controlling blood flow [16,17]. Peri-
cytes stimulate angiogenesis through the secretion of vascular endothelial growth factor 
(VEGF), platelet-derived growth factor (PDGF), and angiopoietin-1, which can support 
the development of new capillaries. Additionally, pericytes control vasodilation and vas-
oconstriction, which allows them to control blood flow corresponding to the needs of the 
tissue. This helps tissue regenerate from damage and ensures the strength of the vascula-
ture making up the BBB [18–20]. 

Dysfunction of the neuroglia can have profound consequences on the BBB. Studies 
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permeability of BBB and its effectivity on selectively regulating the exchange of substances 
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Microglia are traditionally known for their immune surveillance and response func-
tions. However, recent research has shed light on the intricate involvement of microglia in
BBB regulation [7]. They actively participate in the modulation of tight junctions between
endothelial cells, contributing to the selective permeability of the BBB. Studies have identi-
fied that following dysfunction of the BBB, microglia release factors such as transforming
growth factor-beta (TGF-β) and interleukin-10 (IL-10), which have been shown to enhance
the integrity of the BBB by promoting tight junction formation [8,9]. Microglia are also able
to phagocytize cellular debris and pathogens that may be causing BBB disruption, and
clearance of such materials can help return the BBB to a more normal state of functioning.
Additionally, microglia can interact with astrocytes to promote the secretion of growth
factors that can help heal damaged components of the BBB [10–12].

Oligodendrocytes play a pivotal role in the CNS by producing myelin and facilitating
rapid electrical signal transmission. While the primary function of oligodendrocytes lies in
myelination, emerging research suggests their involvement in BBB regulation. Studies have
demonstrated that oligodendrocytes are closely associated with endothelial cells of the
BBB, and they may participate in the modulation of barrier permeability. The interactions
between oligodendrocytes and endothelial cells at the BBB highlight the complexity of
neuroglial contributions to the maintenance of a tightly regulated neural microenviron-
ment [13,14].

Ependymal cells contribute to the functionality of BBB primarily through their role
in cerebrospinal fluid (CSF) production and circulation but also via their involvement in
modulating the BBB’s permeability. Recent studies have highlighted the expression of tight
junction proteins in ependymal cells, indicating their potential contribution to the barrier
function [15]. Ependymal cells can also work along with other glial cells, influencing the
overall regulation of brain homeostasis.

Furthermore, pericytes serve the BBB by promoting blood vessel formation, maintain-
ing the BBB, regulating immune cell entry, and controlling blood flow [16,17]. Pericytes
stimulate angiogenesis through the secretion of vascular endothelial growth factor (VEGF),
platelet-derived growth factor (PDGF), and angiopoietin-1, which can support the develop-
ment of new capillaries. Additionally, pericytes control vasodilation and vasoconstriction,
which allows them to control blood flow corresponding to the needs of the tissue. This
helps tissue regenerate from damage and ensures the strength of the vasculature making
up the BBB [18–20].

Dysfunction of the neuroglia can have profound consequences on the BBB. Studies
have shown that the disruption of astrocytic–endothelial interaction can compromise the
permeability of BBB and its effectivity on selectively regulating the exchange of substances
between blood and the brain [7]. This compromised barrier function allows for the un-



Neuroglia 2024, 5 15

controlled entry of potentially harmful molecules, including inflammatory mediators and
toxins, into the brain parenchyma. This disruption can contribute to the development of
neuroinflammatory diseases like multiple sclerosis (MS), neuromyelitis optica (NMO), and
systemic lupus erythematosus (SLE) [2]. Dysfunction of the BBB plays a particular role in
autoimmune neurological disorders due to effector molecules of the peripheral immune
system being able to enter the brain and stimulate an inflammatory response, leading to
disruption of normal neural function [21].

