
Citation: Rustighi, E.. Optimal and

Quasi-Optimal Automatic Tuning of

Vibration Neutralizers. Vibration 2024,

7, 362–373. https://doi.org/10.3390/

vibration7020018

Academic Editor: Ramin Sedaghati

Received: 31 January 2024

Revised: 1 March 2024

Accepted: 27 March 2024

Published: 29 March 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

vibration

Article

Optimal and Quasi-Optimal Automatic Tuning of
Vibration Neutralizers
Emiliano Rustighi

Department of Industrial Engineering, University of Trento, 38123 Trento, Italy; emiliano.rustighi@unitn.it

Abstract: Vibration neutralizers are single-degree-of-freedom devices affixed to vibrating structures
in order to reduce the response at a specific troublesome harmonic excitation frequency. As this
frequency may vary over time, it becomes imperative to track and adjust the neutralizer to maintain
the optimal performance. Recent years have witnessed the emergence of adaptive tunable vibration
neutralizers, offering real-time adjustment capabilities through external actions. Thanks to real-time
control algorithms, these devices enable the automatic mitigation of vibration levels in mechanical
structures. A particularly successful algorithm for the automatic tuning of these devices leverages the
phase angle between the base acceleration and the neutralizer’s mass. This study critically examines
the justification for employing such an algorithm and scrutinizes its optimal applicability limits,
particularly in the context of viscous and structurally damped systems. The findings reveal that this
algorithm accurately approximates optimum tuning for systems with low damping. Moreover, from
an engineering perspective, the algorithm remains acceptable even for heavily damped structures.
Through a focused and comprehensive analysis, this paper provides valuable insights into the
efficacy and limitations of the phase-angle-based tuning algorithm, contributing to the advancement
of adaptive vibration control strategies in smart structures.
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1. Introduction

A dynamic vibration absorber is a single-degree-of-freedom device which is added to a
vibrating primary structure in order to drastically reduce vibrations at a resonant frequency.
In order to be effective, an undamped vibration absorber has to be precisely tuned so that is
its natural frequency matches the resonance frequency of the primary structure. Introducing
damping broadens the working bandwidth but diminishes effectiveness. The same device
when used to reduce the level of vibration at a specific troublesome harmonic excitation
frequency is named a vibration neutralizer. Like the absorber, the neutralizer must be
accurately tuned. Structural changes in the primary structure or variations in the harmonic
excitation frequency over time necessitate the use of Adaptive Tuned Vibration Neutralizers
(ATVNs), enabling real-time tracking of targeted resonant or excitation frequencies. An
adaptive vibration control strategy facilitates vibration mitigation across a wide frequency
band, requiring a lower energy consumption compared to purely active control strategies.

Numerous ATVNs have been proposed, incorporating tunable elements in their de-
sign which can take various forms, such as beam-like structures, coil springs, or movable
masses [1,2]. Design variations have been proposed by either altering the geometry [1,3–5]
or the material properties [6,7] of the variable stiffness elements of the ATVN. For instance,
the stiffness of a beam-like element can be changed by increasing the distance between two
leaf springs [5] or by changes in the inclination of the beams [4,8] or in the curvature of the
beams [9]. In other configurations, the stiffness is tuned by changing the number of active
coils in a coil-spring stiffness element [2] or by changing the internal pressure of a pressure
bellow stiffness element [10]. Other tuning mechanisms use moveable masses [1,3,4]. Smart
materials such as shape memory alloys can also be employed, taking advantage of the
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change in Young’s modulus from the austenitic to the martensitic state. The Young’s modu-
lus of a shape memory alloy beam-like spring can be adjusted by changing the temperature,
showcasing the efficacy of shape memory alloys [6,7]. Additionally, viscoelastic materi-
als exhibit changes in the storage and loss moduli with temperature variations, offering
another avenue for tuning [11,12]. Composite elements woven into chain mail structures
and subjected to a confining pressure in a vacuum provide a unique means of achieving
variable stiffness [13,14]. Electro-mechanical devices, utilizing voice coils or piezoelectric
ceramic elements, represent another category of ATVNs [15,16]. Piezoelectric materials,
when shunted with resistive and inductive elements, can be electrically adjusted to tune
the resonance frequency, providing a versatile and adaptive approach to vibration control.

