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Abstract: This study investigates the nonlinear dynamic response behavior of a rotating ring that
forms an essential element of MEMS (Micro Electro Mechanical Systems) ring-based vibratory
gyroscopes that utilize oscillatory nonlinear electrostatic forces. For this purpose, the dynamic
behavior due to nonlinear system characteristics and nonlinear external forces was studied in detail.
The partial differential equations that represent the ring dynamics are reduced to coupled nonlinear
ordinary differential equations by suitable addition of nonlinear mode functions and application
of Galerkin’s procedure. Understanding the effects of nonlinear actuator dynamics is essential for
characterizing the dynamic behavior of such devices. For this purpose, a suitable theoretical model to
generate a nonlinear electrostatic force acting on the MEMS ring structure is formulated. Nonlinear
dynamic responses in the driving and sensing directions are examined via time response, phase
diagram, and Poincare’s map when the input angular motion and nonlinear electrostatic force are
considered simultaneously. The analysis is envisaged to aid ongoing research associated with the
fabrication of this type of device and provide design improvements in MEMS ring-based gyroscopes.

Keywords: MEMS; rotating ring; coupled nonlinear system; MEMS ring gyroscope; bifurcation;
electrostatic force; nonlinear actuator

1. Introduction

Vibratory angular rate sensors have received considerable attention in the recent
past, primarily due to the economic and technological advantages offered by this class
of sensors. This class of devices works on the principle of Coriolis acceleration and
the vibratory behavior of specific structural systems such as mass-springs, beams, and
rings. There are many sources of nonlinearities in MEMS owing to the force, damping,
and stiffness. The present study focuses on a nonlinear system and the interaction of
nonlinear electrostatic forces to investigate the nonlinear dynamic response behavior. The
introduction of nonlinear mode functions to effectively handle these nonlinearities in the
MEMS ring-based structure opens a new research area. Investigations into the performance
of such a new study, namely a nonlinear ring gyroscope with nonlinear electrostatic force,
have been demonstrated via numerical simulations. One of the most critical challenges in
constructing ring-based vibratory gyroscopes is the need for this class of devices to operate
at one of the ring resonant frequencies to increase the device sensitivity. However, large
resonant amplitudes tend to suffer from undesirable nonlinear effects owing to geometric
and actuator nonlinearities. Hence, nonlinear dynamic analysis of ring structures and
consideration of input nonlinear actuator dynamics are warranted to gain a complete
understanding of achievable performance improvements that can be offered for this class
of rate sensors.