2. Pathophysiology of Pain

Pain is a nuanced and intricate experience, functioning as a major alarm system
that signifies a potential threat or injury, which serves an adaptive role in protecting
the body from harm. Yet, in certain cases, chronic pain can evolve into a maladaptive
condition, causing significant personal and economic burdens [22–26]. Thus, effective pain
management becomes crucial in mitigating these challenges, as it not only improves the
individual’s quality of life but also reduces the broader societal impact associated with
healthcare costs, productivity loss, and emotional distress. However, the dynamics of
pain involve a more complex interaction among biological, psychological, and emotional
systems [27], and the perception of pain varies significantly among individuals, highlighting
the high degree of inter- and intra-patient variability [28]. Recent advances in imaging
modalities, such as functional magnetic resonance imaging (fMRI) and positron emission
tomography (PET), have significantly enhanced our understanding of the central role
played by the brain in the intricate processes of perceiving and modulating pain signals
through the ascending and descending pathways.

These advances have also shed light on the interactions that macrophages have on our
ability to feel pain. Many research studies have been conducted to analyze macrophages
and their interactions with various nociceptors in our body. The Toll-like receptors that
begin to circulate in our body after activation of nociceptors have been shown to activate
macrophages and lengthen the pain that we feel. This is imperative to understanding when
thinking about the differences between the ascending and descending pathways.

2.1. Ascending Pathway

Specialized neurons within the peripheral nervous system detect potentially harmful
stimuli such as pain, temperature, and noxious chemicals through the activation of receptors
like nociceptors [27,29]. These nociceptors transmit signals to the spinal cord, initiating
the first leg of the ascending pathway [29]. Within the spinal cord, these signals synapse
with secondary neurons that carry the information up to the brain, where the stimulus is
further processed [29]. This process uses the ventrolateral system, alternatively termed
the spinothalamic tract, which serves as a specialized tract in the transmission of pain and
temperature signals to the thalamus—a central relay station for sensory information—and
subsequently to the cortex of the brain [29,30]. As the signals ascend further, they reach
various regions of the brain, including the somatosensory cortex, where the conscious
perception of pain occurs [29,30]. Simultaneously, other brain areas, such as the limbic
system, contribute to the emotional and affective aspects of pain [29]. The ascending
pathways serve to relay information about the location, intensity, and quality of the pain,
enabling the brain to generate an appropriate response [30].

2.2. Descending Pathway

In addition to the ascending pathways, the brain possesses a sophisticated system of
descending pathways that play a crucial role in modulating the perception of pain. These
pathways originate in higher brain regions, such as the periaqueductal gray (PAG) and the
rostral ventromedial medulla (RVM) [22,30]. The PAG, in particular, acts as a key hub for
pain modulation. Descending pathways exert both inhibitory and facilitatory influences
on the transmission of pain signals [30,31]. Endogenous opioids, such as endorphins,
are released in response to stress or injury, acting as natural pain relievers by binding to
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receptors in the spinal cord and dampening the transmission of nociceptive signals [32].
Alternatively, descending pathways can also enhance pain transmission, emphasizing the
dynamic and nuanced nature of pain modulation [30].

2.3. Advances in Pain Management

Chronic pain is maladaptive and remains a substantial burden for patients. In many
cases, lifestyle modifications, as well as opiates, have been used as initial treatments.
However, these approaches may prove ineffective or be linked to adverse systemic side
effects, emphasizing the need for more precise and targeted interventional strategies. Thus,
advancements in our understanding of pain perception and modulation allowed us to
utilize different approaches, including ganglia injections, the role of calcitonin gene-related
peptide (CGRP), and the involvement of Nav 1.8/1.7 channels, as promising targets in pain
management, as shown in Figure 2.
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2.4. Ganglia Injections

Ganglia injections are considered a promising approach when it comes to pain manage-
ment. Sympathetic ganglia injections as a pain management approach have been described
previously [33]. The mechanisms believed to contribute to sympathetic pain involve the
impairment of inhibitory pain control as well as increased adrenergic excitability [33,34].
Thus, through the precise application of substances like local anesthetics (i.e., bupivacaine)
or neuroleptic agents (i.e., alcohol) to specific ganglia, this method seeks to disrupt the
positive feedback loop, thereby reducing central hyperexcitability and delivering a focused
and targeted intervention [33]. Sympathetic blocks are increasingly used in managing both
painful and nonpainful conditions, including postherpetic neuralgia [35], posttraumatic
stress disorder (PTSD) [36], and hyperhidrosis [33]. Image-guided stellate ganglion in-
jections have demonstrated effectiveness in addressing certain types of sympathetically
maintained and visceral pain [35–40]. However, the lumbar sympathetic block is employed
to address various types of pain, particularly those associated with the lower extremities,
such as complex regional pain syndrome or sympathetic-mediated leg pain [41–43]. On the
other hand, visceral abdominal and pelvic pain can be relieved by sympathetic blocks of the
celiac plexus block [44–49], superior hypogastric [50–54], and ganglion impar [55–58]. This
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method holds potential for various pain conditions, offering a more precise and minimally
invasive alternative to traditional systemic treatments.