While various methods have demonstrated significant vibration suppression within
a tunable range, achieving real-time tunability requires an effective control strategy that
can adapt to changes in the excitation frequency automatically. While substantial efforts
have been directed towards the physical implementation of variable resonant frequen-
cies in ATVNs, the same level of attention has not been given to control algorithms.
Franchek et al. [2] developed an adaptive vibration controller capable of tracking exci-
tation frequencies, determining tuning directions, and adapting to maximize vibration
attenuation in the presence of uncertainties. Although effective, this methodology is time-
consuming when determining the auxiliary device’s dynamic behaviour. Additionally,
the nonlinearity and uncertainties in the physical system of the ATVN contribute to the
complexity of the control function. A linear control system which does not require mod-
eling of the plant can be cost-effective and mitigate the potential detrimental effects of
uncertainties and nonlinearities in the model. Williams et al. [7] and Rustighi et al. [6]
have suggested a simpler control algorithm which utilize the phase angle between the
velocities of the host structure and the neutralizer as an error signal. Further improvements
in algorithm performance, incorporating nonlinear mappings of the error function, have
been proposed [17,18].

The realization of real-time ATVNs requires a comprehensive understanding of the
auxiliary device’s physical mechanisms, establishing the explicit relationship between
the input signal and the mechanical output (i.e., the natural frequency of the ATVN).
Subsequently, the control function of the controller can be integrated into the control loop
considering the dynamics of the primary system for vibration suppression when excited
at varying frequencies. Williams et al. [7] provided analytical justification for using such
an error signal in the case of a viscously damped absorber. This paper extends their work,
offering a theoretical foundation for employing such an error signal in the presence of
viscous and hysteretic damping for both absorbers and neutralizers. Simultaneously, a
novel, non-dimensional study of the vibration neutralizer is introduced to better elucidate
the algorithm’s foundation and its performance in optimal tuning. This paper, for the
first time, delves into the justification and physical explanation of the algorithm’s use,
comparing it with an optimal tuning strategy. Specifically, three tuning strategies are
compared: the first aiming to tune the absorber to its maximum base impedance, the
second utilizing an optimal tuning frequency for maximum vibration suppression, and the
third employing a quasi-optimal tuning strategy based on setting the absorber and host
structure mass velocities in quadrature.

2. The Adaptive Tuned Vibration Neutralizer

A tuned vibration neutralizer is a single-degree-of-freedom vibration control device
that, when attached to a host structure, reduces the local vibration levels at a specified
troublesome frequency. Assuming sufficient modal separation, the host (or primary)
structure can be represented as a single-degree-of-freedom system with modal mass ms,
modal stiffness ks, and modal damping ratio ζs, as shown in Figure 1a. Viscous damping
has been included in order to model the damping in the host structure. An external time-
harmonic excitation fs(t) = Re

{
Fseiωt} is applied at the host mass. Thus, the excitation

force is represented in the frequency domain by a complex magnitude Fs, while t is the
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time, ω is the excitation angular frequency, and i =
√
−1. The velocity of the host mass is

denoted by vs(t) = Re
{

Vseiωt}, where Vs(ω) is the complex magnitude of the velocity in
the frequency domain. The receptance of an exemplary host structure is illustrated by the
blue curve in Figure 2, indicating the presence of a resonance around the natural frequency
of the host structure.
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Figure 1. (a) A single-degree-of-freedom host structure with viscous damping; (b) an ATVN with
viscous damping; (c) Host structure and ATVN with viscous damping; (d) Host structure and ATVN
with hysteretic damping.

The ATVN is a single-degree-of-freedom system, as shown in Figure 1b, with a tunable
stiffness. Tuning the ATVN involves adjusting the stiffness ka to the desired value. Energy
dissipation in the ATVN is included in the form of viscous damping of the damping ratio
ζa. The damping ratio is assumed to be constant and independent from the tuning stiffness.
Despite the influence of stiffness on the damping ratio, maintaining independence between
these variables was chosen to ensure a completely objective parametric study. The ATVN
is subjected to base excitation, which is the point of contact with the host structure, through
a harmonic force fb(t) = Re

{
Fbeiωt}. The velocity of the neutralizer mass is denoted by

va(t) = Re
{

Vaeiωt}. Fa and Va are complex magnitudes in the frequency domain.
Figure 1c shows the ATVN attached to the host structure. An external harmonic exci-

tation fs(t) = Re
{

Fseiωt} is applied at the host mass, where Fs is the complex magnitude
in the frequency domain. The tuning of the ATVN is achieved by altering its stiffness to
create an antiresonance at the desired excitation frequency. The ATVN can be tuned to any
harmonic excitation frequency to reduce the response at that specific frequency. Figure 2
shows the response of the host structure with an ATVN tuned at, below, and above the
natural frequency.

