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Abstract: Ultrasonic signals can be conveniently recorded using modern high-speed analog-to-
digital converters and analyzed through digital signal processing algorithms. Sometimes, in some
applications, such as in bioacoustics, it is necessary to convert digital data to analog signals with
a special transformation that allows compressing and translating the spectrum toward audible
frequencies. The process is called time expansion and can be conveniently achieved by slowing
down the frequency clock of a digital-to-analog converter. This paper analyzes in detail the spectral
characteristics of a time-expanded signal.
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1. Introduction

The time-expansion process of ultrasonic signals allows performing a non-linear
transformation in order to compress and translate the spectrum in the audio frequency
range, preserving all of the spectral information.

Time expansion is a well-known and widely adopted technique, for example, in bioa-
coustics and biodiversity-monitoring studies [1–3], where passive sensing is a powerful tool
for the detection and classification of species that use ultrasonic sonar pulses for echoloca-
tion. Such research requires the collection of audio recordings at ultrasonic frequencies that
can reach peaks up to 212 KHz [4] for bat call pulses. To this purpose, bioacoustic research
tools consist of dedicated, handheld, and lightweight digital ultrasound recorders that
typically operate with sampling frequencies from 200 to 500 KHz. As human ears cannot
perceive ultrasounds at all, the biologist performs a local analysis on an audible copy of
the original ultrasonic pulses through a lossless time-expansion process provided by the
recorder. The device allows storing full-spectrum data or even only the time-expanded
version, but both provide an analog time-expanded copy of the signal to the operator.
Extensive time and frequency analyses of pulse calls (spectrograms) are often performed in
post-processing [5].

Time expansion is a well-known and widely adopted technique, for example, in digital
signal audio processing [6–14] where both basic and advanced algorithms are available
in order to change the playback speed of a recorded signal and, if needed, preserve the
pitch. At times, the available hardware does not have enough computational power to put
in place sophisticated algorithms or, more simply, if the output signal has to be in analog
form, strictly speaking, fully digital processing may not be required. If the time-expanded
signal playback speed reduction v can be written as v = N

M with N and M as integer factors,
a digital signal approach will require [13] several operations. Generally, an upsampling
process of order M, low-pass filtering with a cut-off frequency of fc1 = fs

2M , a low-pass

filtering with a cut-off frequency of fc2 = fs
2N , and a final downsampling of order N are

required. Moreover, an analog output signal requires a final analog reconstruction filter.
On the other hand, the same task can be successfully accomplished by acting only and
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directly on the playback frequency of the digital-to-analog section (the DAC frequency
modulation). It can be demonstrated that this technique, when conveniently applied, can
generate an analog signal whose spectrum results in a compressed and translated copy of
the original. Moreover, the DAC frequency modulation technique does not require DSP
computational power at all, but it still acts on sampled signals. The process that is beneath
such a technique requires clear knowledge of the spectral proprieties of a sampled and
time-expanded signal in order to obtain a correct reconstruction.

We do not consider noise in this work; it appears rather interesting to extend these
ideas to noisy situations, such as those considered in, e.g., refs. [15,16].

While there is a large amount of literature available for purely numerical techniques,
the same is not true, to the authors’ knowledge, for the technique discussed here.

The paper is organized as follows: In Section 2, we discuss the mathematical aspects
of this technique. In Section 3, we present the experimental results. Finally, in Section 4, we
provide a discussion of the main results.

2. Materials and Methods

Experimental evidence is presented through a properly designed ultrasound receiver
used for this study.

A proof of the theorem is given in the following sections based on the settings below:

• A sampled sinusoidal ultrasonic signal is time-expanded with the calculation of
its spectrum.

• The process is generalized to a generic band-limited signal.

2.1. Sinusoidal Input

Considering an analog input signal of the form

x(t) = cos(2π fot), (1)

and the following definitions:

fs =
1
Ts

= Sampling f requency.

fp =
1

Tp
= Playback f requency.

fo =
1
To

= Input signal f requency.

N =
fs

fp
= Time Expansion f actor.