2.5. Calcitonin Gene-Related Peptide

CGRP, a neuropeptide primarily found in sensory nerves C and Aδ [59,60], has gained
attention for its pivotal role in pain modulation [61]. Along with its vasodilatory action [62],
recent research suggests that CGRP plays a crucial part in mediating pain signals through
the facilitation of nociceptive transmission as well as peripheral and central sensitiza-
tion [63–65]. Thus, therapies targeting CGRP receptors are being explored as potential
treatments for chronic pain conditions. For instance, CGRP has been described in migraine
pathology [66], and the subsequent development of CGRP antagonists was proven suc-
cessful in treating acute episodes of migraine [67]. Furthermore, the later development of
monoclonal antibodies against CGRP showed promise in treating chronic migraines [68–70].
Currently, three monoclonal antibodies (mAbs) have received approval for the prevention
and management of migraines. Among these, two are designed to target the CGRP peptide,
while the third is specifically directed toward the CGRP receptor [71]. Thus, blocking CGRP
signaling may offer a novel avenue for pain relief without the side effects associated with
traditional analgesics.

2.6. NaV 1.8/1.7 Channels

Also, Nav 1.8 and Nav 1.7 channels, specific sodium channels found in sensory neu-
rons, have been identified as key players in pain transmission [72]. It is believed that the
increased activation and/or expression of NaV1.7/1.8 channels have a role in the develop-
ment and persistence of many forms of neuropathic pain [73]. Thus, since these channels
contribute to the generation and propagation of pain signals, their modulation represents a
promising therapeutic strategy. Even though agents selectively blocking Nav1.3, Nav1.7,
Nav1.8, Cav3.2, and HCN2, as well as activators of Kv7.2, have demonstrated efficacy in
alleviating indicators of neuropathic pain within animal models, their translation to clinical
application has yet to prove successful [73–75]. Certain compounds fall short of achieving
therapeutic endpoints, while others exhibit dose-limiting side effects, thus impeding their
successful clinical implementation. Efforts to develop selective inhibitors for NaV 1.7 and
NaV 1.8 channels are underway, aiming to provide effective pain relief while minimizing
adverse effects on other physiological processes [74].

The experience of pain is a multifaceted phenomenon intricately woven into the fabric
of human perception. The interplay between ascending and descending pathways within
the brain illustrates the sophisticated mechanisms that contribute to the sensation, inter-
pretation, and modulation of pain. A comprehensive understanding of these pathways is
crucial not only for unraveling the mysteries of pain but also for developing targeted inter-
ventions to alleviate suffering and improve the quality of life for individuals experiencing
pain. Thus, the exploration of ganglia injections, CGRP, and Nav 1.8/1.7 channels as mech-
anisms in pain modulation signifies a growing understanding of the intricate processes
involved in pain perception. These emerging avenues hold promise for the development of
targeted and effective interventions for patients with acute or chronic pain.

3. Introduction to Various Nerve Blockers Used in Anesthesia

The peripheral nerve blocks terminate pain signals the cerebral cortex receives from the
spinal cord. Perioperative anesthetic nerve blocks can manage pain after procedures and
reduce the need for postsurgical opioid consumption [76] when administered along with
general anesthesia or autonomously in less complex surgeries using ultrasound-guided
techniques [77]. Diagnostic nerve blocks in chronic pain can determine the anatomical
source of pain signals and provide therapeutic utility [78]. Nerve blocks can reduce
inflammation and provide temporary pain relief for acute and chronic upper and lower
extremity pain. Damage to a sympathetic nerve chain can be used as a target for sympathetic
nerve blocks when autonomic function damage and sympathetically mediated pain (SMP)
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occurs. Stellate ganglion blocks further identify upper limb, head, and neck region nerve
damage and block neural connections, improving the blood supply of the region and
reducing adrenal hormone plasma concentration [79]. To diagnose facet joints as a source of
pain, placebo-controlled zygapophysial blocks can be a cost-effective alternative to lumbar
medial branch neurotomy [80]. We have summarized several types of common nerve
blocks depending on the injury, clinical indications, and side effects in Table 1.