A pictorial representation of automatic control has been added in red to Figure 1c.
The control algorithm is based on measurements of the host structure and neutralizer
velocities, vs and va, respectively. A control algorithm from state velocities must decide the
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desired value to assign to the stiffness ka so that the system is tuned. In the next section,
three different tuning strategies are suggested: optimal tuning, approximated tuning and
quasi-optimal automatic tuning.
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Figure 2. Receptance of a single-degree-of-freedom host structure with viscous damping (continuous
blue line) and receptance of the host structure with an ATVN tuned at the natural frequency of the
host structure (continuous black line) and twenty percent below and above the natural frequency of
the host structure (dotted and dashed black lines).

These three tuning strategies are also considered in the case of structural damping,
represented as hysteretic damping, as illustrated in Figure 1d. Here, the host structure
has a complex stiffness ks(1 + iηs), where the loss factor ηs represents structural damp-
ing. Structural damping, characterized by the loss factor ηa, has also been introduced in
the ATVN.

3. Optimal and Approximated Tuning of the ATVN

In this section, two tuning strategies traditionally employed for analytical and offline
tuning of a neutralizer [19] are derived: the optimal and the approximated tuning strategies.
In the following section, a quasi-optimal tuning strategy, recommended for real-time tuning
of an ATVN [6,7], is obtained.

The neutralizer’s effectiveness is quantified by the reduction rate D, defined as the
ratio of the structure’s response without and with the ATVN [19]; Vs,0; and Vs evaluated at
the target frequency, i.e., the excitation frequency ω:

D =

∣∣∣∣Vs,0

Vs

∣∣∣∣. (1)

More conveniently, the reduction rate D can be expressed as a function of the impedances
of the absorber and of the host structure:

D =

∣∣∣∣1 + Za

Zs

∣∣∣∣, (2)

where Zs = Fs/Vs,0 represents the point impedance of the host structure alone, and
Za = Fb/Vb is the base impedance of the neutralizer, such that Fs = Vs(Zs + Za). The
ratio between the structure impedance at the point of attachment and the ATVN determines
the device’s effectiveness. Equation (2) clarifies that large vibration reduction ratios D
are achieved when the impedance of the neutralizer Za is significantly larger than, or at
least much larger than, the host structure impedance Zs. A substantial impedance ratio
Za/Zs is necessary for achieving a considerable vibration reduction. Thus, a strategy
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favouring large impedance is desirable. If the tuning algorithm aims to maximize the
neutralizer’s impedance, approximated tuning is achieved. Optimal tuning, on the other
hand, adjusts ka to achieve an impedance Za that maximizes the vibration reduction D. The
subsequent sections present expressions of the two tuning laws for viscous and structural
damping models.

3.1. Viscous Damping

When adopting the viscous damping model, the non-dimensional impedance of the
ATVN can be given by:

Za =
−iωma(γ2 + 2iγζa)

−1 + γ2 + 2iγζa
, (3)

where ma is the mass of the neutralizer, ζa is the damping ratio of the neutralizer, and γ is
a suggested non-dimensional term representing the ratio between the tuning frequency
ωa =

√
ka/ma and the excitation frequency ω:

γ =
ωa

ω
. (4)

An approximated tuning strategy that maximizes |Za(γ)| yields:

γR =

√
1 +

√
1 + 8ζ2

a
2

, (5)

indicating that the ratio between the tuned ATVN frequency and the excitation frequency
remains constant and depends only on the damping ratio of the ATVN. For the undamped
case, the neutralizer frequency is tuned with the excitation frequency, i.e., γR = 1, as
suggested in the conventional tuning strategy [20].

When the viscous damping model is adopted and the ATVN damping ratio is not
negligible, the maximum reduction D can be obtained by setting its first derivative to zero.
The reduction ratio D in the suggested non-dimensional form is:

D =

∣∣∣∣1− (γ2 + 2iγζa)µΩ
(γ2 − 1 + 2iγζa)(Ω2 − 1− 2iΩζs)

∣∣∣∣ (6)

where ζs = cs/2
√

ksms represents the damping ratio of the main structure, µ = ma/ms
is the mass ratio between the neutralizer and the host structure, and Ω expresses the
ratio between the troublesome excitation frequency ω and the resonance frequency of the
structure ωs

Ω =
ω

ωs
. (7)

The introduction of the parameter Ω allows one to discriminate if the device is used as an
absorber (Ω = 1) or as a neutralizer (Ω 6= 1).