Several studies on the nonlinear and linear dynamic behavior of rotating rings have
been undertaken recently. Thin circular ring-type structures have gained much accep-
tance due to inherent advantages such as minimal drift to temperature fluctuation, high
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sensitivity to rotation, and less sensitivity to environmental vibrations, particularly for
MEMS applications Putty and Najafi [1]. Evensen [2,3] performed early studies on the
nonlinear vibration of rings considering only the in-plane vibrations of a thin circular
ring and derived nonlinear equations of motion. Later, detailed studies on nonlinear
flexural vibrations of rings considered two vibration modes and employed Galerkin’s
method. The in-plane vibration behavior of rotating rings and the effect of rotation and
elastic foundation on the natural frequencies and mode shapes have been investigated
by Sodel [4] and Huang and Sodel [5]. Coriolis forces induced in the ring gyro during
the rotation of the ring cause the excited ring to shift vibration into the next resonance
mode (Eley et al. [6]). Bickford and Reddy [7] investigated the effects of extensional and
shear deformations and inertia on natural frequency variations. The natural frequency
splitting and mode contamination of the rotation ring-shaped periodic structures were
analytically examined by Zhang et al. [8]. Asokanthan and Cho [9] and Cho [10] developed
mathematical models for rotating ring-based angular rate sensors to investigate the linear
and nonlinear dynamic behavior and dynamic stability of angular rate sensors subjected to
external excitation. However, the linearized equations of motion were derived by ignoring
the nonlinear terms, which were then used to investigate the stability behavior. Recently,
the dynamic stability behavior of ring-based gyroscopes under external stochastic angular
rate fluctuations employing a stochastic differential equation formulation together with
higher-order numerical schemes have been studied by Asokanthan et al. [11]. It should be
noted that this study was also based on a linear model. The dynamic response behavior
of rotating thin circular rings for use in vibratory angular rate sensors was investigated
by Gebrel et al. [12] via numerical simulations by employing a linearized model consid-
ering the second mode. In the same study, they developed a suitable theoretical model
to generate nonlinear electromagnetic forces used to excite the ring from two positions
to obtain improved device sensitivity. Gebrel et al. [13] investigated the nonlinear dy-
namic response of a rotating ring that forms an essential element in macro ring-based
vibratory gyroscopes that utilize oscillatory nonlinear electromagnetic forces. This study
examined the nonlinear dynamic response in the driving and sensing directions via time
response, phase diagram, and Poincare’s map when the input angular motion and the
nonlinear electromagnetic forces are considered to act simultaneously. It is concluded that
the device exhibits high nonlinearity in the nonlinear term in the model, which may be
attributed to the high vibration amplitudes. In another study, the dynamic behavior of
rotating MEMS-based vibratory gyroscopes via numerical simulations by considering a
linearized model subjected to a nonlinear actuator was performed by Gebrel et al. [14].
Yoon et al. [15] presented a detailed model for describing the possible vibration effects on
MEMS degenerate gyroscopes. A novel low-cost piezoelectric ring vibrating gyroscope
based on the side-driving piezo electrodes was designed, simulated, and characterized by
Zhou et al. [16]. In their study, the piezoelectric ring vibratory gyroscope was actuated
and sensed by piezo electrodes located on the sidewalls of the resonating structure. The
nonlinear structural behavior of a size-dependent MEMS gyroscope assuming a non-trivial-
shaped proof mass was studied by Hassen [17]. A novel compound fast fractional integral
sliding mode control and adaptive PI control of a MEMS gyroscope was proposed by Rah-
mani and Rahman [18] to represent external disturbances. Napoli et al. [19] investigated
frequency splitting in a MEMS ring-based Coriolis vibrating gyroscope caused by support
nonlinearity. A recent study investigated a cylindrical fused silica resonator’s dynamic
response and frequency split behavior via simulations and experiments Luo et al. [20]. To
this end, a cylindrical resonator with appropriate dimensions was designed and fabricated.
A laser Doppler vibrometer was used for the experimental quantification of the physical
characteristics of the resonator. In a previous study, they investigated the dynamic stability
of cylindrical fused silica resonators subjected to random angular rate perturbation (Luo
et al. [21]). Their study was concerned with an experimentally fabricated resonator that
resembles the dimensions of resonators used in commercially available gyroscopes. In
this study, the results indicate a suitable drive frequency scheme for increased resonator
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stability. In addition, based on model-based predictions, the effect of environmental noise
on the dynamic behavior of the resonator was examined. In addition, Luo et al. [20] and
Luo et al. [21] focused on utilizing the model-based predictions of response as well as
stability in modifying the manufacturing processes. In this case, a chemical etching process
was implemented to minimize the adverse effects of the frequency-split behavior. Saghir
and Younis [22] investigated the mechanical behavior of initially curved microplates under
electrostatic actuation. They derived a dynamic analogy of the von Kármán governing
equation for such plates. Theoretical and experimental studies on the linear and nonlinear
dynamics of MEMS/NEMS (Nano Electro Mechanical Systems) and their exploitation
for various applications have been investigated in detail [23–25]. Further, another im-
portant research has been performed on nonlinear microsystems, such as reduced-order
modeling and gyroscopes [26–28]. The dynamic integrity of various electrostatic MEMS
actuators has been developed and utilized in various applications [29–35]. The study [36]
demonstrated experimentally that an actuator could exploit parametric resonators to im-
prove the dynamic response behaviour. Additionally, the electrostatic nonlinearity and the
achievable limit sensitivity beyond the linear range have been studied theoretically and
experimentally to overcome the mode aliasing limitation in linear mode local sensors [37].
Further, the analytical model that takes into account the edge effect has been used to
track the periodic motion of the sensing component in the resonant micro-gyroscope. In
the same study, different parameter tests were performed to check the influence of the
proof mass frequency on the bifurcation behaviour [38]. Significant research on physical
phenomena was investigated for various examples at the MEMS/NEMS scale considering
different physical parameters, such as internal resonances [39], bifurcations [40,41], and
chaos [42]. Furthermore, Passaro et al. [43] considered mechanical gyroscopes, silicon
MEMS gyroscopes, ring laser gyroscopes, and fiber-optic gyroscopes, focusing on the main
features, performance, technologies, and applications. Without a thorough understanding
of the effects of electrostatic force in MEMS systems, many observed phenomena, such as
sensitivity and nonlinearity, would have no scientific explanation. Thus, it is necessary to
study the electromechanics of a micron-scale structure using an electrostatic actuator.

