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Abstract: Astrocytes (ACs) are the most abundant cells in the brain and, importantly, are the master
connecting and communicating cells that provide structural and functional support for brain cells at
all levels of organization. Further, they are recognized as the guardians and housekeepers of the brain.
Protoplasmic perivascular astrocyte endfeet and their basal lamina form the delimiting outermost
barrier (glia limitans) of the perivascular spaces in postcapillary venules and are important for the
clearance of metabolic waste. They comprise the glymphatic system, which is critically dependent on
proper waste removal by the pvACef polarized aquaporin-4 water channels. Also, the protoplasmic
perisynaptic astrocyte endfeet (psACef) are important in cradling the neuronal synapses that serve to
maintain homeostasis and serve a functional and supportive role in synaptic transmission. Enlarged
perivascular spaces (EPVS) are emerging as important aberrant findings on magnetic resonance
imaging (MRI), and are associated with white matter hyperintensities, lacunes, and aging, and are
accepted as biomarkers for cerebral small vessel disease, increased obesity, metabolic syndrome, and
type 2 diabetes. Knowledge is exponentially expanding regarding EPVS along with the glymphatic
system, since EPVS are closely associated with impaired glymphatic function and waste removal
from the brain to the cerebrospinal fluid and systemic circulation. This review intends to focus on
how the pvACef play a crucial role in the development of EPVS.

Keywords: blood–brain barrier; endothelial glycocalyx; enlarged perivascular spaces; metabolic syndrome;
neuroinflammation; neurovascular unit; obesity; perivascular spaces; perivascular unit; T2DM

1. Introduction

Perivascular spaces (PVS) are fluid filled spaces that ensheathe pia vessels as they
dive into the cortical grey and white matter of the central nervous system (CNS). The pia
arteries and precapillary arterioles PVS are known to deliver cerebrospinal fluid (CSF) to
the interstitium, while the postcapillary venules and veins are known to deliver primarily
interstitial fluid (ISF), metabolic waste (MW), and some residual admixed CSF to the
subarachnoid space (SAS) for eventual disposal from the brain to the systemic circulation
(Figure 1) [1–4].

Protoplasmic perivascular astrocyte endfeet (pvACef) adhere tightly to the basement
membrane (BM) of the neurovascular unit (NVU) shared by both the brain endothelial
cell(s) (BECs) and pericyte(s) (Pcs) via their pvACef basal lamina, also termed the glia
limitans (GL). PvACef are responsible for integrating the vascular mural cells (BECs and
Pcs) of the NVU to nearby regional neurons [1–4]. PvACef allow for NVU coupling,
which is fundamental for the regulation of regional capillary cerebral blood flow (CBF)
by both astrocyte and neuron-derived chemical messengers that provide for functional
hyperemia that is known as neurovascular coupling [1,5,6]. PvACef are surrounded
by the neuropil, which is comprised primarily of dendritic synapses and unmyelinated
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neurons—interneurons with traversing myelinated neurons and an extracellular matrix
(ECM) interstitial space (ISS) between these cellular structures.
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Figure 1. Perivascular spaces (PVS) ensheathe the pia arteries and veins, and deliver cerebrospinal 
fluid (CSF) to the brain and remove interstitial fluid (ISF) and metabolic waste (MW) from the brain 
for disposal in the CSF. (A) illustrates the arteriovenous capillary system and each of their ensheath-
ing PVS with the red arrow depicting incoming CSF and the blue dashed arrow depicting the efflux 
of the ISF and MW via the PVS to the subarachnoid space (SAS) initially and hence to the CSF for 
disposal into the systemic circulation via the arachnoid villus (B). (B) depicts a single arachnoid 
villus and illustrates the removal of the glymphatic MW to the dura lymph and/or dural venous 
sinus (DVS) for delivery to the systemic circulation. This mixture (ISF, MW, and CSF) from the 
PVS—glymphatic system (GS) can then leave the brain through the perivenous space and eventu-
ally into the meningeal lymphatics, to cervical lymphatics, and the systemic circulation. (C) demon-
strates the CSF that provides structural support and bouncy protection, nourishment, and waste 
removal. Thus, the CSF is necessary for maintaining homeostasis of the ISF and creating a stable 
environment for the brain parenchyma that is imperative for maintaining normal homeostasis and 
neuronal function. Image provided with permission from 4.0 [2]. AC = astrocyte; pvACef = proto-
plasmic perivascular astrocyte endfeet; AG = arachnoid granulation(s); CL = capillary lumen; CP = 
choroid plexus; DVS = dural venous sinus; RBC = red blood cell. 
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Figure 1. Perivascular spaces (PVS) ensheathe the pia arteries and veins, and deliver cerebrospinal
fluid (CSF) to the brain and remove interstitial fluid (ISF) and metabolic waste (MW) from the brain
for disposal in the CSF. (A) illustrates the arteriovenous capillary system and each of their ensheathing
PVS with the red arrow depicting incoming CSF and the blue dashed arrow depicting the efflux of the
ISF and MW via the PVS to the subarachnoid space (SAS) initially and hence to the CSF for disposal
into the systemic circulation via the arachnoid villus (B). (B) depicts a single arachnoid villus and
illustrates the removal of the glymphatic MW to the dura lymph and/or dural venous sinus (DVS)
for delivery to the systemic circulation. This mixture (ISF, MW, and CSF) from the PVS—glymphatic
system (GS) can then leave the brain through the perivenous space and eventually into the meningeal
lymphatics, to cervical lymphatics, and the systemic circulation. (C) demonstrates the CSF that
provides structural support and bouncy protection, nourishment, and waste removal. Thus, the CSF
is necessary for maintaining homeostasis of the ISF and creating a stable environment for the brain
parenchyma that is imperative for maintaining normal homeostasis and neuronal function. Image
provided with permission from 4.0 [2]. AC = astrocyte; pvACef = protoplasmic perivascular astrocyte
endfeet; AG = arachnoid granulation(s); CL = capillary lumen; CP = choroid plexus; DVS = dural
venous sinus; RBC = red blood cell.

PvACef with their basal lamina form the delimiting outermost nanosized membrane
barrier of perivascular spaces (PVS), which is also referred to as the glia limitans (GL),
while the innermost barrier is the basement membrane (BM) of the neurovascular unit
(NVU) brain endothelial cell(s) (BECs) and pericytes (Pcs) (Figure 2) [2,3,7].
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Figure 2. Normal ultrastructure neurovascular unit (NVU) morphology in control wild-type non-
diabetic models (C57BL/KsJ) to emphasize the perivascular astrocyte endfeet (pvACef). (A) demon-
strates a cross-section view of the NVU and also depicts an electron-dense ramified interrogating 
microglia cell (iMGC) (yellow arrow) surveilling the NVU. The NVU capillary consists of brain en-
dothelial cells (BECs) encircling a capillary lumen (Cap L, thin white line) whose basement mem-
brane (BM arrowheads) splits to also include the pericyte (Pc) foot process. Note how the pseudo-
colored golden perivascular astrocyte endfeet (AC-pvACef) encompass and tightly abut to the ca-
pillary EC and Pc BMs. Importantly, note that the AC clear zone in panel B was pseudo-colored 
golden to emphasize its importance to the NVU, while it remains as a clear-zone (white) with a 
reduced electron-dense cytoplasm as compared to other cells within the brain, and represents not 
only a golden halo, but also a clear zone or corona of pvACef surrounding the BEC and Pc cells and 
their BMs of the NVU as in (B). (B) demonstrates a longitudinal view, which illustrates the electron-
lucency of the AC clear zone halo or corona (white) that tightly abuts and encircles the NVU BEC 
and Pc BMs. Note the BEC nucleus (far right side) and the highly electron-dense tight junctions/ad-
herens junctions (TJ/AJ) complex (yellow arrows) that are not readily visible in panel A. Also, note 
that the mitochondria (Mt) have an electron-dense Mt matrix and that cristae may be noted even at 
this magnification. Additionally, note that the NVU is encompassed by the glia limitans (green line) 
of the outermost abluminal pvACef and the neuropil. Magnification ×4000; scale bar = 1 µm. This 
heavily modified image was provided by CC 4.0 [7]. Cyan green line = perivascular astrocyte end-
feet basement membrane-lamina or glia limitans perivascularis. 