Setting the first derivative of Equation (6) to zero does not yield an analytical expres-
sion. However, the optimal tuning parameter γopt can be calculated numerically by solving
the following polynomial equation:

γ5(−µΩ + Ω2 − 1
)
+ 6γ4ζaζsΩ+

+γ3(Ω(µ− 2Ω) + 2) + 4γ2ζa
(
2ζ2

a − 1
)
ζsΩ+

+γ
(
2ζ2

a(Ω(µ− 2Ω) + 2) + Ω2 − 1
)
− 2ζaζsΩ = 0.

(8)

In Figure 3a,c,e, the variations in reduction D with the tuning ratio γ are depicted for
different values of the viscous damping ratio ζa, considering excitation frequency ratios
Ω = 0.8, 1, and 1.2. Notably, the continuous black line highlights that optimal tuning γopt
consistently tracks the maximum reduction level across the variable range of damping
ratios ζa.
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Figure 3. Reduction levels D as function of γ with µ = 0.1 for viscous (a,c,e) and structural
(b,d,f) damping: (a) Ω = 0.8 and ζs = 0.005; (b) Ω = 0.8 and ηs = 0.01; (c) Ω = 1 and ζs = 0.005;
(d) Ω = 1 and ηs = 0.01; (e) Ω = 1.2 and ζs = 0.005; (f) Ω = 1.2 and ηs = 0.01. The continuous black
line shows the reduction levels obtained with the optimal tuning strategy. The dashed line presents
the reduction levels obtained with quasi-optimal damping.

3.2. Hysteretic Damping

Adopting a structural damping model, the non-dimensional impedance of the ATVN
is expressed as:

Za =
−iωmaγ2(1 + iηa)

−1 + γ2(1 + iηa)
(9)

where ηa is the loss factor of the neutralizer and γ is defined in Equation (4).
The approximated tuning frequency of the system with structural damping, i.e., the

frequency which maximizes the ATVN impedance in Equation (9), is obtained when the
ATVN frequency is equal to the excitation frequency:

γR = 1. (10)
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It is noteworthy that the approximated tuning parameters for structural damping do
not depend on the loss factor. This is due to the fact that the loss factor ηa does not influence
the resonance frequency of the neutralizer.

In the presence of structural damping in the host structure, as depicted in Figure 1d,
and when the ATVN loss factor is not negligible, the non-dimensional expression for D is
given by:

D =

∣∣∣∣1 + γ2(1 + iηa)Ω2µ

(γ2(1 + iηa)− 1)(1 + iηs −Ω2)

∣∣∣∣ (11)

The maximum reduction can be obtained setting the first derivative of the reduction
ratio D, expressed by Equation (11), to zero. The optimal tuning γopt may be analytically
calculated as:

γopt =

√
Ψ +

√
η2

a + 1[(µ− 2)Ω2 + 2]
2
√

η2
a + 1[(µ− 1)Ω2 − ηaηs + 1]

(12)

with
Ψ =

√
µ2Ω4 + 4η2

a η2
s + η2

a [(µ− 2)Ω2 + 2]2 − 4µηaηsΩ2. (13)

Figure 3b,d,f illustrate the variation in the reduction factor D with the tuning ratio γ
for diverse levels of structural damping, considering excitation frequency ratios Ω = 0.8, 1,
and 1.2. The continuous black line highlights that optimal tuning γopt consistently tracks
the maximum reduction level across varying loss factor values ηa.

4. Quasi-Optimal Tuning of the ATVN

Previous studies have proposed a straightforward PID controller employing the phase
angle between the velocities of the host structure and the neutralizer, specifically the phase
angle of the transmissibility between them, to tune the ATVN [6,7]. This section provides an
analytical justification for this strategy, demonstrating its quasi-optimal tuning capability.