To the best of the author’s knowledge, it appears that no study has been performed to
understand the dynamic behavior of ring-type MEMS gyroscopes employing a nonlinear
coupled model which considers nonlinear electrostatic forces. Hence, there is a need to
extend the applications of other responsive structural systems, such as the ring systems
proposed in the present study, to design models. However, ring structure gyroscopes are
more promising because of their inherent advantages such as high mode sensitivity and
minimal sensitivity to temperature fluctuations compared with other structures.

In the present paper, nonlinear and linear dynamic response analysis of a ring-type
MEMS gyroscope under the influence of nonlinear electrostatic forces in the presence
and absence of nonlinear terms was investigated via numerical simulations. The natural
frequency variation and amplitude ratio for the MEMS configuration of the gyroscope
were computed. The results are presented in the time and frequency domains when the
gyroscope is subjected to an input angular rate. In addition, the phase diagram and
Poincare maps were obtained via numerical simulation for linear and nonlinear systems,
in particular, to gain insight into the inherent nonlinear behavior.

2. Governing Equations

In this section, a comprehensive mathematical model that represents the nonlinear
and linear dynamic behavior of MEMS ring-type vibratory angular rate sensors is derived.
In the present model, the transverse shear deformation effect is ignored by the thin-
ring assumption. The equations of motion were derived using Hamilton’s principle [9],
representing the transverse and circumferential motions of the ring. The effect of the
elastic support for the ring is included, and simplified equations of motion are obtained
by assuming that the circumferential strain in the mid-surface is zero. The equations of
motion are expressed in terms of suitable generalized coordinates by applying Galerkin’s
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procedure. To adequately represent the dynamic response behavior of a ring-type vibratory
angular rate sensor, the nonlinear equations of motion have been simplified by ignoring
the extensional vibration because a particular resonant flexural mode is excited in this class
of applications. The viscous damping of the MEMS ring gyroscope was added to the final
approximated equations of motion.

Figure 1 illustrates the geometry and parameters used in this study. The ring is
considered to be supported internally with eight springs with stiffness components kr and
kθ , which represent the radial and circumferential components, respectively, while ur and
uθ represent the transverse and circumferential displacements, respectively. A body-fixed
frame X, Y, Z has been used to define the angular motion of the ring. In addition, b denotes
the axial thickness of the ring, h represents the radial thickness, r is the mean radius of the
ring, and Ω is input angular rate.
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The general equations of motion that govern the transverse and circumferential mo-
tions can be derived using Hamilton’s principle. For this purpose, expressions for various
energy terms have been developed. The kinetic energy of the rotating ring is generated
from the translational and rotational rigid body motion of the ring. The strain energy
was formulated from the deformation of the ring. The energy generated from the support
springs and loads is included, and only the in-plane flexural vibrations of the ring that
are of interest to the device operation are considered. The equation of motion for the sys-
tem under external oscillatory nonlinear electrostatic force, with the linear in-extensional
condition in the radial direction, takes the following form:

EA
br2

(
u′θ + ur

)
− EI

br4

(
u′′′θ − u′′′′r

)
+ ρhΩ2(2u′θ − u′′r

)
+krur + ρh

( ..
ur −

.
Ωuθ − 2Ω

.
uθ

)
= fNes (An, Bn, θi) cos(ωt),

(1)

where the time derivatives are indicated by
.
( ), while the spatial derivatives are indicated

by ( )′. In Equation (1), E is the Young’s modulus, I denotes the area moment of inertia of
the ring cross-section, ρ represents the mass density, EI represents flexural rigidity, and A
is the cross-sectional area of the ring. An oscillatory external nonlinear electrostatic force
magnitude fNes (An, Bn, θi) and of frequency ω is considered. This force plays an essential
role in the device operation to excite the structure at a particular resonant mode. The input
angular rate and angular acceleration, respectively, are denoted by Ω and