It is assumed that the analog input signal (1) is sampled at a rate fs, respecting the
Nyquist criterion. We assume that signal (1) is sampled, and the samples are stored in a
suitable memory, to reconstruct it with a digital-to-analog converter (DAC) clocked at a
rate fp � fs. The resulting output signal can be written as follows:

y(t) =
+∞

∑
k=−∞

cos(2π fokTs)Rect
[

t− kTp

Tp

]
. (2)

An example of signal (2) is presented in Figure 1, considering a time-expansion factor
N = 20.
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Figure 1. Original (orange) and time–expanded (blue) signals.

The spectrum of the signal y(t) can be put in the form

Y( f ) = Tp Sinc
(

f Tp
) +∞

∑
k=−∞

cos(2π fokTs)e−i2πkTp (3)

The index k theoretically extends from minus infinity to plus infinity, but it is practi-
cally limited to the number of samples effectively recorded. From the symmetry properties
of the complex exponential, it is possible to write

Y( f ) = Tp Sinc
(

f Tp
)(

1 + 2
+∞

∑
k=1

cos
(

2πk f Tp

)
cos(2π fokTs)

)
, (4)

or, using well-known trigonometric formulas,

Y( f ) = Tp Sinc
(

f Tp
)(

1 +
+∞

∑
k=1

cos
(

2πk f Tp + 2π fokTs

)
+ cos

(
2πk f Tp − 2π fokTs

))
. (5)

The instantaneous phases of the cosine terms of (5) are of the form

φ = 2πk
(

f Tp ± foTs

)
. (6)

The magnitude |Y( f )| exhibits relative maxima at the frequencies, such that

φ = 2πk
(

f Tp ± foTs

)
= 2πkn, (7)

with n = 0,±1,±2, . . .. So, the key frequencies are

f =
1
N
(n fs ± fo). (8)

For n = 0, the cosine terms in (5) are in-phase for the same frequency

f =
fo

N
, (9)

generating an absolute maximum exactly at the desired output frequency according to the
performed time-expansion process.
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2.2. Extension to Passband Ultrasonic Signals

Generalizing, it is possible to consider a real, time-continuous, and band-limited signal
x(t) with a bandwidth of B Hz centered around a generic frequency fo.

We assume sampling of such a signal at a sampling frequency fs =
1
Ts
≥ 2B and its

reconstruction using a lower frequency fp � fs, with fs
fp

= N, thus having

xc(t) =
+∞

∑
k=−∞

x(kTs)Rect
[

t− kTp

Tp

]
. (10)

The Fourier transform Xc( f ) of xc(t) can be written as

Xc( f ) = Tp Sinc
(

f Tp
) +∞

∑
k=−∞

x(kTs)e−i2πkTp . (11)

Now, it is possible to consider a real signal y(t) = x
( t

a
)

with a > 1, in this case a =
Tp
Ts

.
The signal y(t) is a time-expanded copy of x(t).

It is noteworthy to underline that y(t)|t=kTp
= y

(
kTp
)
= x

(
Ts
Tp

kTp

)
= x(kTs), so it is

possible to write

xc(t) =
+∞

∑
k=−∞

y
(
kTp
)

Rect
[

t− kTp

Tp

]
, (12)

from which follows the expression of the Fourier transform

Xc( f ) = Tp Sinc
(

f Tp
) +∞

∑
k=−∞

y
(
kTp
)
e−i2πk f Tp . (13)

If Y( f ) is the Fourier transform of y(t), then from the Poisson summation formula, it
follows that

Tp

+∞

∑
k=−∞

y
(
kTp
)
e−i2πk f Tp =

+∞

∑
k=−∞

Y
(

f − k
Tp

)
. (14)

As y(t) is, by definition, the time-expanded signal of x(t), from the properties of the
Fourier Transforms [17], it follows that

Y( f ) = aX(a f ). (15)

The spectrum of y(t) is compressed and scaled by the quantity a =
Tp
Ts

that is the
time-expansion factor.