An alternative expression for the reduction ratio can be derived using the transmis-
sibility of the neutralizer. The transmissibility, denoted as T = Va

Vb
and defined as the

ratio of the neutralizer mass velocity va(t) = Re
{

Vaeiωt} to the neutralizer base velocity
vb(t) = Re

{
Vbeiωt}, is related to the neutralizer impedance by the following relationship:

T =
iZa

ωma
(14)

This relationship arises from the balance of the base force with the neutralizer in-
ertial force. Consequently, the reduction rate D can also be expressed as a function of
the transmissibility:

D =

∣∣∣∣1 + −iωmaT
Zs

∣∣∣∣. (15)

It follows that tuning can alternatively be achieved by pursuing a very large transmis-
sibility across the neutralizer. This approach allows for a control algorithm that is easily
implementable, as large transmissibility values are typically obtained at resonance. At the
transmissibility resonance, the accelerations of the host structure and of the neutralizer
mass are in quadrature. This observation led to the idea of using the cosine of the phase
angle between the accelerations of the base and the free mass of the neutralizer as an error
signal for the control algorithm [17,18], as depicted in Figure 1c,d. Specifically, the cosine
of the transmissibility function is positive before resonance (phase angles 0 < αT < π/2
radians), zero at resonance (αT = 0 rad), and negative above resonance (π/2 < αT < π).

Optimal tuning is achieved when maximizing the reduction rate D as given in
Equation (1). Quasi-optimal tuning, on the other hand, aims to maximize the transmissi-
bility T, see Equation (15). Although the latter is not optimal, it leads to a more practical
algorithm that sets the velocities of the structure and the neutralizer in quadrature. This
paper aims to compare quasi-optimal tuning (maximizing T) with optimal tuning (maxi-
mizing D). The actual expressions for the reduction ratio and transmissibility depend on
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the type of damping considered. The following two sections address the cases of viscous
and structural damping.

4.1. Viscous Damping

The transmissibility of the neutralizer with viscous damping can be expressed in
non-dimensional form as

T =
γ2 + 2iζaγ

γ2 − 1 + 2iζaγ
(16)

where ζa = ca/2
√

maka is the damping ratio of the neutralizer.
The error signal of the quasi-optimal control algorithm, defined as the cosine of the

phase angle of the transmissibility function, can be obtained as

cos(θ) =
γ(γ2 + 4ζ2

a − 1)√
γ2(γ2 + 4ζ2

a − 1)2 + 4ζ2
a

. (17)

The quasi-optimal tuning algorithm previously proposed in [17] aims at setting this
error signal to zero. The tuning ratio γ0 that reduced the error to zero is given by

γ0 =
√

1− 4ζ2
a . (18)

The quasi-optimal algorithm exhibits limitations in its applicability. In fact, γ0 has
real and plausible values only for ζa ≤ 1/2. In fact, for large values of the damping ratio,
the phase cannot reach quadrature conditions. For small values of the damping ratio, this
value approximates again to γ0 ≈ 1. However, this does not exactly match the tuning value
that guarantees resonance of the transmissibility or maximum impedance of the neutralizer,
which is instead given by Equation (5). Hence, γ0 is neither an optimal tuning ratio, nor
does it guarantee large impedance at the troublesome excitation frequency ω. However, it
is here called a quasi-optimal tuning ratio since it approaches the optimal tuning at low
damping. Also, the dotted black line in Figure 3a,c,e illustrates that the quasi-optimal
tuning ratio γ0 can track the maximum reduction level only for small values of the damping
ratio ζa. Additionally, the difference between γ0 and γopt is particularly large for Ω < 1.

4.2. Structural Damping

The transmissibility of a neutralizer with structural damping can be expressed in
non-dimensional form as

T =
γ2(1 + iηa)

γ2(1 + iηa)− 1
. (19)

It is noteworthy that the phase angle is αT = 0 at resonance for any value of the
hysteretical damping.

The error signal which is typically used in the adaptation algorithm is cos(θ), where θ
is the phase angle of the transmissibility function. The error signal can be obtained after
some algebraic manipulation as

cos(θ) =
γ2(1 + η2

a )− 1√
[γ2(1 + η2

a )− 1]2 + η2
a

. (20)

Previously proposed quasi-optimal tuning algorithms [7,17] aim at setting this error
signal to zero. The tuning ratio γ0 which reduces the error signal in Equation (20) to zero is
then given by

γ0 =
1√

1 + η2
a

. (21)

This value depends on the loss factor of the neutralizer. This indicates that the
algorithm will work as the approximated or the optimal tuning only for small values of
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the loss factor for which γ0 ≈ 1. The dotted black line in Figure 3b,d,f illustrates that the
quasi-optimal tuning ratio γ0 can track the maximum reduction level only for small values
of the loss factor ηa. Also, the difference between γ0 and γopt is particularly large for Ω < 1.