.
Ω. The area

moment of inertia of the ring cross-section about its neutral axis is expressed as I = bh3/12.
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The partial differential Equation (1) is reduced to nonlinear ordinary differential equations
by assuming nonlinear mode shapes for the ring second flexural modes via Galerkin’s
procedure. Owing to the periodic nature of solutions and the choice of deflection modes,
the most general radial and circumferential (extensional) displacements compatible with
the continuity requirements can be formulated as follows [2]:

ur = An cos(nθ) + Bn sin(nθ)− nγ

4r

[
A2

n + B2
n

]
(2)

uθ = − 1
n
[An sin(nθ)− Bn cos(nθ)] +

γ

8r

[
A2

n + B2
n

]
sin(2nθ)− γ

4r
AnBn cos(2nθ) (3)

where An and Bn denote time-dependent generalized coordinates in the primary and
secondary directions, respectively, while n denotes the number of modes. The parameter

γ = n ∗
(

1− 1
n2

)2
represents the measure of system nonlinearity. It should be noted that

by setting this parameter to zero, the corresponding linear equations can be obtained.
As shown in Equations (2) and (3), this parameter influences the homogenous and non-
homogenous parts of Equation (1). Hence, this characteristic that results from the inexten-
sionality of the middle surface is termed system nonlinearity. Evensen [2,3] performed a
detailed investigation of the dynamics of this class of structures. Each An and Bn can, in
turn, be expanded as a Fourier series in time; thus, it is possible to represent virtually any
radial or circumferential deflection of interest in Equations (2) and (3). The functions cos nθ
and sin nθ associated with the nonlinear term γ are the nonlinear vibration modes of the
ring, and since only flexural motions are considered, Equations (2) and (3), in the present
study, are restricted to n = 2. In order to apply Galerkin’s procedure, Equations (2) and (3)
are substituted for ur in Equation (1), and the resulting expression is then multiplied by the
weighting function associated with An and integrated with respect to θ from 0 to 2π. This
procedure yields an ordinary differential equation that primarily An. When an equation
for Bn is obtained in a similar fashion, both equations are coupled in nonlinear terms. The
derivatives of the ur and uθ with respect to the t and θ were used, and the final derivatives
were obtained as follows:

u′′′′r = n4 An cos(nθ) + n4Bn sin(nθ) (4)

..
ur =

..
An cos(nθ) +

..
Bn sin(nθ)− nγ

2r

[
.
A

2
n + An

..
An(t) +

.
B

2
n + Bn

..
Bn

]
(5)

u′θ = −[An cos(nθ) + Bn sin(nθ)] +
nγ

4r

[
A2

n + B2
n

]
cos(2nθ) +

nγ

2r
AnBn sin(2nθ) (6)

u′′′θ = −
[
−n2 An cos(nθ)− n2Bn sin(nθ)

]
− n3γ

r
[
A2

n + B2
n
]

cos(2nθ)

− 2n3γ
r AnBn sin(2nθ)

(7)

The weighting functions used in this procedure are:

∂ur

∂An
= −nγ

2r
An + cos(nθ) (8)

and
∂ur

∂Bn
= −nγ

2r
Bn + sin(nθ), (9)

to obtain the equations motion in the coordinates An and Bn, respectively.
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By substituting Equations (2) through (7) in Equation (1) and multiplying the resulting
expression by the weighting Functions (8) and (9) associated with An and Bn, respectively,
and integrating with respect to θ from 0 to 2π, the following equations are obtained:∫ 2π

0

{
EA
br2 {−[An cos(nθ) + Bn sin(nθ)] + nγ

4r
[
A2

n + B2
n
]

cos(2nθ) + nγ
2r AnBn sin(2nθ)

+ An cos(nθ) + Bn sin(nθ)− nγ
4r
[
A2

n + B2
n
]}
− EI

br4

{
−
[
−n2 An cos(nθ)− n2Bn sin(nθ)

]
− n3γ

r
[
A2

n + B2
n
]

cos(2nθ)− 2n3γ
r AnBn sin(2nθ)− n4 An cos(nθ)− n4Bn sin(nθ)

}
+ρhΩ2{−2[An cos(nθ) + Bn sin(nθ)] + nγ

2r
[
A2

n + B2
n
]

cos(2nθ) + nγ
r AnBn sin(2nθ)

+n2 An cos(nθ)− n2Bn sin(nθ)
}
+ kr

{
An cos(nθ) + Bn sin(nθ)− nγ

4r
[
A2

n + B2
n
]}

+ρh
{ ..

