
Citation: Ragauskas, P.; Jasevičius, R.
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Abstract: In studies of structural mechanics, modal analysis, presented in this paper, is an important
tool for analyzing the vibration of an object and its frequencies. In modal analysis, different modes of
vibration and the frequencies that generate them are considered. The study covers the nondestructive
identification of the elastic characteristics of materials, which involves stochastic algorithms and the
application of reverse engineering (i.e., the comparison of reference eigenfrequencies with the results
of mathematical models). Identification is achieved by minimizing the objective function—the smaller
the value of the objective function, the higher the identification accuracy obtained. By changing
the parameters of a material’s mathematical model during identification, certain (usually higher
order) modes can change places in a natural frequency spectrum. This leads to the comparison of
different order eigenfrequencies, slow convergence and poor accuracy of the identification process.
The technique involved in this work is the mode-shape recognition of a specimen of material with an
“incorrect” set of elastic properties. The results prove that the identification accuracy of a material’s
elastic properties can be increased if an “incorrect” set of elastic properties is removed from the identi-
fication process. The research covers only numerical research, with a physical experiment simulation.
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1. Introduction

First, we would like to talk about finite element analysis. Wang and Inman [1] dis-
cussed finite element analysis and conducted an experimental study of the dynamic prop-
erties of a composite beam with viscoelastic damping. They mentioned that the frequency-
dependent behavior of the stiffness and damping of a viscoelastic material directly affects
the system’s modal frequencies and damping and results in complex vibration modes and
differences in the relative phase of vibration. Zako et al. [2] discussed the finite element
analysis of damaged woven fabric composite materials. They mentioned that their pro-
posed analysis can predict microscopic damage, so that the damage modes could also
be described. Mishra and Chakraborty [3] developed an updating technique for a finite
element model to allow the estimation of constituent-level elastic parameters of fiber rein-
forced plastics (FRP) plates. Their technique suggests a viable option for the nondestructive
characterization of such FRP structures at the constituent material level.

Next, we would like to mention magnetorheological composites. Yarali et al. [4] dis-
cussed the modeling and dynamic finite element analysis of magnetorheological elastomer
composites. They mentioned that increasing the magnetic field could lead to an increase in
the storage modulus of the magnetorheological elastomer plates. Also, this could conse-
quently increase the values of natural frequencies similar to storage modulus and changing
loss factors.

Next, we would like to talk about the modal analysis methods and techniques. A
review of operational modal analysis techniques for in-service modal identification is
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given by Zahid et al. [5]. They mentioned, that the techniques used for modal analysis are
experimental modal analysis (EMA), operational modal analysis (OMA) and a less known
technique called impact synchronous modal analysis (ISMA), which is a new development.
Eliminating the Influence of Harmonic Components in Operational Modal Analysis is given
by Jacobsen et al. [6]. They describe a new method based on the well-known Enhanced
Frequency Domain Decomposition (EFDD) technique for eliminating these harmonic
components in the modal parameter extraction process. Vibration analysis of structures
by component mode substitution is given by Benfield and Hruda [7]. They mentioned,
that the improvement in accuracy obtained by using interface-loaded-component modes
decreased as the number of component modes increased. A general method for the modal
decomposition of the equations of motion of damped multi-degree-of-freedom-systems is
presented by Stanoev [8]. A novel five-variable refined plate theory for vibration analysis of
functionally graded sandwich plates is given by Bennoun et al. [9]. They mentioned, that by
dividing the transverse displacement into bending, shear, and thickness stretching parts, the
number of unknowns and governing equations of the present theory is reduced, and hence,
makes it simple to use. New developments in the analysis of vibrational spectra on the
use of adiabatic internal vibrational modes analysed by Cremer et al. [10]. They presented
a way of analyzing calculated vibrational spectra in terms of internal vibrational modes
associated with the internal coordinates used to describe geometry and conformation of
a molecule.

Next, we would like to mention the identification and characterization of elastic prop-
erties. Tam [11] reviewed the identification of elastic properties utilizing nondestructive
vibrational evaluation methods. He mentioned that the following gaps are worthy of
future study: Simplex, Newton, BFGS, Gauss-Newton and SQP. Tam et al. [12] discussed
the identification of the material properties of composite materials using nondestructive
vibrational evaluation approaches. They stated that the rate of convergence was the main
concern involving genetic algorithms. Alfano and Pagnotta [13] described a nondestructive
technique for the elastic characterization of thin isotropic plates. Their procedure allows
well-known sonic resonance methods for the elastic characterization of homogeneous
isotropic materials to be extended to square thin plate specimens. A precise nondestructive
damage identification technique for long and slender structures based on modal data was
given by Stache et al. [14]. They demonstrated that to detect small damage levels, such as
crack depth/diameter ratios less than 10 percent, it is essential to involve the modal data of
local modes with adequate measurement precision.