The glia limitans (GL) also consists of the pvACef basal lamina—BM in the peri-me-
ningeal barrier that is known as glia limitans superficialis or externa, whereas this barrier 
surrounding the NVU is defined as glia limitans perivascularis and further, any substance 
entering the central nervous system (CNS) from the blood or cerebrospinal fluid (CSF) 
must cross the GL [8]. 
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found primarily in the grey matter cortex and are responsible for pvACef and perisynaptic 
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important for myelin maintenance and remyelination with interaction among oligoden-
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psACef that are known to cradle the synapses [8,9]. 
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connect to the myelinated neurons in the white matter, and connect to communicate with 
one another to create the AC syncytium via gap junction connexins (Figure 3) [7–13]. 

Figure 2. Normal ultrastructure neurovascular unit (NVU) morphology in control wild-type non-
diabetic models (C57BL/KsJ) to emphasize the perivascular astrocyte endfeet (pvACef). (A) demon-
strates a cross-section view of the NVU and also depicts an electron-dense ramified interrogating
microglia cell (iMGC) (yellow arrow) surveilling the NVU. The NVU capillary consists of brain en-
dothelial cells (BECs) encircling a capillary lumen (Cap L, thin white line) whose basement membrane
(BM arrowheads) splits to also include the pericyte (Pc) foot process. Note how the pseudo-colored
golden perivascular astrocyte endfeet (AC-pvACef) encompass and tightly abut to the capillary
EC and Pc BMs. Importantly, note that the AC clear zone in panel B was pseudo-colored golden
to emphasize its importance to the NVU, while it remains as a clear-zone (white) with a reduced
electron-dense cytoplasm as compared to other cells within the brain, and represents not only a
golden halo, but also a clear zone or corona of pvACef surrounding the BEC and Pc cells and their
BMs of the NVU as in (B). (B) demonstrates a longitudinal view, which illustrates the electron-lucency
of the AC clear zone halo or corona (white) that tightly abuts and encircles the NVU BEC and Pc
BMs. Note the BEC nucleus (far right side) and the highly electron-dense tight junctions/adherens
junctions (TJ/AJ) complex (yellow arrows) that are not readily visible in panel A. Also, note that
the mitochondria (Mt) have an electron-dense Mt matrix and that cristae may be noted even at this
magnification. Additionally, note that the NVU is encompassed by the glia limitans (green line) of
the outermost abluminal pvACef and the neuropil. Magnification ×4000; scale bar = 1 µm. This
heavily modified image was provided by CC 4.0 [7]. Cyan green line = perivascular astrocyte endfeet
basement membrane-lamina or glia limitans perivascularis.

The glia limitans (GL) also consists of the pvACef basal lamina—BM in the peri-
meningeal barrier that is known as glia limitans superficialis or externa, whereas this barrier
surrounding the NVU is defined as glia limitans perivascularis and further, any substance
entering the central nervous system (CNS) from the blood or cerebrospinal fluid (CSF) must
cross the GL [8].

There are three basic types of astrocytes (ACs) that consist of (1) protoplasmic ACs
found primarily in the grey matter cortex and are responsible for pvACef and perisynaptic
astrocyte endfeet (psACef); (2) fibrous ACs found primarily in the white matter that are
important for myelin maintenance and remyelination with interaction among oligodendro-
cytes and oligodendrocyte precursor cells; (3) peripheral astroglial processes (PAPs) ACs
that are responsible for AC cytoplasmic extensions to the pvACef of the NVU and psACef
that are known to cradle the synapses [8,9].

ACs are the most abundant cells in the brain and, importantly, are the master con-
necting, communicating, continuing, and creating cells (in the case of the creation of the
perivascular unit (PVU) and its normal PVS and pathologic enlarged perivascular spaces
(EPVS) in the postcapillary venule) of the brain. The ACs connect with the NVU via pvACef,
and synapses via the perisynaptic astrocyte endfeet (psACef); the fibrous ACs connect to
the myelinated neurons in the white matter, and connect to communicate with one another
to create the AC syncytium via gap junction connexins (Figure 3) [7–13].
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Figure 3. Astrocyte(s)’ (ACs) connection/communication with other astrocytes and multiple cells 
within the brain universe. ACs are ectodermal, neuroepithelial-derived, and star-shaped cells that 
provide protection, defense, and homeostasis of the brain and spinal cord. This montage illustration 
of hand-drawn images and transmission electron micrographs allows one to observe the resident 
non-reactive protoplasmic AC soma, as seen in the center of this image with multiple cytoplasmic 
extensions, that represents a single peripheral astroglial process (PAP) AC that connects to virtually 
every cell within the brain universe. ACs may thus be considered the master connecting cells of the 
central nervous system (CNS) against a background of distant white dots representing even more 
ACs stars within the brain universe from control C57BL/6J models (hand-drawn computer-assisted 
illustration from toluidine blue stained images). Importantly, the AC-to-AC connections via gap 
junction connexins such as Cx43 allow them to form a syncytium to coordinate brain function and 
proper cognition (insert number 5). Insert 1 depicts the protoplasmic perivascular astrocyte endfeet 
(pvACef) processes (pseudo-colored golden) connecting to the neurovascular unit (NVU) capillary, 
which allows for neurovascular coupling in frontal cortex layer III in a non-diabetic control female 
C57BL/6J mouse model at 20 weeks of age. Insert 2 illustrates the protoplasmic perisynaptic astro-
cyte endfeet (psACef) cradling of pre- and post-synaptic neurons and emphasizes its importance to 
the tripartite cradle synapse in cortical layer III. Insert 3 illustrates the connection of the fibrous ACs 
(pseudo-colored yellow-gold and to the formation of myelin) to myelinated axons with axoplasm 
(pseudo-colored cyan) of neurons in white matter in a control at 20 weeks C57BL/6J. Insert 4 illus-
trates the lost connections between a reactive microglial cell (rMGC) (pseudo-colored blue) and mul-
tiple reactive detached and separated ACs (pseudo-colored red) adjacent to a neurovascular unit 
(NVU) with a single intact non-reactive ACs (pseudo-colored yellow) in diabetic db/db model corti-
cal layer III at 20 weeks of age. Insert 5 demonstrates AC-to-AC connections in cortical layer III in 
control models (hand-drawn computer-assisted illustration of light microscopic toluidine blue 
stained images from control C57BL/6J models) via gap junction connexins. Only Inserts 1–4 have 
scale bars of 0.5 µm, 100 nm, 1 µm, and 2 µm, respectively. The background is also a hand-drawn 
computer-assisted image derived from control C57BL/6J models toluidine blue stained models and 
does not have a scale bar. This highly modified image is provided with permission from CC 4.0 [13]. 
ACfp = protoplasmic astrocyte endfeet; ACPVef = astrocyte perivascular endfeet; Cap L = capillary 
lumen; EC = brain endothelial cell; iMGC = interrogating microglial cell; Mt = mitochondria; N = 
nucleus; Pc = pericyte; PSD = post-synaptic density; PVACef = perivascular astrocyte endfeet; rMGC 
= reactive microglia cell; psACef = perisynaptic astrocyte endfeet. 