Thus,

Tp

+∞

∑
k=−∞

y
(
kTp
)
e−i2πkTp =

+∞

∑
k=−∞

Y
(

f − k
Tp

)
= a

+∞

∑
k=−∞

X
(

a f − k
Ts

)
. (16)

Finally, it is possible to write

Xc( f ) = Tp Sinc
(

f Tp
) +∞

∑
k=−∞

y
(
kTp
)
e−i2πkTp =

Tp

Ts
Sinc

(
f Tp

) +∞

∑
k=−∞

X
(

a f − k
Ts

)
. (17)

The spectrum of the reconstructed discrete-time signal is formed by compressed
and translated replicas, as expected, of x(t). The expected output is centered around the
frequency f = fo

Tp
Ts

= fo
N ; the first, which is nearest to the origin, is centered around the

frequency
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fr =
1
Ts
− fo
Tp
Ts

=
fs − fo

N
. (18)

Thus, there is no aliasing if the playback frequency fp is chosen, respecting the con-

dition fp ≥ 2 fo
N + B

N . The signal xc(t) is frequency-compressed; a suitable ratio N =
Tp
Ts

is chosen, with a spectrum translated into the audio band, which can be filtered using a
low-pass filter with a cut-off frequency,

fco =
fo

N
+

B
2N

, (19)

in order to reconstruct the analog signal and avoid frequency aliasing.

2.3. Simulations Results

The time-expansion process was simulated using a 100 KHz sinusoidal input signal
sampled at 333.3 Ksps using a Matlab script. Assuming a time-expansion factor of N = 20,
the spectrum of the output signal should be ideally formed only by a spectral content at
5 KHz. The output signal spectrum generated by the model is depicted in Figure 2.

Figure 2. Spectrum of the time-expanded sinusoidal signal.

Where it is clearly visible that the output spectrum is formed by the desired 5 KHz
tone plus a series of other spurious tones not harmonically tied with the fundamental. All
the spectral components are visible in Figure 2 and result in perfect agreement with (8).
The result is summarized in Table 1, where the spurious component order is limited to
n ≤ 4 for better clarity while the desired tone corresponds to n = 0.

Table 1. Spectrum of the time-expanded sinusoidal tone.

fo (KHz) fs (KHz) n f_out (KHz)

100 333.33 0 5

100 333.33 1 11.66 21.66

100 333.33 2 28.33 38.33

100 333.33 3 44.99 54.99

100 333.33 4 61.66 71.66
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For the verification of (16), we consider an ultrasonic pulse as the test waveform for
the time-expansion process as follows:

x(t) = cos(2π fot)e−
t2

2σ2 . (20)

Such a signal is visible in Figure 3 and corresponds to a 200 µs Gaussian pulse oscillat-
ing at 100 KHz with a bandwidth of 1

σ ' 30 KHz.

Figure 3. Ultrasonic input pulse.

The Fourier transform of (20) can be written as [17,18]

Y( f ) = F{x(t)} = F{cos(2π fot)} ∗ F
{

e−
t2

2σ2 ,
}

(21)

where the symbol * is the convolution operator. So, we can write

Y( f ) =
[

1
2

δ( f − f0) +
1
2

δ( f + f0)

]
∗ σ
√

2πe−2π2σ2 f 2
(22)

Y( f ) =
σ
√

2π

2
e−2π2σ2( f− fo)

2
+

σ
√

2π

2
e−2π2σ2( f+ fo)

2
(23)

with B ' 1
σ . The magnitude of the spectrum |Y( f )| of the pulse (20) is represented in

Figure 4.
The time-expansion process, in this case with a time-expansion factor of N = 20,

modifies Y( f ), generating a spectrum whose magnitude is reported in Figure 5 together
with the Sinc envelope.

The compressed pulses are centered exactly at the same frequencies calculated with (8)
using a sinusoidal input. The signal y(t) is compressed in the frequency by a factor of N
and, consequently, time-expanded by the same factor N, so its duration is around four ms
as clearly visible in Figure 6.
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Figure 4. Spectrum of the band-limited signal.

Figure 5. Spectrum of the Time-Expanded of Gaussian ultrasonic pulse (orange) and Sinc Enve-
lope (blue).

Figure 6. Time-Expanded Gaussian pulse.

3. Experimental Results

In order to confirm the theory, an experimental characterization was conducted with a
multi-mode ultrasonic receiver depicted in Figure 7, along with the adopted instrumenta-
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tion using an input analog sinusoidal signal at 100 KHz, as presented in Figure 8, and then
sampled at fs = 333.3 Ksps.