Table 1. Summary of the various types of common nerve blocks depending on the injury, clinical
indications, and side effects.

Procedure Mechanism Indication Side Effects Reference

Celiac plexus block
(CPB)

Targets visceral afferent
pain fibers from the liver,

gallbladder, omentum,
pancreas, mesentery, and

stomach to the
mid-transverse colon

Pain secondary to
pancreatic cancer, chronic

pancreatitis, and
intractable abdominal pain

Transient or persistent
diarrhea, paraplegia

(anterior spinal artery
syndrome), postural

hypotension, pneumothorax

[81–83]

Epidural nerve
block

Injected anesthetic in the
epidural space temporarily

numbs spinal nerves,
blocking pain signals from

spinal cord levels

Surgical procedures: pelvic
fractures, cesarean delivery,

labor analgesia, hepatic,
gastric, and colonic

surgeries
Nonsurgical: myasthenia

gravis, malignant
hyperthermia,
hyperreflexia

Hypotension, nausea,
vomiting, post-puncture

headache after dural
perforation. [9] Incidence of
transient paralysis is 0.1%;

that of permanent paralysis
is 0.02% [10]. Paresthesia

with or without motor
weakness, epidural
hematoma, abscess,

hypoalgesia of lower
extremities

[84,85]

Genicular nerve
block (GNB)

Anesthetizes sensory nerve
terminal branches of

genicular arteries or at the
junction of the epiphysis

and diaphysis of the femur
and tibia, sparing motor

function

Chronic knee osteoarthritis,
post-operative knee pain,

total knee arthroplasty,
alternative to femoral,

fascia iliaca, and adductor
canal nerve blocks in knee

injuries [11]

Leg muscle weakness,
dizziness, and discomfort at

injection site
[86–88]

Intercostal nerve
block (ICNB)

Anesthetic injection to
intercoastal nerves below

each rib

Rib fracture neuralgia,
thoracostomy analgesia,
herpes zoster neuralgia,

upper abdominal surgery,
palliative cancer pain for
rib and chest wall tumors

Self-limited bruising and
soreness at the injection site.
Serious: bleeding, infection,

pneumothorax, nerve
damage

[89,90]

Lumbar
sympathetic nerve

block

Disrupts the nerve supply
from the preganglionic

neurons exiting the spinal
cord via the white rami of
the ventral root of spinal

nerves L1 to L4 and
synapse at the lumbar

sympathetic ganglion to
the postganglionic neurons

innervating the lower
extremities

Sciatica, Complex Regional
Pain Syndrome (CPRS),
phantom limb pain, and

lower limb painful
ischemia

Flushing of skin, bleeding,
bruising, soreness at the

injection site, headache, and
leg weakness on ipsilateral
injection. Serious: infection,

visceral injury, Horner’s
syndrome

[91–93]
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Table 1. Cont.

Procedure Mechanism Indication Side Effects Reference

Occipital nerve
block

C2 sensory neurons of the
greater occipital nerve

create a nociceptive
pathway with the
trigeminal nucleus
caudalis, relieving

compression and nerve
irritation when targeted

with an anesthetic

Occipital neuralgia, chronic
intractable migraine, and
cervicogenic and cluster

headache treatment
alternative in elderly and

pregnant populations

Dizziness, vertigo,
numbness, lightheadedness,

vasovagal syncope, facial
edema, and alopecia at

injection if administered
with steroid

[94,95]

Pudendal nerve
block

Transcutaneous (perineal)
or transvaginal approach

targets the pudendal nerve
trunk and its sensorimotor

innervation

Pudendal neuralgia,
obstetric (e.g., second stage

of vaginal birth, vaginal
repairs,

hemorrhoidectomy), and
urologic procedures

(e.g.,transrectal
ultrasound-guided prostate

biopsy, transurethral
prostatectomy)

Discomfort at the injection
site, serious side effect of

bladder and rectum
structural injury, and

pudendal artery puncture
infection

[96,97]