Now, we would like to emphasize the modeling part. Strait et al. [15] described mod-
eling elastic properties in finite-element analysis (FEA). They mentioned that a relatively
coarse approach to modeling elastic properties might be adequate for an analysis to assess
gross patterns of deformation qualitatively, but more precision may be required if the goal
of the FEA is to extract strain data for quantitative analysis. He et al. [16] discussed the
characterization of the stress–strain behavior of composites using digital image correlation
and finite element analysis. They mentioned that the unknown constitutive properties
are determined through minimization of the squared difference between the correlation-
measured digital image and the FEM-calculated strains. Viala et al. [17] described the
identification of the anisotropic elastic and damping properties of complex-shaped compos-
ite parts using an inverse method based on finite element model updating and 3D velocity
field measurements.

Studies that focus on the genetic/evolutionary algorithm should be mentioned. An-
drzej and Stanislaw [18] described evolutionary algorithm-based methods used to solve
global optimization problems. Charbonneau [19] introduced genetic algorithms (GA)
for numerical optimization. He mentioned that the use of a genetic algorithm can solve
anything that can be formulated as a minimization/maximization task and, in principle,
anything that can be described by an equation. An evolutionary algorithm for global
optimization, DE/EDA (differential evolution and estimation of distribution algorithm),
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was presented by Sun et al. [20]. They created/gave a solution by DE/EDA offspring
generation scheme in which local information and global information are incorporated.

Finally, we would like to mention the objective function in global optimization prob-
lems. Vagaská et al. [21] described selected mathematical optimization methods for solving
problems in engineering practice. They mentioned that optimization is applied to pro-
cess control at all levels, including those of elementary processes, technological processes,
and production processes, as well as to the control of processes of strategic importance.
Berbecea et al. [22] described a parallel multi-objective efficient global optimization, the
finite element method in optimal design and model development. They mentioned that the
final surrogate models can be used to determine the sensitivity for each point of the front
and, obviously, as predictors of the objective functions that can be used to compute the
Pareto frontier. Hofmeister et al. [23] presented finite element model updating using deter-
ministic optimization, a global pattern search approach. Since metaheuristic optimizers
(metaheuristic algorithms are the predominant class of optimizers for global optimization
problems) need a high amount of objective function evaluations due to their probabilistic
search pattern, and derivative-based local optimizers require restarts with randomized
start vectors, both approaches are computationally expensive. Cappelli et al. [24] described
the multiscale identification of the viscoelastic behavior of composite materials through a
nondestructive test. They characterized the viscoelastic behavior of a composite material
at each pertinent scale. The characterization of composite elastic properties by means of a
multiscale, two-level inverse approach was given by Cappelli et al. [25]. They character-
ized the elastic properties of a composite material at both the mesoscopic (ply-level) and
microscopic (constitutive-phases-level) scales. Montemurro et al. [26] described the identifi-
cation of the electromechanical properties of piezoelectric structures through evolutionary
optimization techniques. They presented a nondestructive method to predict the whole
three-dimensional set of electromechanical properties of active plate structures.

We would also like to mention that in this work, the standard GA is applied to a
simple elastic structure. As the next step, the physical part will be considered in future
experiments. After this review of the known literature, we would like to present our
problem formulation.

2. Problem Formulation

Composite materials have constant utilization growth in many industries, such as
aerospace, aviation, marine, automotive, military, architecture, energy production, sports
and many others. Their increased stiffness and strength properties allow the construc-
tion of lightweight components at a reasonable cost. Composite materials are generally
defined as the combination of two or more different materials, each retaining its own
properties. The result is a new material with properties that cannot be achieved with either
component alone.

Designers are constantly faced with the challenges of knowing the mechanical proper-
ties of products, which depend on the resin and fiber content, independent layer properties
and orientation of orthotropy. Conventional techniques do not always allow generalized
material properties to be obtained accurately due to the specific requirements of a partic-
ular method. They are restricted by specimen shape and size or require expensive and
cumbersome equipment and are destructive. Nondestructive identification techniques,
which are quick and comparatively inexpressive, offer a different approach to knowing the
material properties.

Nowadays, digital-physical and optimization combination identification technologies
for material elastic characteristics intended for industrial purposes are constantly being
improved. The main shortcoming of existing technologies is that the elastic characteristics
of composite materials are identified with insufficient accuracy.

Despite the aforementioned shortcomings, the technology is intensively developed
worldwide in order to create an engineering tool that allows investigators to find all the
elastic characteristics of the desired material quickly and with sufficient accuracy. The main
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idea of identifying the elastic characteristics of a material is to change the finite element
model of the material in such a way that its results converge toward the results of the
physical vibration experiment.

The experiments performed on various materials showed the shortcomings of the
conventional technology of identifying the elastic properties of materials using stochastic
algorithms. A method to improve the accuracy of the identification of elastic proper-
ties of materials is proposed in this article. The technology utilized in this research is
nondestructive and can therefore be applied directly in production.

A hypothesis is raised that during the process of identification, the natural frequencies
of the specimen may change their sequence in the spectrum due to a particular (guessed)
set of elastic properties. This would distort the value of the objective function and decrease
the accuracy of the result because modes of different orders would be compared.

During identification, some modes (usually higher order) can change their position in
the natural frequency spectrum compared to physical experimental results. This results
in a comparison of the frequencies of different modes in the objective function during the
calculations. When this happens, the true value of the objective function becomes distorted
and the overall accuracy of the solution suffers. To avoid inaccuracies, it is necessary to
check whether the modes remain in “their own” places before calculating the value of the
objective function.