ACs are capable of enacting most housekeeping and guardian homeostatic functions 
in the brain, from structural support to controlling molecular homeostasis and regulation 

Figure 3. Astrocyte(s)’ (ACs) connection/communication with other astrocytes and multiple cells
within the brain universe. ACs are ectodermal, neuroepithelial-derived, and star-shaped cells that
provide protection, defense, and homeostasis of the brain and spinal cord. This montage illustration
of hand-drawn images and transmission electron micrographs allows one to observe the resident
non-reactive protoplasmic AC soma, as seen in the center of this image with multiple cytoplasmic
extensions, that represents a single peripheral astroglial process (PAP) AC that connects to virtually
every cell within the brain universe. ACs may thus be considered the master connecting cells of the
central nervous system (CNS) against a background of distant white dots representing even more
ACs stars within the brain universe from control C57BL/6J models (hand-drawn computer-assisted
illustration from toluidine blue stained images). Importantly, the AC-to-AC connections via gap
junction connexins such as Cx43 allow them to form a syncytium to coordinate brain function and
proper cognition (insert number 5). Insert 1 depicts the protoplasmic perivascular astrocyte endfeet
(pvACef) processes (pseudo-colored golden) connecting to the neurovascular unit (NVU) capillary,
which allows for neurovascular coupling in frontal cortex layer III in a non-diabetic control female
C57BL/6J mouse model at 20 weeks of age. Insert 2 illustrates the protoplasmic perisynaptic astrocyte
endfeet (psACef) cradling of pre- and post-synaptic neurons and emphasizes its importance to the
tripartite cradle synapse in cortical layer III. Insert 3 illustrates the connection of the fibrous ACs
(pseudo-colored yellow-gold and to the formation of myelin) to myelinated axons with axoplasm
(pseudo-colored cyan) of neurons in white matter in a control at 20 weeks C57BL/6J. Insert 4 illustrates
the lost connections between a reactive microglial cell (rMGC) (pseudo-colored blue) and multiple
reactive detached and separated ACs (pseudo-colored red) adjacent to a neurovascular unit (NVU)
with a single intact non-reactive ACs (pseudo-colored yellow) in diabetic db/db model cortical layer III
at 20 weeks of age. Insert 5 demonstrates AC-to-AC connections in cortical layer III in control models
(hand-drawn computer-assisted illustration of light microscopic toluidine blue stained images from
control C57BL/6J models) via gap junction connexins. Only Inserts 1–4 have scale bars of 0.5 µm,
100 nm, 1 µm, and 2 µm, respectively. The background is also a hand-drawn computer-assisted image
derived from control C57BL/6J models toluidine blue stained models and does not have a scale bar.
This highly modified image is provided with permission from CC 4.0 [13]. ACfp = protoplasmic
astrocyte endfeet; ACPVef = astrocyte perivascular endfeet; Cap L = capillary lumen; EC = brain
endothelial cell; iMGC = interrogating microglial cell; Mt = mitochondria; N = nucleus; Pc = pericyte;
PSD = post-synaptic density; PVACef = perivascular astrocyte endfeet; rMGC = reactive microglia
cell; psACef = perisynaptic astrocyte endfeet.
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ACs are capable of enacting most housekeeping and guardian homeostatic functions
in the brain, from structural support to controlling molecular homeostasis and regula-
tion of CBF, synaptogenesis, neurogenesis, and additionally development of the nervous
system [11]. A brief summary of the homeostatic functions of ACs (via pvACef and perisy-
naptic ACef) include molecular homeostasis, which includes ion homeostasis (of potassium,
chloride, and potassium), regulation of pH, water transport and homeostasis via aquaporin-
4 (AQP4), and neurotransmitter homeostasis (including glutamate, gamma-aminobutyric
acid (GABA), adenosine, and monoamines); systemic homeostasis, including chemosensing
(O2, CO2, pH, Na+, and glucose), regulation of energy balance and food intake, and sleep
homeostasis; cellular and network homeostasis, including neurogenesis, neuronal guidance,
synaptogenesis, synaptic maintenance, elimination, and plasticity; metabolic homeostasis,
including NVU formation and maintenance, support of NVU, CBF, metabolic support and
maintenance, and glycogen synthesis and storage; organ homeostasis, including the control
of the NVU BBB, and the lymphatic and glymphatic systems as partially represented in
Figures 2 and 3 [8–11]. Additionally, ACs act as a major supplier of energy via glycogen
storage and glycolysis, as well as supplying antioxidant reserves such as glutathione (GSH)
and superoxide dismutase (SOD), and growth factors such as brain-derived growth factor
transforming growth factor-β (TGFβ). ACs also define many aspects of synapse formation,
plasticity, protective function, synaptic maintenance, and elimination [11,12]. It is very
important to note that human studies may not always conform to the findings of rodent
models because pvACs in the neocortex are much larger in diameter (2.6-fold), have longer
extending cellular extensions (10-fold), and have greater complexity and diversity than in
rodent models [11,14].

The large AC cellular presence in the brain and their vast cell–cell communication
via gap junction connexins may be viewed as the brain’s functional syncytium [8]. The
relationships among the pvACef and the NVU (including ECs, Pcs, and their shared outer
basement membrane, as well as the cell–matrix attachments via dystroglycans and integrins
of the pvACef to NVU BMs) are essential for proper homeostasis and function [7,13,15,16].

This review intends to focus not only on ACs and specifically pvACef of the NVU
BBB but also the postcapillary venule perivascular unit (PVU) and its normal PVS and the
pathologic transformation to the EPVS that become affected by multiple neurotoxicities.
These toxicities include: neuroinflammation, reactive oxygen species (ROS), reactive oxy-
gen, nitrogen, sulfur species (RONSS) and the reactive species interactome (RSI), and the
breeching of the outermost abluminal layer of the EPVS GL to allow the passage of proin-
flammatory leukocytes to enter the neuropil interstitial spaces (ISS) and travel throughout
the brain along with ISF flow. Importantly, the PVS within the PVU provide an anatomic
conduit for the passage of ISF and MW that is termed the glymphatic space or glymphatic
system (GS) [17]. Once this GS becomes dysfunctional, there is an accumulation of neuro-
toxic waste, and misfolded proteins, neuroinflammation, ROS-RSI, and increased reactive
microglia cells (rMGCs). Further, this combination will result in dysfunction and/or dam-
age not only to the pvACef of the NVU but also to the supportive and protective psACef
that control synapse formation and function [18] and could detach, retract, undergo aging
asthenia, leaving the synapse vulnerable to dysfunction and damage with detachment for
the pre- and post-synaptic neuron psACef similar to the detachment of pvACef at the NVU
BBB. These series of events could result in a synaptopathology with impaired synaptic
transmission and impaired cognition that could eventually result in neurodegeneration
over time [19,20].