Stellate ganglion
block

Interrupts signals to the
cervical sympathetic chain
and postganglionic fibers

for sympathetic
innervation of upper limbs

CRPS of head and upper
limbs, peripheral vascular

disease, chronic
post-surgical pain,

postherpetic neuralgia,
orofacial pain, scleroderma

Temporary pain, eyelid
droopiness, fever, local blood

aspiration, hematoma
formation, spondylitis, and

rare convulsions

[98,99]

Trigeminal nerve
block

The ophthalmic (V1),
maxillary (V2), and

mandibular (V3) divisions
and their corresponding

nerves are blocked

Trigeminal neuralgia,
pre-emptive analgesia in

maxillofacial surgery

Difficulty chewing and
swallowing and transient

facial weakness and
numbness

[100,101]

Impact of Lack of Neuroglia in Neurologic Disorders

The dysfunction or absence of neuroglial cells is associated with the development
of certain neurological diseases. Astrocytes are neuroglial cells associated with several
central nervous system diseases when damaged or absent. Chronic migraines are a dis-
ease characterized by astrocyte dysfunction [102]. Patients with chronic migraines have
headaches for at least 15 days in a month, with eight of those migraines fulfilling migraine
criteria [103]. The relationship between astrocyte dysfunction and the development of
chronic migraines may have to do with calcitonin gene-related peptide (CGRP). CGRP
acts on astrocyte receptors to modulate neuropathic pain. The interaction of CGRP on
astrocyte receptors causes Histone H3 lysine 9 acetylation, which is associated with inflam-
matory gene expression [104]. Pain can be experienced as a result of the response to the
inflammatory processes by glial cells.

In addition to migraines, Amyotrophic Lateral Sclerosis (ALS) is another disease
associated with neuroglial dysfunction. ALS is a neurological disease characterized by
upper and lower motor neuron damage. With time, this disease progressively leads to
muscle atrophy and paralysis. Microglial cells are involved in the pathogenesis of ALS.
The early stages of ALS are associated with a decrease in the number of microglial cells.
Interestingly, one study by Gerber et al. showed that the number of astrocytes is not altered
at early symptomatic stages, but their intraspinal repartition is modified at symptom on-
set. [105,106]. In addition to the association of microglia with ALS pathogenesis, microglia
also have a role in pain modulation. Neuromodulators produced by microglia can affect
synaptic pruning, inducing pain after tissue or nerve injury. In contrast, microglia have a
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role in pain resolution via a pathway that involves Cannabinoid receptor type 2 activation
and MAP kinase phosphorylation [107]. Although pain is not a characteristic finding in
ALS, the decreased number of microglial cells may affect their pain-modulation abilities.

Multiple sclerosis (MS) is another neurological disorder associated with glial cell
dysfunction. MS is characteristically defined as a CNS demyelinating disorder due to an
autoimmune response against myelin. This autoimmune response is typically associated
with T-cells and B-cells, but microglia have been suspected to play a role as well. Activation
of microglia leads to the release of cytotoxic nitrous oxide and superoxide radicals, causing
CNS injury [108]. Additionally, oligodendrocyte injury is noted to occur in MS. A recent
study supports a relationship between oligodendrocyte absence and pain after finding that
genetic oligodendrocyte ablation rapidly triggers sensory changes that resemble central
neuropathic pain [109,110]. This may explain the chronic pain symptoms experienced by
some individuals with MS.

Similar to MS, Charcot–Marie–Tooth (CMT) disease is a demyelinating disorder of
the nervous system. However, CMT differs in how it occurs due to dysfunction of the
Schwann cells, which are located in the peripheral nervous system. Patients with CMT
frequently experience pain or musculoskeletal deformities. More than one-third of patients
with CMT manage their pain with analgesics such as NSAIDs or Acetaminophen [111].
Some patients may elect to undergo surgery to treat deformities and pain in their feet.
The amount of studies reporting peripheral nerve blocks in patients with CMT is scarce,
but one study evaluated the analgesic effect of a catheter-based sciatic nerve block in
patients with CMT for postoperative pain control. The authors of this study concluded that
peripheral nerve block in patients with CMT is safe and effective [112]. This is a reassuring
finding, as patients with pre-existing neuropathies may experience complications from
anesthesia [113].