To illustrate this phenomenon, an abstract orthotropic material with dimensionless
properties was selected. Using finite element method (FEM) software (software version
v8; manufacturer: Ansys, Inc.; location: 2600 Ansys Dr Canonsburg, PA, 15317, USA), a
mathematical model of the specimen was created and natural frequencies were extracted.
After performing the identification procedure and comparing the physical and numerical
experimental results, one can see that the 15th mode has changed its shape. These shapes
of the 15th mode are shown in Figure 1.
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Figure 1. Fifteenth mode: (a) natural experiment (0.505 Hz), (b) digital experiment (0.507 Hz). MN
shows the minimum displacement variation (presented with different colors), and the initial shape is
represented by dotted lines.

After substituting the values of one of the possible guesses into the mathematical
model in the process of identifying the elastic characteristics of the material, it is clear that
the 15th mode has acquired a different shape. In this case, a discrepancy in the objective
function arises due to the rearrangement of mode frequencies in the spectrum.

The limitations of the model should also be mentioned. In our theoretical model,
the deformations are infinitesimally small and the deformation process is isothermal and
without viscous elastic effect. Additionally, we would like to mention that thermodynamic
restrictions were analyzed in an article by Cappelli et al. [24], who mentioned that the
thermodynamic requirements related to the viscoelastic behavior of the matrix (the set of
nonlinear constraints) must be considered. Now, we would like to talk about methodology.

3. Methodology

Presently, there is no universal method of undertaking the main and most popular task
of identifying the elastic characteristics of many materials without any essential suitable
changes. This is caused by the samples used, namely their size, shape and other geometric
characteristics. The technology proposed in this article offers the usual material elastic
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characteristics identification algorithm supplemented with a tool to improve identification
accuracy. According to the tests of the proposed technology, and on the basis of global
practice, accuracy improvement results are submitted.

For the identification of material elastic characteristics, a genetic algorithm was selected
instead of deterministic algorithms. Deterministic algorithms were rejected due to unknown
objective function gradients and high computational resource requirements. GA is a search
method belonging to the stochastic algorithm family that simulates natural evolution
according to the theory proposed by Charles Darwin in 1858.

Properly tuned genetic parameters have a significant influence on the precision of
the solution of optimization problems using genetic algorithms—number of generations,
crossover and mutation probability values. These values must be chosen based on the
algorithm operation tests. Genetic parameters for the material properties identification
problem are chosen individually according to the performed numerical experiments and
the context of global practices.

The proposed technology was tested in two phases. In the first phase, the elastic
characteristics of the materials were identified without recognition of “incorrect” sets of
elastic properties. The second step included identification that involved the recognition
and rejection of “incorrect” sets.

3.1. Genetic Algorithm as a Global Solver for the Identification Problem

A schematic diagram of the principle of evolutionary algorithms is shown in Figure 2,
which shows the typical stages of evolution, such as genetic operations, selection and
population replacement, after which the population evolves.
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Figure 2. The generalized evolutionary cycle.

Because GAs are related to evolutionary biology and informatics, they have inherited
the specific terms listed below.

Chromosome. A chromosome is a possible solution to an optimization problem. It is
composed of genes that are either finite strings or structures that have their own hierarchies.
GA genes are built out of binary strings consisting of 0 and 1.

Fitness function. The fitness function shows the fitness of each individual, while the
optimal solution of the problem is sought by maximizing or minimizing its value. It should
be noted that the fitness function is not analogous to the objective function, as it is more
complex. A fitness function is a type of objective function that quantifies whether a solution
is optimal. Individuals selected according to the fitness function are crossed over among
themselves and further mutated before a new generation is generated.

Population. A population is a set of individuals distributed over the search space.
GAs are copulatory because they search for an optimal solution, beginning from multiple
starting points.

Generation. A generation is a population of individuals at one particular step (itera-
tion). During GA optimization, the generations are updated until an optimal solution is
found or until a given number of generations limit is reached.
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Genetic operators. Genetic operators modify individuals in such a way that the
entire possible search space can be explored. The mutation operator is a binary genetic
operator for moving a chromosome to a new location in the search space. The crossover
or recombination operator is designed to create two new individuals from two already
existing parents. New individuals inherit some of the characteristics of their parents.

The main stages and processes of GAs are shown in Figure 3. The top shows whether
the stage is necessary for the normal course of evolution and the bottom indicates the stage
results of the particular step.
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Mapping

The concept of mapping is borrowed from evolutionary biology, in which evolution
takes place at the genetic level (the genotype) and selection takes place at the physical-
biological level (the phenotype). During evolution, the optimal structure of an organism
is found by changing its genotype; the genetic material is then coded into a phenotype
representing proteins. This shows that the mapping aims to map the structure of the search
space to the solution space and vice versa.

Thus, if there is a difference in the GA between the search (binary B) and the solution
space (real number R), then a mapping procedure is needed to define that difference. If a
chromosome with a certain number of bits bi is a binary expression of a real number x ∈ R
in the interval x ∈ [xmin, xmax], then the mapping function M(b1...bl) is:

M(b1...bl) = xmin +
xmin − xmax

2l + 1

(
∑l−1

j=0 bl−j · 2j
)

. (1)

In other algorithms, such as evolutionary strategies and evolutionary programming,
there is no distinction between search and solution spaces.