2. Metabolic Disorders: Obesity, Metabolic Syndrome (MetS), Type 2 Diabetes Mellitus
(T2DM), and Global Aging

The triad of obesity, MetS, and T2DM plus advanced global age are currently global
societal problems that are expected to grow over the coming decades. T2DM of this triad
and neurodegenerative diseases (including cerebrocardiovascular disease, cerebral small
vessel disease, and thrombotic or hemorrhagic stroke) are anticipated to develop into
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aging-related EPVS. Also, since the global population is currently one of the oldest, it is
expected to continue to increase in frequency over the next 2–3 decades, such that we will
observe these two groups merge and increase in numbers [2,21–23]. Obesity and visceral
adipose tissue predispose to EPVS-impaired synaptic transmission and impaired cognition,
and neurodegeneration over time [24,25]. Insulin resistance (IR), brain insulin resistance
(BIR), and MetS also result in brain remodeling (Figure 4) [26–29].
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vessel disease (cSVD). The visceral adipose tissue (VAT), obesity, and hyperlipidemia (atherogenic
dyslipidemia) located in the lower left-hand side of the letter X appear to drive the MetS and
insulin resistance (IR) central with the other three arms of the letter X, which include the associated
hyperinsulinemia to compensate for IR (lower right), hypertension, vascular stiffening (upper right),
and hyperglycemia (upper left), with or without manifest type 2 diabetes mellitus (T2DM). Follow
the prominent closed red arrows emanating from VAT to cerebrocardiovascular disease (CCVD), SVD,
TIA, stroke, cerebral microbleeds, and hemorrhages. Brain endothelial cell activation and dysfunction
(BECact/dys), with their proinflammatory and prooxidative properties, result in endothelial nitric
oxide synthesis (eNOS) uncoupling with increased superoxide (O2

•−) and decreased nitric oxide
(NO) bioavailability. Importantly, note that obesity, MetS, T2DM, and decreased bioavailable NO
interact to result in capillary rarefaction that may allow EPVS to develop, which are biomarkers
for cerebral SVD. Figure markedly adapted with permission from CC 4.0 [2]. AGE = advanced
glycation end-products; RAGE = receptor for AGE; AGE/RAGE = advanced glycation end-products
and its receptor interaction; βcell = pancreatic islet insulin-producing beta cell; FFA = free fatty
acids—unsaturated long chain fatty acids; IGT = impaired glucose tolerance; LOAD = late-onset
Alzheimer’s disease; ROS = reactive oxygen species; RSI = reactive species interactome; Sk = skeletal:
TG Index = triglyceride/glucose index; TIA = transient ischemia attack.

Additionally, T2DM is known to be associated with brain remodeling with cognitive
impairment and dysfunction (CID) and EPVS [12,30–39], and it is commonly accepted
that age is the strongest risk factor for the development of EPVS, while hypertension, age
plus hypertension, and diabetes were still three risk factors for those of 45 years old or
under [40].

3. Postcapillary Venule Perivascular Unit (PVU), Normal Perivascular Spaces (PVS),
and Transformation to Pathological Enlarged Perivascular Spaces (EPVS)

Troili et al. [41] conceived the concept of the PVU that resides adjacent to NVU and con-
tains both the postcapillary venular normal PVS that undergoes the pathologic remodeling
change of transformation from normal PVS to the remodeled EPVS (Figure 5) [41,42].
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Figure 5. The postcapillary venule, the perivascular unit (PVU), and the perivascular spaces (PVS)
serve as an anatomical crossroad or intersection for the vascular, neuroinflammatory, and neu-
ronal systems to provide crosstalk communication associated with the metainflammation of obesity,
metabolic syndrome (MetS), and type 2 diabetes mellitus (T2DM) in addition to providing the anatom-
ical substrate for the glymphatic system. The PVU is comprised of panels A and B. (A) demonstrates
the PVU with a normal PVS of the vascular system in control models with the dark green background.
Note the highway PVU crossroad icon in the lower left panel. (B) depicts the EPVS (2.) with their
resident reactive perivascular macrophage (rPVMΦ pseudo-colored red) and leukocytes (neutrophils,
monocytes, and lymphocytes) that have undergone diapedesis via primarily paracellular routes
via the activated BECs (aBECs), which enter the EPVS and comprise step 1 of the two-step process
of leukocytes entering the neuropil interstitial space (ISS). These leukocytes not only undergo cel-
lular crosstalk with the aBECs but also with one another in addition to the resident perivascular
macrophage (rPVMΦ), the pericyte (Pc), and the perivascular astrocyte endfeet (pvACef) within the
PVU to result in EPVS, impaired cognition, and neurodegeneration. It is important to note that both
the Pc and the rPVMΦ are known to be antigen-presenting cell(s) (APCs). Additionally, the reactive
leukocytes are capable of generating huge amounts of reactive oxygen species—oxidative stress and
the secretion of matrix metalloproteinases (MMP-2, -9) that are capable of degrading the outermost
boundary of the EPVS pvACef glia limitans to allow for the second step of leukocyte entry into the
neuropil interstitial spaces to result in neuroinflammation and subsequent neurodegeneration. The
PVU with its PVS/EPVS are an anatomical crossroad and along with its multiple cellular crosstalk
result in a self-perpetration or vicious cycle of brain injury and response to injury wound healing to re-
sult in neuroinflammation, impaired cognition, and neurodegeneration. Additionally, it is important
to note that the PVS form the anatomical conduit for the glymphatic system to deliver metabolic waste
and toxins from the interstitial fluid (ISF) and provide the crosstalk communication necessary for
neuroinflammation to develop within the PVS/EPVS of the PVU. The increased neuroinflammation
that occurs within the PVS/EPVS of the PVU will develop considerable metabolic waste debris that
will slow and cause stagnation of flow with delayed clearance of metabolic waste from the ISF to the
subarachnoid space (SAS) and cerebrospinal fluid (CSF) to result in further dilation of the PVS of the
PVU. Adapted with permission from CC 4.0 [42]. BBB = blood–brain barrier; BECact/dys = brain
endothelial cell activation/dysfunction; CL = capillary lumen; EC = brain endothelial cells;
EPVS = enlarged perivascular space; Pc = pericytes; PVS = perivascular space; PVU = perivascular
unit; rPVMΦ = resident reactive perivascular macrophage(s).
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The cellular composition of the PVU consist of BEC, Pc, interrogating microglia:
neurons and their axons that synapse to the pvACef that line the PVU, resident perivascular
macrophage(s) (rPVMΦ), and leukocytes that have been taken up into the PVU following
activation of the BECs [41]. The PVS within the PVU are of critical importance because they
are the anatomic construct that serves as the conduit for the recently discovered glymphatic
space [17].