An cos(nθ) +
..
Bn sin(nθ) − nγ

2r

[
.
A

2
n + An

..
An +

.
B

2
n + Bn

..
Bn

]
−

.
Ω
[
− 1

n [An sin(nθ)− Bn cos(nθ)] + γ
8r
[
A2

n + B2
n
]

sin(2nθ)− γ
4r AnBn cos(2nθ)

]
−2Ω

[
− 1

n

[ .
An sin(nθ)−

.
Bn cos(nθ)

]
+ γ

4r

[
An

.
An + Bn

.
Bn

]
sin(2nθ)

− γ
4r

[ .
AnBn + An

.
Bn

]
cos(2nθ)

]
}}
{
− nγ

2r An + cos(nθ)
}

dθ =∫ 2π
0

4
∑

i=1
{ fNes1 (An, Bn, θi) cos(ωt)}

{
− nγ

2r An + cos(nθ)
}

dθ,

(10)
while the second equation, which represents the secondary coordinate Bn multiplied by
Equation (9) and integrated from 0 to 2π, can be rearranged as∫ 2π

0

{
EA
br2 {−[An cos(nθ) + Bn sin(nθ)] + nγ

4r
[
A2

n + B2
n
]

cos(2nθ) + nγ
2r AnBn sin(2nθ)

+An cos(nθ) + Bn sin(nθ)− nγ
4r
[
A2

n + B2
n
]}
− EI

br4

{
−
[
−n2 An cos(nθ)− n2Bn sin(nθ)

]
− n3γ

r
[
A2

n + B2
n
]

cos(2nθ)− 2n3γ
r AnBn sin(2nθ)− n4 An cos(nθ)− n4Bn sin(nθ)

}
+ρhΩ2{−2[An cos(nθ) + Bn sin(nθ)] + nγ

2r
[
A2

n + B2
n
]

cos(2nθ) + nγ
r AnBn sin(2nθ)

+n2 An cos(nθ)− n2Bn sin(nθ)
}
+ kr

{
An cos(nθ) + Bn sin(nθ)− nγ

4r
[
A2

n + B2
n
]}

+ρh
{ ..

An cos(nθ) +
..
Bn sin(nθ) − nγ

2r

[
.
A

2
n + An

..
An +

.
B

2
n + Bn

..
Bn

]
−

.
Ω
[
− 1

n [An sin(nθ)− Bn cos(nθ)] + γ
8r
[
A2

n + B2
n
]

sin(2nθ)− γ
4r AnBn cos(2nθ)

]
−2Ω

[
− 1

n

[ .
An sin(nθ)−

.
Bn cos(nθ)

]
+ γ

4r

[
An

.
An + Bn

.
Bn

]
sin(2nθ)

− γ
4r

[ .
AnBn + An

.
Bn

]
cos(2nθ)

]
}}
{
− nγ

2r An + sin(nθ)
}

dθ =∫ 2π
0

4
∑

i=1
{ fNes2 (An, Bn, θi) cos(ωt)}

{
− nγ

2r Bn + sin(nθ)
}

dθ.

(11)
As shown in Appendix A, the integral formulae were used to obtain simplified forms

of Equations (10) and (11). Considering that the ring rotates about the Z-axis with an
input angular rate, Ω, the discretized equations of motion that govern nonlinear linear
dynamic behavior employing the second mode with suitable nonlinear electrostatic forces
are derived using Equations (1) through (11) as[

ρhπ + 2ρhπ
( nγ

2r
)2 A2

n

] ..
An + 2ρhπ

( nγ
2r
)2 AnBn

..
Bn+2ζω0

.
An +

[
EI
br4

(
n2 − 1

)
n2 + ρhΩ2(n2 − 2

)
+ kr

]
πAn

+
[

EA
br2 + kr

]( nγ
2r
)2[A2

n + B2
n
]
πAn + 2ρhπ

( nγ
2r
)2
[

.
A

2
n +

.
B

2
n

]
An − ρhπ

.
Ω 1

n Bn − 2ρhπΩ 1
n

.
Bn =

fNes1 (An, Bn, θi)cos(ωt)

(12)