3.2. Global Optimization Problem Formulation

The goal of global optimization is to locate the global extremum of an objective function
in a given area of interest. The assumption is made that the objective function requires a lot
of effort to evaluate; therefore, information from the search sequence is used to plan the
next step. This means that additional computations, which may be effortful, are required to
determine the next search point. Problems with simple objective functions do not require
global optimization algorithms.
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The optimization problem is mathematically formulated as the search for the minimum
value of the objective function:

minF(x)
x ∈ Rn . (2)

where F(x) is objective function and x ∈ Rn is a feasible search region. A vector x with
a certain number of components describes the design variables. Some of the design
variables may be discrete or limited, therefore X is used to denote the domain of these
design variables.

To minimize an objective function F(x) in feasible region X is the goal and can be written:

min{F(x) ∨ x ∈ X ⊆ Rn} (3)

The objective function can be described as

F(x) : X0 ⊆ Rn → R. (4)

The feasible region X0 can be described as

X0 = {x ∈ X ∨ Fi(x) ≥ 0} ̸= 0, (5)

where Fi : Xi → R , ∅ ̸= Xi ⊆ Rn, X = ∏
p
i=1 Xi and i = 1, 2, ..., p; the optimization problem

can then be formulated as the following:

min{F(x) ∨ x ∈ X, Fi(x) ≥ 0}, (6)

where i = 1, 2, ..., p.
As the problem discussed in this article has constraints, the design variables have to

be described as belonging to a feasible design space:

x ∈ X ⊂ Rn. (7)

Finally, the optimization problem, including equality and inequality constraints, ob-
tains the following form:

min
{

F(x) ∨ x ∈ X, Fi(x) ≥ 0, i ∈ I, hj(x) = 0, j ∈ J, gl(x) = 0, l ∈ L
}

, (8)

where I, J and L are indexed sets.
The problem solved in this article falls into the basic engineering category of bounded

non-linear single-objective optimization problems; therefore, the objective function F
is scalar:

minF(x, k), (9)

where F(x, k) ∈ R, x ∈ Rn, k ∈ Rm and design vectors x and k are multidimensional.
The finite element method is employed in a complicated structure analysis. The object

under analysis is discretized into a limited number of rectangular or triangular elements.
This method entails resolving the structure’s overall mass and stiffness matrix. The classical
finite element method equation for calculating eigenfrequencies has the following form:

det
(
[K]− ω2[M]

)
= 0, (10)

where [K] is the global stiffness matrix, [M] is the mass matrix of finite element model, and
ω is the angular speed (angular frequency). Eigenvalue λ is equal to ω2.

The vibration model data are divided into known (measured) variables and unknown
parameters, i.e., elastic characteristics, in identifying the problem formulation. The solution
to the identification problem is obtained from the measured independent parameters of
the model. These parameters are length, width, thickness (a, b, h), and frequencies, which
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are reduced to a single angle γ for a single layer material. The variable vector x is a set of
geometric parameters and frequencies:

x = {a, b, h, γ}T . (11)

The global stiffness matrix K is a function of elastic modulus E, shear modulus G and
Poisson’s ratio ν (the number of elastic characteristics depends on the material).

k = {E1, E2, G12, υ12, G13, G23, E3, ν13, ν23}T . (12)

The optimization problem of interest finally obtains the following form:

minF = F(x, k). (13)

Including limitations:

gi(k) ≤ gı, i = 1, 2, 3, ..., m1

hi < hı(k), i = 1, 2, 3, ..., m2
ki ≤ ki ≤ kı, i = 1, 2, 3, ..., m3

, (14)

where m1, m2, m3 are constants. The lower and upper dashes represent the lower and upper
bounds, respectively. The objective function F and the state variables gi and hi can be linear
or non-linear functions of the design variable ki.

The objective function of the identification problem has the following form:

F(x, k) = ∑n
i=1

(
f N
i − f FEM

i
f N
i

)2

, (15)

where f FEM
i is the calculated natural frequency, f N

i is the experimentally obtained natural
frequency and n is the covered part of the spectrum. The natural frequencies are the
state variables of the problem, and the design variables are the elastic characteristics of
the material.

The first four elastic coefficients are sufficient to describe an isotropic material. The
experiment (physical or digital) provides a sufficient part of the eigenfrequencies of the
structure. The frequency equation is written as follows:

fi = Fi(x, k), i = 1, 2, ..., n, (16)

where n is the part of the spectrum of real values, fi is the nth eigenfrequency.

3.3. Mathematical Models of Materials

In the body under the influence of external effect (load), internal forces (tensions)
appear. Stresses are the result of the mutual interactions of individual parts of the body
divided by sections and are usually associated with the law of material behavior that defines
its mechanical properties. These laws were derived from practical observations during
tests. Geometric changes in a deformable body are characterized by displacements and
deformations. Under the influence of external forces, the body deforms and its points shift
relative to each other. Displacements and deformations are defined in the elasticity matrix.