Multiple hypotheses and overlapping mechanisms are thought to be responsible
for the enlargement of PVS to result in EPVS, which include at least four hypotheses, as
follows: (1) arterial stiffness due to vascular remodeling via arteriolosclerosis and associated
spiraling; (2) misfolded protein aggregation such as amyloid beta and tau; (3) brain atrophy
and/or loss of myelin; (4) BBB disruption with increased permeability of fluids, plasma
proteins, and inflammatory cells, which result in the accumulation of phagocytic debris and
obstruction with dilation to develop EPVS [2,41,42]. Also, Yu et al. have proposed that either
excessive CSF inflow or a decrease of ISF/CSF outflow or efflux due to neuroinflammatory
mechanisms within the PVU as depicted in Figure 5 and listed as number 4 previously, are
likely to be responsible for EPVS [2,4].

Recently, Shulyatnikova and the author have recognized and supported microvascular
capillary rarefaction as an additional hypothesis for the development of EPVS [2,3,42].
Microvascular capillary rarefaction (loss of capillaries in the brain with decreased capillary
density) are frequently found in obesity, MetS, and T2DM [2,3,42,43]. Capillary rarefaction
in the brain has recently been found to be associated with an increase in obesity, MetS,
and T2DM [44–47]. Capillary loss due to rarefaction leaves an empty space within the
confines of the PVUs’ PVS that would subsequently fill with ISF, and this would allow for
an increase in the percentage of total fluid volume within the PVS (Figure 6) [2,4,43].
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Figure 6. Cross and longitudinal sections representative of pre- and postcapillary arterioles and venules
with an ensheathing perivascular space (PVS). (A) depicts a cross-section of a capillary surrounded
by PVS (solid double red arrows and light blue color) and its increase in total volume to become an
enlarged perivascular space (EPVS) (dashed double red arrows), which represents capillary rarefaction.
Note the AQP4 red bars that are associated with the perivascular astrocyte endfeet. (B) demonstrates
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a control longitudinal precapillary arteriole, postcapillary venule, and a neurovascular unit (NVU)
capillary that runs through an encompassing PVS (light blue). (C) depicts capillary rarefaction (CR)
in a longitudinal view; note how the volume of the PVS increases its total percentage volume once the
capillary has undergone rarefaction as in obesity, metabolic syndrome, and type 2 diabetes mellitus.
(D) depicts the progression of a normal precapillary arteriole and postcapillary venule PVS to an
EPVS once the capillary has undergone rarefaction, allowing for an increase in its total percentage
volume of the PVS (1.–3.). (B,C) provided with permission from CC 4.0 [2]. ACef = perivascular astro-
cyte endfeet; AQP4 = aquaporin-4 (red bars); BEC = brain endothelial cells; BECact/dys = brain
endothelial cell activation and dysfunction; CL =capillary lumen; EC = endothelial cell;
lpsEVexos = lipopolysaccharide extracellular vesicle exosomes; NVU = neurovascular unit;
Pcef = pericyte endfeet.

Notably, EPVS were defined as being enlarged by magnetic resonance imaging (MRI)
when they measured 1–3 mm in diameter as a part of a position paper in 2013 that summa-
rized the main outcomes of this international effort to provide the standards for reporting
vascular changes on nEuroimaging (STRIVE) [48]. EPVS are thought to be associated with
other radiological remodeling changes such as cerebral small vessel disease (SVD), which
include lacunes and white matter hyperintensities (WMH) as well as microbleeds and
microthrombi (Figure 7) [2,42,47].
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Figure 7. Comparisons of enlarged perivascular spaces, lacunes, and white matter hyperintensities
(WMH). mm = millimeter.

EPVS may develop abruptly or in a compensatory response, as occurs in sleep; how-
ever, when they occur with clinical disease they more commonly form in a sequence of
events that is created over time in a spectrum of remodeling changes including SVD
that is associated with small arteries, arterioles, capillaries, and venules of the brain
with identifiable neuroimaging features on MRI including small subcortical infarcts or
lacunes, WMH, and EPVS, which can be initially difficult to identify from one another
(Figures 7 and 8) [2,4,42,47].

The concept of the PVU and the EPVS fit nicely with both the NVU concept and the
emerging importance of the glymphatic system in regard to the clearance of neurotoxic
metabolic waste.
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Figure 8. A possible sequence of events and an ongoing spectrum for the development of enlarged
perivascular spaces (EPVS). Brain endothelial cell activation and dysfunction (BECact/dys) and/or
damage may be the initiating factor in this sequence of events, while attenuation and/or loss of the en-
dothelial glycocalyx (ecGCx) may be concurrent or even precede BECact/dys. Additionally, there exists
a spectrum of remodeling changes and events in the development of EPVS that also includes lacunes,
white matter hyperintensities (WMH), and cerebral small vessel disease. Images provided with
permission from CC 4.0 [2]. aBECs = activated brain endothelial cells; ACfp = astrocyte endfeet;
BBB = blood–brain barrier; BEC = brain endothelial cell; BG = basal ganglia; BM = base-
ment membrane; CBF = cerebral blood flow; CSF = cerebrospinal fluid; CSO = centrum semio-
vale; ISF = interstitial fluid; LOAD = late-onset Alzheimer’s disease; MGC = microglia cell;
mm = micrometer; MRI = magnetic resonance imaging; NO = nitric oxide; NVU = neurovascu-
lar unit; PVS = perivascular spaces; SAS = subarachnoid space; TIA = transient ischemic attack;
WMH = white matter hyperintensities.
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4. Protoplasmic Perivascular Astrocyte Endfeet (pvACef) Play a Crucial Role in the
Development of the Perivascular Unit (PVU) and Enlarged Perivascular Spaces (EPVS)