[
ρhπ + 2ρhπ

( nγ
2r
)2B2

n

] ..
Bn + 2ρhπ

( nγ
2r
)2 AnBn

..
An+2ζω0

.
Bn +

[
EI
br4

(
n2 − 1

)
n2 + ρhΩ2(n2 − 2

)
+ kr

]
πBn

+
[

EA
br2 + kr

]( nγ
2r
)2[A2

n + B2
n
]
πBn + 2ρhπ

( nγ
2r
)2
[

.
A

2
n +

.
B

2
n

]
Bn + ρhπ

.
Ω 1

n An + 2ρhπΩ 1
n

.
An = 0

(13)
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As defined earlier, in Equations (12) and (13), An is considered to represent the primary
excitation or the driving coordinate for the ring, while Bn maybe considered as the sensing
coordinate. It is also evident from Equations (12) and (13) that Bn is influenced by the
primary coordinate An owing to the coupling between the two equations via the coordinates
and input angular rate Ω. In addition, to represent the dissipation in the system, viscous
damping of the ring harvester is introduced in the final discretized equations of motion
as proportional damping. It is included via a modal damping ratio ζ as shown, where ω0
represents the system’s natural frequency. It may be observed from Equations (12) and (13),
the nonlinearity in the model appears in the inertia and stiffness terms that are related via
parameter γ. In this research, as mentioned earlier, only the second flexural modes are
considered; hence, the number of nodal diameters (or mode number) n in the equations
of motion is taken as 2. Additionally, a nonlinear electrostatic force fNes1 (An, Bn, θi) is
considered to provide an external sinusoidal excitation, which is essential for the gyroscope
operation, where ω is the excitation frequency. The positions of the electrodes that provide
this force correspond to orientations θi, i = 1, 2, 3, 4.

Figure 2 illustrates the second flexural mode shapes that possess identical natural
frequencies for the ring. These modes are referred to as degenerate mode shapes separated
by 45 degrees. In vibratory angular rate sensor applications, one of the second flexural
modes is excited since it provides the most considerable angular shift due to the external
rate input. Hence, the second flexural mode was chosen for investigating the dynamic
response of the rotating ring. In the absence of an input angular rate, initially, the ring is
excited in the primary mode, and there is no motion in the secondary mode. However,
when an input angular rate is given while the ring is excited in the primary mode, the
Coriolis effect excites the secondary mode owing to the energy transfer between the two
modes. This characteristic is exploited in a vibratory ring gyro for providing measurements
of the angular rotational velocity of a body.
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3. Development of Nonlinear Electrostatic Force Model for MEMS Ring-Based
Gyroscope

Electrostatic transduction is the most common actuation and sensing method in
MEMS because of its simplicity and high efficiency. A ring-based MEMS gyroscope device
using electrostatic forces to generate an appropriate nonlinear force was considered in
the present study. A suitable mathematical model to represent this force was developed.
The physical realization of this nonlinear system must provide a practical way to increase
device sensitivity. In this study, the combined action of electrostatic and elastic forces could
cause severe nonlinearity or instability problems. As the distance between the mechanical
parts and the dimensions of the mechanical structures is quite close, the fringe effects of
the electrostatic force may be considered in future studies to obtain the best results. To
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represent the oscillatory nonlinear electrostatic force that acts on the ring-type MEMS
structure, an appropriate analysis of a theoretical model formulation is employed. The
electrostatic force applied on the ring via an electrode interface area of a is represented
by fNes in the driving and sensing coordinates, and can be expressed in the following
form [44–47]:

fNes =
1
2

ε0V2a

(d− ur)
2 (14)

The parameter ε0 = 8.854× 10−12F/m represents the permittivity of a vacuum of the
medium between electrodes and the surface of the ring, V represents the voltage applied
between the electrode and the ring, a is the overlapping area of the electrodes, d denotes the
distance between the electrode and ring, and ur denotes the transverse displacement of the
ring element. Figure 3 illustrates a vibratory ring gyroscope conceptual view consisting of a
ring structure, second flexural mode, and locations of the electrostatic actuators employed
to exit the structure. The expression given in Equation (14) may be extended to handle
multiple electrodes that may be arranged around the periphery of the ring, as shown. The
electrodes are used to drive, sense, or control the gyroscope. In this study, the expression
for the nonlinear electrostatic force system that affects the ring from four angular positions
when i = 1, 2, 3, 4 is derived. To represent the oscillatory electrostatic force acting on the
ring structure, a suitable theoretical formulation is employed. The expressions for nonlinear
electrostatic forces are derived in the primary coordinate An and the secondary coordinate
Bn. In this case, the expressions for nonlinear electrostatic forces that affect the system from
four positions are derived by employing Equations (2) and (14) in the primary coordinate
An as