The relationship between the stresses and strains of a physically linear body, also
known as Hooke’s law, is expressed as follows:
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{ε} = [C]{σ} ⇒



ε11
ε22
ε33
ε12
ε13
ε23


=



C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66





σ11
σ22
σ33
σ12
σ13
σ23


. (17)

This relation of deformations is satisfied in the case that no plastic deformation occurs,
the deformations are infinitesimally small and the deformation process is isothermal.
These conditions make it possible to apply the principle of the action of independent
forces—the concept of the state of linear tension and net shear when the deformation of a
three-dimensional body in the chosen direction is determined.

As an example, let us take a perfectly elastic isotropic body whose elastic properties
are described by only two independent constants, E and G, or G and ν or E and ν. They
do not depend on the coordinates of the body point or on the selected coordinate system.
In this case, Equation (18) becomes quite simple. Assume that there is only one normal
stress σ11, the coefficients Ci1, Ci2, ..., Ci6 are known and all other stresses are equal to zero
(Figure 4). If an ideal rectangular parallelepiped is stretched in the direction of the X axis,
its deformation would be ε11 = σ11/E.
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Transverse deformation manifests as a relative change in the transverse dimensions of
a stretched rod. Its direction is opposite to dx:

ε
′
22 = ε

′
33 = −νε11 =

−ν

E
σ11. (18)

Poisson’s ratio is a dimensionless mechanical characteristic/indicator of the material,
the modulus of the ratio of the transverse deformation of the tensile or compressive layers
of the structural element to the longitudinal deformation. For materials, Poisson’s ratio
remains constant as long as the strains are proportional to the stresses. Under the action
of only one stress σ11, the initial vertical angles between the edges of the elementary
parallelepiped of a homogeneous isotropic material do not change, so the deformations
ε12, ε13 and ε23 are equal to zero. In this case, the coefficients of the elasticity matrix are:

C11 =
1
E

, C21 = C31 =
−ν

E
, C41 = C51 = C61 = 0. (19)

Analogously, acting only on σ22 or σ33, stresses yield to:

C22 = C33 =
1
E

, C12 = C33 =
−ν

E
, C42 = C52 = C62 = C43 = C53 = C63 = 0. (20)
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If the elementary parallelogram were subjected to tangential stresses σ12 only, net
shear would act in the plane Oxy (Figure 5).
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The angular strain in the 0xy plane is ε12 = σ12/G. Under the action of σ12 tension,
the angles in other coordinate planes will not change, i.e., ε12 = ε23 = 0, and linear
deformations are equal to zero: ε11 = ε22 = ε33 = ε12 = ε23 = 0.

When there is only one tangential stress σ12 and the others are equal to zero, the
coefficients of the elasticity matrix are:

C44 =
1
G

, C14 = C24 = C34 = C54 = C64 = 0. (21)

When all stresses σ11, σ22, σ33, σ12, σ13, σ23 act together:
ε11 = 1

E [σ11 − ν(σ22 + σ33)],
ε22 = 1

E [σ22 − ν(σ11 + σ33)]
ε33 = 1

E [σ33 − ν(σ11 + σ22)],
,

ε12 = 1
G σ12

ε13 = 1
G σ13

ε23 = 1
G σ23

. (22)

The mechanical properties of the material (elasticity characteristics) G, E and ν are
linked by a relationship known from the mechanics of materials:

G =
E

2(1 + ν)
. (23)

The inverse Hooke’s law is obtained by expressing stresses in terms of strains. Using
the yield matrix [D], the inverse Hooke’s law is written in matrix form as follows:

{σ} = [D]{ε} ⇒



σ11
σ22
σ33
σ12
σ13
σ23


=

1
E



D11 D12 D13 D14 D15 D16
D21 D22 D23 D24 D25 D26
D31 D32 D33 D34 D35 D36
D41 D42 D43 D44 D45 D46
D51 D52 D53 D54 D55 D56
D61 D62 D63 D64 D65 D66





ε11
ε22
ε33
ε12
ε13
ε23


. (24)

For isotropic material, its yielding matrix would be as follows:

D =
1
E



1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)

. (25)
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3.4. Mode Shape Recognition Algorithm

Mode evaluation is a crucial step before any comparison. The material properties
identification technique is based on comparisons of corresponding frequencies. Mode
shapes have high importance because they come from physical material behavior.

The recognition of mode shapes in this study is based on the principle of the modal
assurance criterion (MAC). MAC is a statistically based method of identifying the differ-
ences in mode shapes. This method is sensitive to large differences and considers only
mode shapes without involving frequency in comparison. The evaluation of mode shapes
is bounded between 0 and 1, and does not indicate orthogonality or validity. A smaller
evaluation result indicates that the modes are different.

This work involves a modified MAC to recognize the shape of sample modes and
determine their sequence in the spectrum. In MAC, the comparison is performed by
analyzing modal vectors in the full or reduced order of FEM. Modifications of MAC in
this work include shape recognition by the displacements of the FEM grid points in the
direction of the Z axis because it is assumed that since sample side-lengths are hundreds of
times greater than the thickness, the sample modes will be located in the XY plane only. By
forming a list of normalized values of the displacements of a finite number of points in the
direction of the Z axis of a physical specimen (reference) and comparing it with an alike list
of a digital specimen (comparable), it is possible to determine mode shape differences and
similarities. The lists are built in the form of a two-dimensional matrix. The discrepancy
is measured by the number of matching points found during the tests and is called the
simple matching rate, expressed as a percentage. Since the number of modes in the process
of identifying the material elastic characteristics rarely exceeds 15–20, mode shapes are
recognized using a simple linear search algorithm.