As mentioned earlier, the pvACef are the master communicating cells via gap junction
connexins Cx40, Cx43, and thus create a syncytium, connecting cells (see Figure 3), coupling
cells as in NVU coupling and PVU coupling, and continuing and creating cells, so that they
become continuous at the true capillary as it transitions to the postcapillary venule with
normal PVS, and are creative in the development of the PVU and EPVS (Figure 9) [7–11,41].
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Figure 9. Comparison of the true capillary neurovascular unit (NVU) to the postcapillary venule
perivascular unit (PVU). Perivascular astrocyte endfeet (pvACef) are the connecting and creating cells
that allow remodeling of the perivascular units’ (PVU) perivascular space (PVS) to transform into
the enlarged perivascular space (EPVS). (A) illustrates the control neurovascular unit (NVU); note
that when the BECs become activated and BBB disruption develops, this increases the permeability
of fluids, peripheral cytokines and chemokines, and peripheral proinflammatory leukocytes with
a neutrophile depicted herein penetrating the TJ/AJ paracellular spaces to enter the postcapillary
venule along with monocytes and lymphocytes into the postcapillary PVU PVS. (B) initially depicts
the normal PVU with its normal perivascular space (PVS) that undergoes remodeling transformation
to become EPVS, allowing for close communicating crosstalk at the crossroad of the PVU. Note how
the pvACef (pseudo-colored blue) and its glia limitans (pseudo-colored cyan and exaggerated in its
thickness for illustrative purposes) face and adhere to the NVU BM extracellular matrix, and face the
PVS PVU lumen since this has detached and separated and allowed the creation of a perivascular
space that transforms to an EPVS. Also note how the glia limitans becomes pseudo-colored red once
the EPVS have developed, and then allows the outer barrier of the PVS glia limitans to become
breeched due to the activation of matrix metalloproteinases and the degradation of the proteins
within the glia limitans, which allow neurotoxins and inflammatory cells to leak into the interstitial
spaces of the neuropil and mix with the ISF and result in neuroinflammation, which (Step 2) of
the two-step process of neuroinflammation. Yellow circles represent nanometer gaps between
pvACef. Asterisk = tight and adherens junction; AP4 = aquaporin-4; BBB = blood–brain barrier;
BM = both inner (i) and outer (o) basement membrane; dpvACef = dysfunctional astrocyte endfeet;
EC = brain endothelial cell; ecGCx = endothelial glycocalyx; EVPS = enlarged perivascular space;
GL = glia limitans; H2O = water; L = lymphocyte; M = monocyte; N = neutrophile; Pc = pericyte;
PVS = perivascular space; PVU = perivascular unit; rPVMΦ = resident perivascular macrophage;
TJ/AJ = tight and adherens junctions.
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Owens et al. [49] have described a detailed two-step process of neuroinflammation,
and this process hinges on the knowledge that fluids and solutes undergo diffusion and
transfer primarily at the true capillary to the interstitium. Step 1 of the two-step process
involves leukocyte transfer from the capillary lumen via primarily paracellular spaces to
the perivascular unit of the postcapillary venules. Capillary leukocytes undergo primarily
paracellular diapedesis into the PVU, where they remain until the signals (such as ROS-
induced proteolysis) are able to degrade the outer barrier (the glia limitans) in order for the
PVU PVS/EPVS leukocytes to breech the outer barrier and enter the ISS of the neuropil,
Step 2 (Figures 9 and 10) [49,50].
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Figure 10. Perivascular astrocyte endfeet (ACef), neurovascular unit (NVU), perivascular unit (PVU),
perivascular space PVS, and enlarged perivascular space (EPVS). The NVU is located centrally; note
the absence of the endothelial glycocalyx (ecGCx) surface layer, which occurs in many neurovascular
and neurodegenerative diseases with impaired cognition that also include obesity, metabolic syn-
drome (MetS), and type 2 diabetes mellitus (T2DM). Increased NVU permeability via BECact/dys
BBB disruption due to multiple clinical neurovascular and neurodegenerative diseases allows the
entry of proinflammatory leukocytes into the PVU PVS in postcapillary venules. The accumulation
of proinflammatory cells’ oxidative stress with increased ROS will activate local and regional matrix
metalloproteinase (MMP)—a proteolytic enzyme capable of degrading the glia limitans of the pvACef
to allow the breeching of the postcapillary perivascular space and the entry of proinflammatory
leukocytes, solutes, and neurotoxins into the interstitial spaces (ISSs) to result in neuroinflammation
and increased CNSC/C, impaired cognition, and neurodegeneration via synaptic and neuronal
loss with neural atrophy. Note the aquaporin water channel and also the isolated synapse (uncra-
dled) in the upper left-hand side of illustration. This image is provided courtesy of CC by 4.0 [50].
AC = astrocyte; ACef = perivascular astrocyte endfeet; AQP4 = aquaporin-4; BEC = brain endothe-
lial cell; N = nucleus; n = nucleolus; Pc = pericyte; PVU = perivascular unit; pvMGC; rMGC;
rPVMΦ = resident perivascular macrophage; ROS = reactive oxygen species.

Additionally, Owens [49] has pointed out that the commonly observed histological
phenomenon of perivascular cuffing in extensive neuroinflammation depicts the surround-
ing accumulation of proinflammatory leukocytes to reside within the perivascular spaces
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by TEM. This finding further increases the crosstalk ability amongst these cells within the
crossroads that Troili has discussed previously [41,49].

Lipopolysaccharide (LPS) injection is one of the best known and most commonly
utilized methods to induce neuroinflammation [50–53]. Recently, Erickson et al. [54]
utilized LPS to induce neuroinflammation in the brain, and found considerable transmission
electron microscopy (TEM) remodeling changes in cortical layer III of the frontal regions at
7–10 weeks post treatment. These remodeling changes included BEC plasma membrane
ruffling, increased extracellular microvesicles and small exosome formation, aberrant BEC
mitochondria, and increased transcytosis with intact TJ/AJ; aberrant pericytes revealed
Pc nucleus rounding and retracted cytoplasmic extensions, which attracted microglia cells
to the NVU, and attenuated discontinuous endothelial glycocalyx, pvACef retraction and
separation associated with development of EPVS (Figure 11) [50,54].
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Figure 11. Examples of lipopolysaccharide (LPS)-induced neuroinflammation resulting in brain
endothelial cell activation and dysfunction (BECact/dys), loss of endothelial glycocalyx (ecGCx),
and enlarged perivascular spaces (EPVS). (A,C,E) demonstrate the appearance control images.
(B,D,F) depict LPS remodeling changes. (B) is an example of an EPVS (double red arrows) with a
resident perivascular macrophage (rPVMΦ that appears reactive with multiple vesicles and vacuoles);
also, note the detachment and retraction of the pseudo-colored yellow pvACef. (D) depicts the
attenuation and/or loss of the ecGCx; note that the ecGCx is discontinuous as compared to the
continuous ecGCx in control panel (C). (F) depicts the remodeling of the initial normal PVS to an
EPVS in association with the aberrant discontinuous ecGCx. (A,B) are presented courtesy of CC 4.0
[3BEC] and (C,D) are presented courtesy of CC 4.0 [50]. ACEF = protoplasmic perivascular astrocyte
endfeet; AQP4 = aquaporin-4; CL = capillary lumen; EC = brain endothelial cell; Lys = lysosome
NVU = neurovascular unit; Pc = pericyte; Pcfp = pericyte foot processes; PVS = perivascular space;
RBC = red blood cell; TJ/AJ = tight and adherens junction.
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5. Perivascular Astrocyte Endfeet (pvACef)

For this section, one might refer to the NVU as the “neuro-glial-vascular unit” (NGVU),
since the pvACs endfeet play such a critical role in connecting ACs to the NVU to accom-
plish NVU coupling with regional neurons to increase regional cerebral blood flow to neural
activity [55,56]. Early on in our studies of the diabetic db/db mouse models at 20 weeks of
age, our group found multiple ultrastructure remodeling changes including the reactive
pvACef that were tightly adherent to the basement membrane in the control models and
depicted ultrastructural detachment and retraction of the pvACef in the diabetic db/db mod-
els [7,57]. This detachment and retraction created a void electron lucent fluid-filled space
around the NVU between the NVU BM and the pvACef glia limitans (Figure 12) [7,57].

Neuroglia 2023, 5, FOR PEER REVIEW  14 
 

 

(C,D) are presented courtesy of CC 4.0 [50]. ACEF = protoplasmic perivascular astrocyte endfeet; 
AQP4 = aquaporin-4; CL = capillary lumen; EC = brain endothelial cell; Lys = lysosome NVU = neu-
rovascular unit; Pc = pericyte; Pcfp = pericyte foot processes; PVS = perivascular space; RBC = red 
blood cell; TJ/AJ = tight and adherens junction. 