Several of the discussed neurological diseases associated with glial cells have mi-
croglial dysfunction in common. As mentioned above, microglia have recently been
recognized to have a significant role in the initiation of chronic pain. Advancing studies
have proposed pharmacological and genetic modulation of microglia as a potential treat-
ment option for patients with chronic pain. Even though there are no FDA-approved drugs
that specifically target microglia, there are some available medications that have a degree
of microglia modulation. These drugs can be used as analgesics for certain chronic pain
syndromes [114]. Patients with neurological disorders involving microglial dysfunction
may have unexpected effects with microglial-modulating drugs. Therefore, these drugs
may not be an option for these individuals.

4. Future Developments in Alternative Nerve-Blockage Therapies

Botulinum neurotoxins (BoNTs) have been used for many years in patients with
neuropathic pain [115]. BoNTs exert their effect by blocking the release of certain neuro-
transmitters, such as glutamate, substance P, and CGRP. Some of these neurotransmitters
are associated with the activation of glial cells. Therefore, BoNTs also play a role in pain
modulation by inhibiting the activation of glial cells associated with chronic pain [116].

Recent advances in the treatment of chronic neuropathic pain with paresthesia-free side
effects include Spinal Cord Stimulation (SCS). Although this therapy suppresses central
neuron excitability and causes a reduction in pain scores, it is associated with serious
adverse effects of hematoma secondary to dural punctures. SCS is preferred over deep
brain stimulation or motor cortex stimulation due to its moderate efficacy and minimal side
effects [117]. Peripheral nerve stimulation has shown success in treating acute post-surgical
pain by applying current to large-diameter myelinated afferent fibers and interfering with
central pain signals. PNS can provide advantages in comparison to epidural local anesthetic
injections for short-term pain relief without risk of infection, local anesthetic exhaustion,
urinary retention, or motor weakness [112].

Novel, minimally invasive, painless therapies for alternative neuropathic pain include
Transcranial Direct Current Stimulation (tDCS) and Remote Electrical Neuromodulation
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(REN) [118]. tDCS reduces overall pain intensity in diabetic polyneuropathy patients with
MRI-guided targeted tissue ablation and magnetic stimulation of the motor cortex. [119]
REN therapy is effective for the acute treatment of migraines by inducing conditioned pain
modulation from upper arm peripheral nerves [120]. Immersive Virtual Reality, although
challenging for clinicians with limited technological experience and expensive, was found
by a preliminary study examining 3D mirror feedback therapy to significantly reduce
chronic upper extremity neuropathic pain for a brief period [121]. Further investigations
regarding the role of glial cell response to neuromodulation in IVR can identify target
glial cells for other regions of pain. To prevent the degeneration of injured nerves and
replace lost neural cells, stem cell regeneration with transplantation has been studied with
GABAergic neuron transplants in an injured spinal cord and reduces clinical symptoms of
hyperalgesia and spontaneous pain. [122] Understanding the role of neuroglia in the context
of neuropathic pain and neurological disorders can aid in improving clinical outcomes and
the challenging nature of managing pain.

There have been advances in various clinical trials for the potential to manipulate
microglia for patients suffering from chronic pain. One drug called Minocycline is a
microglial inhibitor that has been indicated for low back pain, but they are currently in
the recruiting status of the study [114]. Another drug called Tetrahydrocannabinol is a
cannabinoid-receptor agonist that serves to modulate pain. This clinical trial is currently
active [114]. A completed clinical trial involves the use of low-dose Naltrexone (a TLR4
antagonist) for fibromyalgia [114]. However, this drug is still pending FDA approval. There
was another clinical study filled with patients suffering from post-herpetic neuralgia [114].
Unfortunately, the effects of the drug to decrease pain had minimal impact on the majority
of the patients.

In conclusion, the neuroglia plays an imperative role in administrating nerve blockers
and anesthetic agents to patients. Our review focused on microglia having a role in pain
resolution via various pathways, such as the activation of cannabinoid receptor type 2
and MAP kinase phosphorylation. We described the intricate relationship between cells
that create the blood–brain barrier and the impact that anesthetic agents and nerve blocks
have on them. Future studies do need to be conducted in order to further augment the
science behind proposed pharmacological and genetic modulation of microglia as potential
treatment options that can be offered to patients suffering from chronic pain.
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