Figure 6 shows the location of the shape recognition part in the material properties
identification technology. As can be seen, this part is constantly involved in the identifica-
tion process of the material elastic characteristics—after calculating the natural frequencies
of the specimen with the guessed elastic characteristics of the population, the algorithm
checks and sorts the list of natural frequencies before calculating the objective function.
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The flowchart of the mode shape recognition algorithm is presented in Figure 7.
The Z-coordinate lists of the reference and comparable modes are written into distinct
two-dimensional arrays. Next, the arrays are normalized to eliminate the influence of
offset values. Each element mesh point in the reference array is then compared with its
comparable array. In the logical element of the flow “Does the mode shape match?”, an
algorithm for recognizing the mode shape is encoded: if a certain number of values of a
certain mode in both arrays coincide, the mode shapes are considered to be the same. If the
required number of matching values is not reached, the algorithm searches for matches
with the next mode in the sequence, and so on. Then it is moved on to the next mode
in the reference list until all the modes necessary in the process of identifying the elastic
characteristics of materials have been checked and ordered.
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The logical data list provided by the algorithm contains information about the proper
mode location, whether the mode has a mirroring pair, and which mode it swapped places
with (Table 1). The example shows the mode arrangement of a specimen obtained with the
guessed elastic characteristics of the nth individual. In the identification process, sequence
mode n-2 has migrated from its reference position. Its original position is defined in the
column “Appropriate location”, where it can be seen that the reference position is one
before the last. With a particular set of material properties, the mode has taken up a position
two before the last and does not correspond to the original. These positions are coded
using zeroes and ones: the 15th mode’s original position has unity in the code sequence
“0000000000000010”, while the incorrect position is coded as “0000000000000100”.

Table 1. Logical data list of the mode arrangement for the nth individual.

Row No.
of the Mode

Is Location
Appropriate?

Appropriate
Location

Is Shape
Mirrored?

Which Mode
Swapped with

1 1 10...000 0 00...000
2 1 01...000 0 00...000
... ... ... ... ...

n − 2 0 00...010 0 00...100
n − 1 0 00...100 0 00...010

n 1 00...001 0 00...000

According to this logical list, the algorithm sorts the modes into the required order and
provides a “correct” list to the objective function calculation for the genetic algorithm (GA).

4. Results

Increasing the accuracy of the objective function results for the identification of elastic
properties (for example, Poisson’s ratio) has a direct impact on the overall accuracy of the
solution to the problem of identifying the elastic properties of materials. In order to avoid
distortion of objective function due to the mode shape transition effect, a procedure has
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been developed that recognizes mode shapes and determines their proper position in the
spectrum corresponding to the natural experiment results.

4.1. Simple Matching Coefficient of Mode Shape Recognition Algorithm

In order to fine-tune the accuracy of the mode shape recognition algorithm, several tests
were carried out and the value of the matching coefficients was determined experimentally.

The simple matching coefficient (SMC) is the statistics used to compare the similarity
and diversity of sample sets—Verma and Aggarwal [27,28]. Given two objects A and B,
each with n binary attributes, SMC is defined as:

SMC =
number o f matching attributes

total number o f attributes
=

M00 + M11

M00 + M11 + M01 + M10
. (26)

where M00 is the total number of attributes where A and B both have a value of 0. M11 is the
total number of attributes where A and B both have a value of 1. M01 is the total number
of attributes where A has value 0 and B has value 1. M10 is the total number of attributes
where A has value 1 and B has value 0.

The values of the SMC and the recognized number of modes from the selected spec-
trum are shown in Figure 8. As can be seen, the greatest number of modes is recognized
when the SMC value is 60%.
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According to the results of the first approach, the highest accuracy was achieved when
the values of the SMC were between 60% and 70%. To fine-tune the algorithm for more
precise results, narrower boundaries were chosen for the SMC, and the test led to 62%, as
shown in Figure 9.

Vibration 2024, 7, FOR PEER REVIEW  14 
 

 

 
Figure 9. The simple matching coefficient (SMC) study in a narrower boundaries graph in percent-
ages. 

During the experiments, it was noted that the shape of mode did not correspond to 
the reference, but was determined as having rotated 90° or 180°. These modes are mirrored 
to reference spectrum modes (Figure 10). Mirrored modes have the same frequency, but 
their orientation differs from the reference. They do not skew the objective function but 
must be determined so as not to be excluded by the algorithm as inappropriate. 

  
(a) (b) 

Figure 10. Mirror sample modes: (a) reference, (b) comparable. MN shows the minimum displace-
ment variation (presented with different colors), and the initial shape is represented by dotted 
lines. 

The mirrored mode can be recognized by turning it around the Z axis every 90° and comparing it 
with the reference. The list of points in the comparable mode is transformed by turning the mode 
shape by 90° and comparing it with the reference. If the shape of the modes does not match, the 
list is rotated again by 90°. If the mode shape does not match after the second transformation, it is 
concluded that the modes are different. 