5. Data Analysis and Discussion

In this section, the optimal tuning parameter γopt with the quasi-optimal tuning
parameter γ0 and the approximated tuning parameter γR derived in the previous sections
are compared.

Figure 3 shows the variations in reduction D with the tuning ratio γ when Ω = 0.8, 1
and 1.2, that is, for excitation frequencies below and above the natural frequency of the main
structure. The results illustrate the scenarios involving viscous and structural damping. To
achieve equivalent responses at resonance for both cases, the loss factors are set to be twice
the damping ratios, ηa = 2ζa. The optimal tuning γopt is depicted as a continuous black
line. The optimal tuning strategy tracks the maxima of D while adjusting the damping in
the neutralizer. In addition, the quasi-optimal tuning γ0, obtained by a control algorithm
which sets cos(θ) = 0, is represented as a dotted black line. It is evident that the quasi-
optimal tuning algorithm approximates the optimal tuning effectively only for situations
characterized by low damping. Considering that the excitation frequency is harmonic,
an undamped spring-mass neutralizer is naturally the optimal choice. In fact, as shown
in Figure 3, when the damping of the neutralizer tends to zero, the reduction peaks at
γ = 1. Despite the common occurrence of structures with low damping, this analysis
sheds light on the algorithm’s constraints in the presence of damping. Furthermore, since
all neutralizers inherently possess some level of damping, this aspect gains significance,
particularly with ATVNs, which may have not-negligible damping since they are typically
composed of multiple components featuring multiple interfaces.

In Figure 4, the optimal tuning parameter γopt is compared to the quasi-optimal tuning
parameter γ0 and the approximated tuning parameter γR, highlighting their dependency
on damping. Both γopt and γ0 exhibit damping-dependent behaviour with distinct slopes,
while γR displays a minimal sensitivity to viscous damping and no dependence on struc-
tural damping. The maximum difference between the approximated and optimal tuning
parameters occurs when tuning above the host resonance frequency in the presence of
structural damping, reaching disparities of up to 40%. In contrast, the maximum difference
between the quasi-optimal and optimal tuning parameters is observed when tuning below
the resonance frequency, with potential deviations of up to 50% in the case of structural
damping. Despite the larger differences associated with quasi-optimal tuning, its inherent
simplicity and robustness in implementation [17,18] position it as the most viable choice
for practical applications.

While the difference between γopt and γ0 may be substantial in certain scenarios, the
actual impact on the reduction D for these tuning values appears negligible in practical
terms. In fact, as damping increases, the reduction function D becomes flatter. Figure 5
displays the difference in decibels between the reduction obtained with the quasi-optimal
control algorithm and the optimal reduction levels, which consistently remains below
4 dB. In Figure 5b, the shaded area is due to numerical errors in evaluating the zeros of
Equation (8). For small values of ζa and Ω, where the evaluation of γopt may fail, the
optimal solution was approximated to γopt ≈ 1. In both cases, the reduction difference is
small across the investigated range of damping and excitation frequencies, justifying the
use of the quasi-optimal algorithm even for heavily damped structures.
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Figure 4. Optimal, quasi-optimal, and approximated tuning γ as a function of the damping for
viscous (a,c,e) and structural (b,d,f) damping (µ = 0.1): (a) Ω = 0.8 and ζs = 0.005; (b) Ω = 0.8 and
ηs = 0.01; (c) Ω = 1 and ζs = 0.005; (d) Ω = 1 and ηs = 0.01; (e) Ω = 1.2 and ζs = 0.005; (f) Ω = 1.2
and ηs = 0.01.
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with ηs = 0.01, µ = 0.1.
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6. Conclusions

This paper has presented a novel non-dimensional analysis of vibration neutralizers
considering both structural and viscous damping. The objective was to provide a rigorous
foundation that justifies a quasi-optimal tuning strategy that uses the cosine of the phase
angle between the host structure and the neutralizer’s mass velocities as an error signal.
A comparison between the proposed automatic quasi-optimal tuning algorithm and the
optimal tuning approach has yielded insightful findings. The quasi-optimal algorithm
demonstrates a remarkable accuracy in approximating the optimum tuning, particularly
in scenarios characterized by low damping. Importantly, the analysis extends beyond
theoretical considerations to practical engineering applications, revealing that the quasi-
optimal algorithm remains effective even in the context of heavily damped structures.
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