fNes1 =
4

∑
i=1

(cos(nθi)−
(nγ

2r

)
An) ∗

[
ε0V2a

2
{

d− An cos(nθi)− Bn sin(nθi) +
nγ
4R [A

2
n + B2

n]
}2

]
(15)
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Additionally, in the secondary coordinate Bn

fNes2 =
4

∑
i=1

(sin(nθi)−
(nγ

2r

)
Bn) ∗

[
ε0V2a

2
{

d + An cos(nθi) + Bn sin(nθi)− nγ
4R [A

2
n + B2

n]
}2

]
(16)
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where θi represents the position of the electrodes in the system. The nonlinear electrostatic
force components presented in Equations (15) and (16) form the basis of the dynamics of
the system. In the present study, conforming to the typical operation of a gyroscope, the
only excitation in the primary coordinate Equation (15) is considered; hence, fNes2 = 0.

4. Results and Discussion

In this section, a nonlinear dynamic response analysis of a ring-type MEMS gyroscope
under the influence of nonlinear electrostatic forces in the presence of nonlinear terms is
investigated via numerical simulations. The natural frequency variation and amplitude
ratio for the MEMS system were computed. The results are presented in the time and
frequency domains when the gyroscope is subjected to an input angular rate. Before
performing the dynamic response analysis, the natural frequency variation due to rotation
was quantified and discussed. The operation of ring-based vibratory gyroscopes relies
on nonlinear external excitation close to one of the resonant frequencies to increase the
device sensitivity. The second flexural mode is chosen to investigate the natural frequency
variation with the input angular rate. In addition, the time response, phase diagram, and
Poincare maps were obtained via numerical simulation for nonlinear systems, in particular,
to gain insight into the system nonlinear behavior.

4.1. Natural Frequency Variation

In order to illustrate the applicability of the analytical results, typical parameters
associated with a MEMS ring-type angular gyroscope were considered. The following ring
design parameters were chosen in the present study: radius of 500 µm, the thickness of
12.5, height of 30 µm with Young’s modulus of 210 Gpa, and the density of 8800 Kg/m3

have been chosen in the present study. In addition, for all time and frequency response
simulations, a damping ratio ζ of 0.0001 was assumed for the system. Figure 4 illustrates
the frequency-split behavior and natural frequency variation due to changes in the input
angular rates. It may be noted that the brown line represents the first natural frequency
while the blue line represents the second natural frequency. At a nominal input angu-
lar rate of 2π rad/$s , these frequencies take the values ω1 = 2.4422× 105 rad/$s , and
ω2 = 2.4428× 105 rad/$s . It is evident from Figure 4 that as the input angular rate in-
creases, ω2 increases, while ω1 decreases. In the absence of the input angular motion of the
ring, the natural frequencies of the ring are identical, and ω1 = ω2 = 2.4425× 105 rad/$s .
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In addition, the amplitude ratio of the displacement in the sensing direction to the
displacement in the driving direction (|Bn/An|) was evaluated for the stationary ring, as
depicted in Figure 5. It is evident from this figure that the amplitude ratio has the maximum
value near the natural frequency ω1 = ω2 = 2.4425× 105 rad/s = 38873.59 Hz. In the
following sections, numerical simulation performed using ode45 solver from MATLAB is
presented. Further, the convergence and stability of solutions were examined via several
trial runs prior to obtaining the final simulation results.
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4.2. Time Response

In the present study, comprehensive nonlinear governing equations of the flexural
motion of vibrating thin circular rings presented in Equations (12) and (13) are employed to
investigate the nonlinear dynamic behavior of a ring-type MEMS gyroscope. The geometry
and parameters used in this study are illustrated in Figure 1. For the purposes of predicting
the nonlinear response characteristic of the MEMS ring-type gyro, Equations (12) and (13)
were solved numerically when fNes2 = 0. An expression for the nonlinear electrostatic
force was derived in Equation (15) and used in the present study to examine the dynamic
response behavior. At a nominal input angular rate of 2π rad/s , the frequencies used in the
present study were evaluated as ω1 = 2.4425× 105(rad/s), and ω2 = 2.4425× 105(rad/s).
The MEMS gyroscope was subjected to an input angular velocity Ω = 2π (rad/s), under
nonlinear oscillatory electrostatic excitation; the time response of the ring in the driving
direction in the presence of a nonlinear parameter is depicted in Figure 6. Further, the
time response in the sensing coordinate in the presence of nonlinear terms is illustrated in
Figure 7.
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Figure 6. Radial displacement in driving direction for An for Ω = 2π rad/s in presence of nonlinear
parameter γ.
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Figure 7. Radial displacement in the sensing direction Bn for Ω = 2π rad/s in presence of nonlinear
parameter γ.