The samples were stored in a high speed 1 MB SRAM and the reconstruction was
made at a rate of fp = 15.665 Ksps, 20 times lower than the sampling frequency. The
resulting signal in the digital-to-analog converter output is shown in Figure 9.

Figure 7. Time–expansion ultrasonic receiver and experimental setup.

Figure 8. Sinusoidal ultrasonic input test signal.

Figure 9. Signal at the DAC output.
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The spectrum of the signal of Figure 9 is reported in Figure 10.

Figure 10. Spectrum of the DAC output signal.

The desired tone and the spurs, reported in Table 2, are in perfect agreement with the
theory and with Table 1.

Table 2. Spectrum of the reconstructed time-expanded tone.

fo (KHz) fs (KHz) n f_out (KHz)

100 333.3 0 5

100 333.3 1 11.7 21.7

100 333.3 2 38.3 45.1

100 333.3 3 55.1 61.8

The discrete-time signal was filtered with a low-pass elliptic filter of order 5, whose
cut-off frequency fco = 6 KHz was selected according to: (19); the time-expanded analog
output signal is presented in Figure 11.

Figure 11. Sinusoidal time-expanded analog output signal.

The perfect reconstruction of the waveform, in the analog domain, is confirmed by its
spectrum, as presented in Figure 12.

Figure 12. Spectrum of the reconstructed and filtered signal.
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4. Discussion

In this paper, the mathematical implications of the time-expansion process of pass-
band ultrasonic signals were discussed. The results obtained have general validity and
are not intrinsically limited to ultrasonic signals, but the time expansion can be success-
fully adopted in order to make such signals audible to human ears. In particular, it was
emphasized that the spectral properties of these signals are generated by slowing down the
DAC playback frequency to fp Ksps, while dealing with samples collected at a sampling
frequency fs � fp Ksps, ensuring no loss of information. The technique can be considered
effective when an analog output signal is required, when the DSP power is not enough to
fully put in place digital signal processing algorithms, or when this process is not strictly
necessary. Theoretical and experimental results provide detailed images of the spectral
properties of the signal from the DAC and allow the designer to define the performance
of the reconstruction filter and its cut-off frequency. It is noteworthy that the filter can be
an integrated switched capacitor [19], whose cut-off frequency can be easily tuned by just
changing its driving clock frequency. This provides an additional degree of freedom to the
discussed technique.

Author Contributions: Conceptualization, formal analysis, validation, and software, M.R.; original
draft preparation, M.R. and M.F.; review and editing, M.F. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DAC digital-to-analog converter
Ksps kilo samples per second
MDPI Multidisciplinary Digital Publishing Institute

References
1. Mac Aodha, O.; Gibb, R.; Barlow, K.E.; Browning, E.; Firman, M.; Freeman, R.; Harder, B.; Kinsey, L.; Mead, G.R.; Newson, S.E.;

et al. Bat detective—Deep learning tools for bat acoustic signal detection. PLoS Comput. Biol. 2018, 14, e1005995. [CrossRef]
[PubMed]

2. Stathopoulos, V.; Zamora-Gutierrez, V.; Jones, K.E.; Girolami, M. Bat Echolocation Call Identification for Biodiversity Monitoring:
A Probabilistic Approach. J. R. Stat. Soc. Ser. C Appl. Stat. 2018, 67, 165–183. [CrossRef]

3. Russo, D.; Jones, G. Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time-expanded
recordings of echolocation calls. J. Zool. 2002, 258, 91–103 [CrossRef]

4. Thiagavel, J.; Santana, S.E.; Ratcliffe, J.M. Body Size Predicts Echolocation Call Peak Frequency Better than Gape Height in
Vespertilionid Bats. Sci. Rep. 2017, 7, 828. [CrossRef]

5. Fraser, E.E.; Silvis, A.; Brigham, R.M.; Czenze, Z.J. Bat Echolocation Research: A Handbook for Planning and Conducting Acoustic
Studies, 2nd ed.; Bat Conservation International: Austin, TX, USA, 2020.