5. Perivascular Astrocyte Endfeet (pvACef) 
For this section, one might refer to the NVU as the “neuro-glial-vascular unit” 

(NGVU), since the pvACs endfeet play such a critical role in connecting ACs to the NVU 
to accomplish NVU coupling with regional neurons to increase regional cerebral blood 
flow to neural activity [55,56]. Early on in our studies of the diabetic db/db mouse models 
at 20 weeks of age, our group found multiple ultrastructure remodeling changes including 
the reactive pvACef that were tightly adherent to the basement membrane in the control 
models and depicted ultrastructural detachment and retraction of the pvACef in the dia-
betic db/db models [7,57]. This detachment and retraction created a void electron lucent 
fluid-filled space around the NVU between the NVU BM and the pvACef glia limitans 
(Figure 12) [7,57]. 

 
Figure 12. Detachment and retraction of the reactive perivascular astrocyte endfeet (rpvACef) from 
the neurovascular unit (NVU) of the 20-week-old diabetic db/db models. (A) demonstrates the nor-
mal control appearance of the NVU with its tightly adherent pvACef that contain the polarized 
extracellular matrix basement membrane receptor proteins beta-dystroglycan and integrins of the 
surrounding pvACef at the plasma membrane to maintain this normal anatomical ultrastructure. 
Also note the aquaporin-4 that is polarized along with beta-dystroglycan and integrins at the plasma 
membrane of the pvACef. (B) depicts the detachment and retraction of the reactive pvACef 
(rpvACef) in diabetic female db/db models at 20 weeks of age from the frontal regions in layer III. 
Note the adjacent reactive microglia cell(s) (rMGC) containing an aberrant mitochondrion (aMt). 
Importantly, note the red pseudo-colored space that is created upon the rpvACef detachment and 
retraction. Also, note that the detached retracted pvACef has been pseudo-colored yellow to match 
the pvACef in panel A. This type of rpvACef remodeling was a common finding in the diabetic 
db/db models at 20 weeks of age. Modified (A,B) were provided with permission from CC 4.0 [7]. 
The faint yellow numbers are intended to number the pvACef (1-7). Scale bar = 0.5µm. AC = astro-
cyte; ACef = protoplasmic perivascular astrocyte endfeet; aMt = aberrant mitochondria; AQP4 = aq-
uaporin-4 water channel; BM = basement membrane; CKC = control model; CL = capillary lumen; 
EC = brain endothelial cell; iMGC = interrogating microglia cell; N = nucleus; NVU = neurovascular 
unit; PcP = pericyte processes; pvACef = protoplasmic perivascular astrocyte endfeet; rMGC = reac-
tive microglia cell; rpvACef = reactive perivascular endfeet; TJ/AJ = tight and adherens junctions. 

Figure 12. Detachment and retraction of the reactive perivascular astrocyte endfeet (rpvACef) from
the neurovascular unit (NVU) of the 20-week-old diabetic db/db models. (A) demonstrates the
normal control appearance of the NVU with its tightly adherent pvACef that contain the polarized
extracellular matrix basement membrane receptor proteins beta-dystroglycan and integrins of the
surrounding pvACef at the plasma membrane to maintain this normal anatomical ultrastructure.
Also note the aquaporin-4 that is polarized along with beta-dystroglycan and integrins at the plasma
membrane of the pvACef. (B) depicts the detachment and retraction of the reactive pvACef (rpvACef)
in diabetic female db/db models at 20 weeks of age from the frontal regions in layer III. Note the
adjacent reactive microglia cell(s) (rMGC) containing an aberrant mitochondrion (aMt). Importantly,
note the red pseudo-colored space that is created upon the rpvACef detachment and retraction.
Also, note that the detached retracted pvACef has been pseudo-colored yellow to match the pvACef
in panel A. This type of rpvACef remodeling was a common finding in the diabetic db/db models
at 20 weeks of age. Modified (A,B) were provided with permission from CC 4.0 [7]. The faint
yellow numbers are intended to number the pvACef (1-7). Scale bar = 0.5µm. AC = astrocyte;
ACef = protoplasmic perivascular astrocyte endfeet; aMt = aberrant mitochondria; AQP4 = aquaporin-
4 water channel; BM = basement membrane; CKC = control model; CL = capillary lumen; EC = brain
endothelial cell; iMGC = interrogating microglia cell; N = nucleus; NVU = neurovascular unit;
PcP = pericyte processes; pvACef = protoplasmic perivascular astrocyte endfeet; rMGC = reactive
microglia cell; rpvACef = reactive perivascular endfeet; TJ/AJ = tight and adherens junctions.
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This detachment and retraction are currently felt to be a result of the degradation
and/or loss of function of the extracellular matrix receptors beta-dystroglycan (β-DG) and
integrin alpha 6 beta 4 (α6β4) proteins localized to the plasma membrane of the pvACef due
to oxidative stress via ROS that induce the proteolytic matrix metalloproteinases (MMP-2,
9) [58–63]. Importantly, the β-DG and α6β4 integrin receptors of the pvACef secure it to
the BM via its connections that adhere to the laminin and other cytoskeletal components of
the ECM BM of the NVU [58], and the α-dystroglycan form is responsible for the linkage to
the basement membrane proteins [61], whereas β-dystroglycan links α-dystroglycan to the
actin cytoskeleton [63]. Also, DG proteins are known to be present on dendritic spines [62].

It is a fascinating perspective that among the billions of neuroglia and neurons, the
mammalian brain has interlaced an elaborate network of blood vessels that are enwrapped
specifically by pvACef and connected to the neuronal synapses by psACef processes
(80–90%) to provide a plentiful blood supply.

6. Perisynaptic Astrocyte Endfeet (psACef), Aquaporin-4 (AQP4), Impaired Synaptic
Transmission and Synaptopathy

Given that astroglia are the most abundant and voluminous cells in the CNS, and
that they project very long processes to both the vasculature and neurons, it is appropriate
to better understand how they are capable of signaling and regulating distal vascular
cells, synapses of neurons and their functions, and especially how they protect and sup-
port them [8,9]. Currently, it is commonly accepted that psACef are both structural and
functional components of synapses throughout the brain [9].

Detachment of the cradling perisynaptic astrocyte endfeet may occur similar to the
detachment of the pvACef due to the loss of function of aquaporin-4 (AQP4) by either
ROS-induced MMP degradation associated with neuroinflammation or loss of plasma
membrane AQP4 polarity due to neuroinflammation and/or BBB disruption in addition
to the loss of function of the dystroglycans as discussed above in regards to the pvACef
(Figure 13) [8,9,11,64,65].

Normal healthy control model psACef are known to take up excess generated wa-
ter/fluid during synaptic activity in cradled neurons, and if AQP4 is dysfunctional due
to loss of polarization, water/fluid may accumulate to allow an increased expansion and
support further detachment of the psACef to increase the distance between the synaptic
cleft and the psACef and support further separation and dysfunction of the psACef [8,9].
Thus, any disruption or dysfunction of the synaptic cradle is capable of resulting in a synap-
topathy that could contribute to impaired synaptic transmission and impaired cognition
with neurodegeneration [9].