Figure 8 depict the phase portrait based on the steady-state response in the driving
direction in the presence of nonlinear parameter in the system when the gyroscope is
subjected to an input angular rate of 2π rad/s . Further, the phase portrait is based on
the steady-state response in the sensing direction in the presence of nonlinear parameters
when the MEMS gyroscope is subjected to an input angular rate, as shown in Figure 9. It
may be noted that the nonlinearities are evident from the plot in the presence of nonlinear
term due to the nonlinearities of the system, as well as nonlinear electrostatic force.
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Furthermore, the nonlinear behavior is also clearly seen in the Poincare map results in
the driving and sensing coordinate responses, as illustrated in Figures 10 and 11. Hence,
it can be concluded that the multi-equilibrium points evident from the Poincare map
must be considered when designing this class of devices. It is recommended that either
minimization or adequate control action be exercised during operation.
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Figure 10. Poincare’ map in driving direction An for Ω = 2π rad/s in presence of nonlinear
parameter γ.
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Figure 11. Poincare’ map in sensing direction Bn for Ω = 2π rad/s in presence of nonlinear parame-
ter γ.

In addition, to examine the effects of actuator nonlinearities, a Poincare map was
constructed in the absence of the nonlinear parameter γ in Equations (12) and (13), as
shown in Figures 12 and 13. It should be noted that these figures show quasi-periodic
behavior, and it can be concluded that the nonlinear actuator has minimal impact on the
steady-state behavior owing to the absence of the nonlinear parameter γ in the inertia and
stiffness terms in the model explained previously. A comparison of the nonlinear model
with the linear model in the absence of nonlinear parameters revealed that the inclusion of
model nonlinearities in the presence of high vibration amplitudes has a strong influence
and hence significantly demonstrates its importance.
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Figure 12. Poincare’ map in driving direction An for Ω = 2π rad/s in absence of nonlinear parame-
ter γ.
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Figure 13. Poincare’ map in sensing direction Bn for Ω = 2π rad/s in absence of nonlinear parame-
ter γ.

5. Conclusions

In this study, nonlinear and linear equations that govern the in-plane motion of MEMS
ring-type gyroscopes have been developed to investigate the dynamic behavior for use
in vibratory angular rate sensors. Numerical simulations of MEMS ring-type gyroscopes
have been performed to study the dynamic response behavior of angular rate sensors. A
comprehensive mathematical model representing the nonlinear dynamic behavior of ring-
type MEMS vibratory angular rate sensors is derived based on a rotating ring, assuming
that it is entirely symmetric. To investigate the dynamic response behavior of a ring-
type MEMS vibratory angular rate, the nonlinear equations of motion are simplified by
ignoring the extensional vibrations since the second resonant flexural mode is excited
in this class of applications. The device exhibits high nonlinearity in the presence of the
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nonlinear term in the model, which may be attributed to the high vibration amplitudes.
A suitable nonlinear electrostatic actuator model was developed to analyze nonlinear
dynamic response analysis. The results of the dynamic response obtained via time-response,
phase portraits, and Poincare’s maps indicate that the nonlinear actuation has minimal
influence on the resulting steady-state behavior.
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Appendix A

The integral formulae employed in the simplification of Equations (9) and (10):∫ 2π

0
cos(nθ)dθ = 0,

∫ 2π

0
sin(nθ)dθ = 0,

∫ 2π

0
cos(2nθ)dθ = 0,

∫ 2π

0
sin(2nθ)dθ = 0,

∫ 2π

0
cos(nθ) sin(nθ)dθ = 0,

∫ 2π

0
cos(2nθ) cos(nθ)dθ =

1
2

∫ 2π

0
[cos(3nθ) + cos(nθ)]dθ = 0,

∫ 2π

0
cos(2nθ) sin(nθ)dθ =

1
2

∫ 2π

0
[sin(3nθ) + sin(nθ)]dθ = 0,

∫ 2π

0
sin(2nθ) cos(nθ)dθ =

1
2

∫ 2π

0
[sin(3nθ) + sin(nθ)]dθ = 0,

∫ 2π

0
sin(2nθ) sin(nθ)dθ = −1

2

∫ 2π

0
[cos(3nθ)− cos(nθ)]dθ = 0
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