4.2. Identification of Elastic Characteristics of Layered Composite Material Using Mode  
Shape Recognition 

If the main directions of the orthotropy of the material layers coincide, such a material 
is called unidirectional. In general, the properties of a layered material consisting of uni-
directional layers are described by nine independent elastic characteristics: 

Figure 9. The simple matching coefficient (SMC) study in a narrower boundaries graph in percentages.



Vibration 2024, 7 190

During the experiments, it was noted that the shape of mode did not correspond to
the reference, but was determined as having rotated 90◦ or 180◦. These modes are mirrored
to reference spectrum modes (Figure 10). Mirrored modes have the same frequency, but
their orientation differs from the reference. They do not skew the objective function but
must be determined so as not to be excluded by the algorithm as inappropriate.
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The mirrored mode can be recognized by turning it around the Z axis every 90◦ and
comparing it with the reference. The list of points in the comparable mode is transformed
by turning the mode shape by 90◦ and comparing it with the reference. If the shape of the
modes does not match, the list is rotated again by 90◦. If the mode shape does not match
after the second transformation, it is concluded that the modes are different.

4.2. Identification of Elastic Characteristics of Layered Composite Material Using Mode
Shape Recognition

If the main directions of the orthotropy of the material layers coincide, such a material
is called unidirectional. In general, the properties of a layered material consisting of
unidirectional layers are described by nine independent elastic characteristics:
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σ11
σ22
σ33
σ23
σ13
σ12

 (27)

The elastic characteristics of the layered unidirectional material here are defined for
the entire sample and not for each layer separately. The mathematical model of the material
is simplified to a single-layer material; i.e., the properties of the material are described by
six independent characteristics of elasticity:

E1, E2 = E3, ν12 = ν13, ν23,
G12 = G13, G23 = E2/2(1 + ν23)

(28)

Bearing in mind the insufficient identification accuracy of Poisson’s ratio and in order to
simplify the three-dimensional task, researchers often make assumptions—Frederiksen [29,30]:

E1, E2 = E3, ν12 = ν13 = ν23, G12 = G13 = G23 (29)

A test was performed on an abstract orthotropic material with six dimensionless prop-
erties: E1 = 1, E2 = E3 = 0.1, ν12 = ν13 = 0.3, ν23 = 0.6, G12 = G13 = 0.05, G23 = 0.03 in
order to show possible discrepancies, despite the low impact of out-of-plane characteristics
on eigenfrequencies due to the specimen thickness (250 mm × 250 mm × 2 mm). The
search limits were selected by setting approximately equal intervals in both directions based
on their pre-known values. SHELL63 FE, which has bending capabilities, was used; the
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element permits in-plane and normal loads, and each node of the element has six degrees of
freedom. A 5 × 5 rectangular grid density was used to extract eigenfrequencies, for which
a converged solution was obtained in ANSYS software (software version v8; manufacturer:
Ansys, Inc.; location: 2600 Ansys Dr Canonsburg, PA, 15317, USA) simulating free vibration.
The genetic parameters were selected by testing and according to international practice:
crossover probability—0.9, mutation probability—0.1, population size—10, and number of
populations—250.

Using the known elastic characteristics, the natural frequencies f N
i of the digital

specimen were obtained, which are presented in Table 2. The adjacent column shows the
natural frequencies f FEM

i of the specimen obtained with the guessed elastic characteristics
of the nth individual. It can be seen that the 14th and 15th modes have swapped places in
the spectrum, but the frequencies are still in ascending order, so the mismatches will be
incorrectly estimated in the objective function.

Table 2. A case of mode switching.

Mode No. fN
i fFEM

i

i-th Member of the Objective Function

without Mode Shape
Recognition

with Mode Shape
Recognition

1 0.03845 0.03848 0.0000007368 0.0000007368
2 0.09225 0.09131 0.0001040511 0.0001040511
... ... ... ... ...
13 0.50313 0.50264 0.0000009640 0.0000009640
14 0.50435 0.50711 0.0000297949 0.0000397792
15 0.50549 0.50754 0.0000163989 0.0000102582

Sum of objective function 0.0004448056 0.0004486493

Without mode shape recognition and correct ordering, the 14th and 15th members of
the objective function are calculated by taking adjacent values of the physical specimen
and the FEM solution:

F14 =

(
f N
14 − f FEM

14
f N
14

)2

=

(
0.50435 − 0.50711

0.50435

)2
= 0.0000297949, (30)

F15 =

(
f N
15 − f FEM

15

f N
15

)2

=

(
0.50549 − 0.50754

0.50549

)2
= 0.0000163989. (31)

If the mode shapes are arranged according to the mode order of the physical specimen,
the above-mentioned members of the objective function are calculated as follows:

F′
14 =

(
f N
14 − f FEM

15

f N
14

)2

=

(
0.50435 − 0.50754

0.50435

)2
= 0.0000397792, (32)

F′
15 =

(
f N
15 − f FEM

14
f N
15

)2

=

(
0.50549 − 0.50711

0.50549

)2
= 0.0000102582. (33)