6. Zölzer, U. Time-segment processing. In DAFX: Digital Audio Effects, 2nd ed.; Helmut Schmidt University—University of the
Federal Armed Forces City: Hamburg, Germany, 2011; pp. 185–215.

7. Ferreira, A.J.S. A new frequency domain approach to time-scale expansion of audio signals. In Proceedings of the 1998 IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP ’98 (Cat. No.98CH36181), Seattle, WA, USA, 15
May 1998; Volume 6, pp. 3577–3580. [CrossRef]

8. Laroche, J.; Dolson, M. Improved phase vocoder time-scale modification of audio. IEEE Trans. Speech Audio Process. 1999, 7,
323–332. [CrossRef]

9. Ferreira, A.J.S. An odd-DFT based approach to time-scale expansion of audio signals. IEEE Trans. Speech Audio Process. 1999, 7,
441–453. [CrossRef] [PubMed]

10. Dun, Y.; Liu, G. A Fine-Resolution Frequency Estimator in the Odd-DFT Domain. IEEE Signal Process. Lett. 2015, 22, 2489–2493.
[CrossRef]

http://doi.org/10.1371/journal.pcbi.1005995
http://www.ncbi.nlm.nih.gov/pubmed/29518076
http://dx.doi.org/10.1111/rssc.12217
http://dx.doi.org/10.1017/S0952836902001231
http://dx.doi.org/10.1038/s41598-017-00959-2
http://dx.doi.org/10.1109/ICASSP.1998.679649
http://dx.doi.org/10.1109/89.759041
http://dx.doi.org/10.1109/89.771312
http://www.ncbi.nlm.nih.gov/pubmed/34926279
http://dx.doi.org/10.1109/LSP.2015.2496276


Vibration 2023, 6 476

11. Ferreira, A.J.S. Accurate estimation in the ODFT domain of the frequency, phase and magnitude of stationary sinusoids. In
Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat. No.01TH8575),
New Platz, NY, USA, 24 October 2001; pp. 47–50.

12. Berthaut, F.; Janin, D.; Martin, B. Advanced Synchronization of Audio or Symbolic Musical Patterns: An Algebraic Approach. Int.
J. Semant. Comput. 2012, 6, 409–427. [CrossRef]

13. Zölzer, U. Time-Frequency Processing. In DAFX: Digital Audio Effects; Wiley: Hoboken, NJ, USA, 2011; pp. 219–278. [CrossRef]
14. Almenar, V.; Girona, A.; Flores, S.; Marin-Roig, J. Transmit Diversity Scheme for OFDM Systems Using the Odd DFT. IEICE Trans.

Commun. 2011, E94-B, 2411. [CrossRef]
15. Stojanovic, V.; Nedic, N. Robust Kalman filtering for nonlinear multivariable stochastic systems in the presence of non-Gaussian

noise. Int. J. Robust Nonlinear Control. 2016, 26, 445–460. [CrossRef]
16. Stojanovic, V.; Nedic, N.; Prsic, D.; Dubonjic, L. Optimal experiment design for identification of ARX models with constrained

output in non-Gaussian noise. Appl. Math. Model. 2016, 40, 6676–6689. [CrossRef]
17. Marks, R.J. Handbook of Fourier Analysis & Its Applications; Oxford University Press: Oxford, UK, 2009. [CrossRef]
18. Kahrs, M.; Brandenburg, K. Applications of Digital Signal Processing to Audio and Acoustics; Springer: Berlin/Heidelberg, Germany,

2013.
19. Winder, S. Analog and Digital Filter Design; Elsevier: Amsterdam, The Netherlands, 2002.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1142/S1793351X12400132
http://dx.doi.org/10.1002/9781119991298.ch7
http://dx.doi.org/10.1587/transcom.E94.B.2411
http://dx.doi.org/10.1002/rnc.3319
http://dx.doi.org/10.1016/j.apm.2016.02.014
http://dx.doi.org/10.5860/cho ice.47-2589

	Introduction
	Materials and Methods
	Sinusoidal Input
	Extension to Passband Ultrasonic Signals
	Simulations Results

	Experimental Results
	Discussion
	References