AQP4 water channels localized to the plasma membrane of the pvACef and psACef
play an important role in controlling fluid homeostasis within the ECM between cells and
structures such as the NVU and the synaptic cradle in psACef in the CNS [9,65]. They also
play critical roles in the function of the glymphatic system [17] and provide homeostasis
for the entire CSF network as in the whole brain (Figures 1 and 3).

While ACs play numerous important roles in the brain as discussed in the introduction
and throughout this review, they are critically important for controlling the volume of CNS,
CSF, ISF, PVS, glymphatic space for waste removal, as well as their own size and volume,
due to their highly polarized plasma membrane bidirectional water channel AQP4 [44].
AQP4’s role in maintaining normal CNS homeostasis includes potassium buffering, cere-
brospinal fluid circulation, interstitial fluid resorption, regulation of extracellular space
volume, waste clearance, neuroinflammation, osmosensing, Ca2+ signaling, and cell migra-
tion, and it is also required for the normal function of the retina, inner ear, and olfactory
system (Figure 14) [8,66].
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Figure 13. Similarities and comparisons between perivascular astrocyte endfeet (pvACef) and the
cradling perisynaptic astrocyte endfeet (psACef) detachment and separation. These similarities
implicate damaged or dysfunction aquaporin-4 (AQP4) either due to activated proteases such as
matrix metalloproteinases (MMP-2, 9) or to a loss of polarization of AQP4 from the plasma membranes
resulting in impaired synaptic transmission and impaired cognition or the timing of arrival of
incoming information to disturb networks of information. (A,C) are female age-matched controls
and (B,D) are from 20-week-old diabetic db/db models with tissues obtained from the frontal cortex,
cortical layer III, and depict detachment and separation of pvACef in (B) and psACef in panel D. Note
that this detachment and separation create a perivascular space (PVS) (B) and a perisynaptic space (D)
that may continue to become enlarged with dysfunctional dystroglycan (dysDG) and dysfunctional
aquaporin-4 (dysAQP4) as in (panels B,D). Note that the cyan green line denoting the glia limitans
in (panel B) is not present in (D). Blue arrows represent detachment and separation of pvACef.
Red dotted arrows represent detachment and separation with emphasis. Faint yellow numbers
indicate numbering of pvACef (1-7). Images in A and B are reproduced courtesy of CC 4.0 [7].
Scale bars =100 nm (D,E). BBB = blood–brain barrier; CL = capillary lumen; dys = dysfunctional;
DG = dystroglycans; EC = brain endothelial cell; NVU = neurovascular unit; PcP = pericyte process;
PSD = post synaptic density; TJ/AJ = tight and adherens junctions.
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Figure 14. The perivascular astrocyte endfeet (pvACef) with their polarized aquaporin-4 (AQP4)
water channels delimit the abluminal perivascular unit (PVU) with its perivascular spaces/enlarged
perivascular spaces (PVS/EPVS) and perisynaptic astrocyte endfeet (psACef). (A,B) demonstrate
by immunohistochemical staining the presence of AQO4 in the pvACef. (C) is a schematic of the
AQP4 channel and illustrates water moving into the PVS to contribute to the PVS enlargement.
(D) illustrates in younger models that AQP4 is tightly polarized to the plasma membrane of the
pvACef as compared to (E), which depicts a loss of AQP4 polarization in older models. Modi-
fied image provided with permission from CC 4.0 [44]. Scale bar = 500. CL = capillary lumen;
IHC = immunohistochemistry; N = nucleus.

Deficient AQP4 has been shown to result in impaired synaptic plasticity and trans-
mission [67–70]. Clinically, there are two neurological diseases that are associated with
antibodies against AQP4 water channels: neuromyelitis optica [71,72] and neuromyelitis
optica spectrum disorder [73,74].

Dysfunction or loss of polarization and function of AQP4 water channels or genetic
knock-out models of AQP4 result in glymphatic system dysfunction via brain-wide inter-
stitial fluid stagnation [66,74–76]. Nielsen et al. were able to demonstrate that nanogold
particle staining of AQP4 by transmission electron immunochemistry was localized to
the plasma membrane of the pvACef where they tightly adhered to the NVU basement
membrane [77].
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7. Impaired Perivascular Astrocyte Endfeet (pvACef), AQP4, Glymphatic System (GS), and
Clearance of Metabolic Waste (MW) Associated with Cerebral Small Vessel Disease (SVD)

Dysfunctional pvACef associated with impaired AQP4 water channels, EPVS, and
glymphatic system impairment with impaired MW clearance are involved in the develop-
ment of SVD [78]. Importantly, glymphatic function has now been found to be impaired in
many processes relevant to SVD, which include aging [79], microinfarctions [80], stroke [81],
late-onset Alzheimer’s disease [82], migraine headaches [83], and diabetes [34]. There are
estimated to be 46.8 million people who suffer from dementia globally, and SVD is known
to be present in each of them [78,84]. Since SVD can be detected as a marker by MRI
for future dementia and often precedes the clinical manifestations of transient ischemic
attacks and strokes by years or decades, it is worthwhile to better understand the role of
these multi-factorial dysfunctions and their mechanisms as discussed in this review as a
potentially preventable cause of cerebrovascular disease and dementia.

There are three basic types of SVD, namely Type 1: sporadic arteriolosclerosis that
is associated with aging and systemic hypertension (especially systolic hypertension and
T2DM); Type 2: sporadic hereditary cerebral amyloid angiopathy (CAA); and Type 3:
inherited or genetic forms (not CAA), most commonly cerebral autosomal dominant ar-
teriopathy with subcortical ischemic strokes and leukoencephalopathy (CADASIL) [85].
Additionally, EPVS observed on brain MRIs are thought to be a marker of glymphatic
dysfunction and reflect impairment of brain fluid and waste clearance [86]. Further, cerebral
capillary rarefaction (Figure 6) has been determined to precede WMH in genetic models of
cerebral ischemic SVD [87]; also, a genomics study of EPVS supported early mechanisms
of SVD [88].

Indeed, the new perspective of the GS with impaired clearance of MW provides an
additional mechanism regarding the pathophysiology of SVD and its associated clinical
diseases including mixed dementias [21,78,89].

8. Conclusions

EPVS are strongly related to aging. We are currently one the oldest populations in
history, and this will persist for at least the next two decades [2,21,23,50]. Notably, it has
been estimated that approximately two billion individuals of the global population will
exceed 60 years of age by 2050, which is 1/5 of the world’s population [89]. Therefore, it is
essential that we strive to learn as much as possible regarding the development of EPVS as
they transition from normal PVS in both the precapillary perivascular arteries, arterioles,
true capillaries without a PVS, and the postcapillary venules, which serve as the anatomical
conduit for the glymphatic system to remove neurotoxic metabolic waste from neuronal
metabolic activity via the PVS glymphatic space. As we gain a better understanding of
the possible mechanisms as to how the normal PVS transitions to pathological EPVS in
regards to the pvACef and psACef, we may be able to slow or prevent the development of
EPVS as well as the associated neurovascular and neurodegenerative diseases that are so
devastating to the welfare of our aging global populus.
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