The difference between the intermediate values of the objective function is 0.000003844,
or 0.85%, compared to results involving mode shape recognition. If several pairs of modes
were swapped, the solution would be distorted more with respect to the number of swapped
modes. If the mode shapes are not properly ordered, an incorrect solution to the identifica-
tion of elastic properties may be obtained. A similar spectrum of natural frequencies of a
numerical specimen can occur with values of elastic characteristics far from the expected
solution, but the order of the modes may be consistent.
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4.3. Numerical Experimental Results

As the genetic algorithm is a stochastic algorithm, 20 independent calculation cycles
were performed in both cases, with and without mode shape recognition, to ensure the
reliability of the results. The identification task was solved by involving GA and FEM; the
genetic parameters were experimentally determined: crossover probability—0.9, mutation
probability—0.1, population size—30, and number of populations—100. A total of 1.2 × 105

independent numerical experiments were carried out. The following figures show that the
number of calculation steps (guesses) was sufficient to achieve the expected accuracy of the
identification process, which is common in solving engineering problems nowadays.

Figure 11 shows the average values of the objective function—the red curve shows the
average values of the objective function in each generation without mode shape recognition,
while the green curve shows the average values of the objective function in each generation
with mode shape recognition. From the graph, it can be seen that mode shape recognition
affects the character of convergence and the mean value of each successive population
decreases smoothly. Meanwhile, without mode shape recognition, the convergence is less
continuous, and sharp jumps between populations are observed.
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The average of the objective function is 0.01051 without mode shape recognition and
0.00988 with recognition; standard deviation 0.06816 and 0.06334, respectively. It can be
seen that recognizing inappropriate mode shapes and removing such individuals from the
population reduces the mean of the objective function by 0.00063 (6.35%) and the standard
deviation by 0.00482 (7.6%). A lower number indicates increased accuracy of the material
elastic characteristic identification results.

By using mode shape recognition, the identification error of the elastic characteristics
was reduced. Table 3 presents the identified elasticity characteristics and errors with and
without shape recognition. In the Reference column, the abstract elastic characteristics of the
material are given. Table 3 presents the average of the identified elastic characteristics of the
material and the percentage of identification error ∆i (calculated according to Equation (34)).

∆i =

∣∣∣∣ kREF − kFEM

kFEM

∣∣∣∣× 100. (34)

where kFEM represents the calculated and kREF the known elastic characteristics.
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Table 3. Material properties identification results comparison.

Elasticity
Parameter Reference Without

Recognition ∆1, % With
Recognition ∆2, %

E1 1 0.99163 0.837 1.002158 0.2158
E2 = E3 0.1 0.098047 1.953 0.101912 1.912

G12 = G13 0.05 0.0509695 1.939 0.0499175 0.165
G23 0.03 0.0320361 6.787 0.027603 7.99

ν12 = ν13 0.3 0.293616 2.128 0.296202 1.266
ν23 0.6 0.561121 6.298 0.548208 8.632

As can be seen in Table 3, after involving mode shape recognition, the in-plane elastic
characteristics are identified with a higher accuracy. The out-of-plane elastic characteristics
are identified with uncertain accuracy because they have a low influence on the natural
frequencies of the specimen due to the large ratio between the side length and the thickness
of the specimen.

4.4. Key Findings

• The proposed methodology allows us to increase the accuracy of nondestructive
identification results. It can be applied to find the material properties of layered
complex structures.

• The hypothesis raised about mode swapping phenomena was found to have an effect
on the identification accuracy of material elastic characteristics. The hypothesis is
confirmed by the fact that the elastic characteristics of materials are identified more
accurately if the sets of “inappropriate” modes are removed from the identification
process.

• Although complex identification methods are used to determine the elastic character-
istics of composites, the identification method used in this paper allows us to identify
the aforementioned characteristics with sufficient accuracy. Moreover, this method
can be used in areas that require high design and modeling accuracy, such as aviation,
the space industry, wind power plants, etc.

The presented model is part of general complex models and will be involved in
future studies.

5. Conclusions

The recognition of mode shapes according to the physical experimental data in the ma-
terial elastic characteristics identification process was analyzed in this study. As mentioned
in the problem formulation, a hypothesis was raised that, during the identification process
of the elastic properties of materials, natural frequencies of the specimen may change
their sequence in the spectrum due to a particular set of elastic properties. Comparative
experiments involving mode shape recognition showed an overall identification accuracy
increase: E1 by 3.88 times, G12 by 11.75 times and ν12 by 1.68 times.

The simple match coefficient was used to recognize the mode shape; this shows how
many nodes of finite element (FE) mesh Z axis displacements coincide with the correspond-
ing points of the reference. The value of this coefficient was determined experimentally,
and the most accurate recognition was found at 62% of the SMC value.

Recognizing inappropriate mode shapes and removing such individuals from the
population reduces the mean of the objective function by 0.00063 (6.35%) and the standard
deviation by 0.00482 (7.6%).

We would like to mention that the model we present is limited to the specific applica-
tion of nondestructive identification of the elastic properties of materials using standard GA.
Future studies of modal analysis will focus on other approaches and methods, such as the
nondestructive evaluation (NDE) approach and wave-based characterization techniques
that include the inhomogeneous wave correlation method and the transition frequency
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characterization method—Chronopoulosa et al. [31]—as well as improving the previous
experience with identifying the properties of the material [32–34].
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