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Abstract: The cellular automata (CA) model has been a meaningful way to study pedestrian evac-
uation during emergencies, such as fires, for many years. Although the time step used in the CA
model is one of the most essential elements, there is a lack of research on its impact on evacuation
time. In this paper, we set different time step sizes in an extended cellular automaton model and
discuss the effect of time step size on the overall evacuation time under different emergency types
and levels. For a fixed step time mode, the larger the time step, the longer the evacuation time. In
each time step size, the evacuation time gradually increases with the increase of emergency level,
and there is a sharp increase when the time for pedestrians to move one step is exactly an integer
multiple of the time step. When there is no friction between pedestrians, the evacuation time at each
time step first decreases slightly with the increase of emergency level and then remains unchanged;
the larger the time step, when the evacuation time remains unchanged, the lower the emergency level
and the greater the evacuation time. For the variable time step model, when the friction between
pedestrians approaches infinity, the total evacuation time does not change with the emergency level;
when the friction between pedestrians is reduced, the total evacuation time slightly decreases with
the increase of the emergency level. The less friction there is, the more significant the reduction. The
results of previous actual experiments are also reflected in the simulation at a lower emergency level.
The result shows that the time step size significantly impacts the evacuation simulation results of the
CA model, and researchers should choose carefully to obtain more realistic simulation results.

Keywords: emergency levels; friction levels; ‘faster-is-slower’ effect; time step; cellular automata

1. Introduction

With the rapid increase in population and the occurrence of various evacuation acci-
dents, such as the Mina crowd disaster [1], which occurred on 2 July 1990, and 24 September
2015, how to ensure the safe evacuation of people in emergencies such as fire has become
a widespread concern in society. This has also attracted more and more researchers in
different fields to study pedestrian evacuation dynamics [2,3]. There is no doubt that
repeated evacuation experiments of various types of buildings, scenes, or cluster events
are the best way to understand the dynamics of crowd evacuation and obtain the optimal
evacuation strategy. However, due to safety, ethics, funding, and other issues, sometimes it
is impossible to carry out actual experiments; even if some actual experiments can be con-
ducted, they will be affected by uncontrollable variables and data quality, which seriously
limits the research on crowd evacuation in emergencies.

Fortunately, with the development of computer technology, computer simulation
has become the main measure to analyse the evacuation process and evaluate evacuation
efficiency [4], and it is also the primary method for studying emergency evacuation [5].
In 1971, Henderson et al. [6] analogised the evacuated crowd to a continuous liquid and
established a model. On this basis, the evacuation model gradually evolved into two types
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of models, including the discrete model and the continuity model, depending on whether
the space in the model is continuous. The social force model (SFM) [7–9] and the cellular
automaton (CA) model [10–13] are representative models of the discrete and the continuous
models, respectively. In this paper, we focus on the CA model, which has the characteristics
of high computational efficiency and robust scalability and plays an irreplaceable role in
understanding the nature of evacuation dynamics [2]. The CA model discretises time and
space into small, noncontinuous segments. The small segments of space are the cells of the
CA model. According to the cell size, the CA model can be divided into a fine grid size
model [14–16] and an ordinary grid size model [17–19]. Correspondingly, it is also divided
into a multigrid model [20,21] and a single-grid model [22] according to the number of cells
occupied by one person. The time segment is also called the time step of the CA model.
Within each time step, pedestrians move between discrete cells according to neighbourhood
rules, and the status of each cell is updated. Researchers have performed some research on
cell size-related issues, but there is a relative lack of research on the impact of time step size
on evacuation. Therefore, this paper uses the single-grid model with ordinary grid size to
study the effect of different time step sizes on crowd evacuation time.

The main cause of cluster activity disasters is extreme pressure and competition when
pedestrians want to escape or enter a specific area at a desired speed due to excitement or
panic caused by disasters or events. Helbing et al. [23] studied crowd behaviour under
high-pressure situations and found that in such cluster disaster events, the higher the
expected speed, the lower the exit flow rate. The ‘fast is slow’ (FIS) effect, which has also
been confirmed by many related studies [24–27], could lead to potentially fatal events as
flow rates are drastically reduced, potentially leading to large gatherings of people. When
a fire or other emergency occurs, pedestrians become more nervous and value resources
that can make them safer or keep them away from danger. The more urgent the situation,
the more important the resources are for pedestrians. During the process of evacuation or
distancing, conflicts may arise when there is an overlap in pedestrian evacuation routes
or evacuation spaces, and the more urgent the situation, the more serious the conflict
will be. When a conflict occurs, the degree to which pedestrians attach importance to the
damage to their own interests caused by others (such as encroaching on evacuation routes
or evacuation spaces) or the ability to resolve conflicts at the time of conflict is defined
as the friction between pedestrians in conflict. Kirchner et al. [28] introduced the friction
parameter in the CA model for the first time to express the probability of successfully
resolving conflicts. Then Hu et al. [24] used friction function with aggressiveness to solve
conflicts, and aggressiveness was used to represent the pedestrian’s ability to compete in
conflicts, affecting their speed and interaction with others. At this time, the pedestrian who
finally moves smoothly is selected based on the aggressiveness of all pedestrians involved.
However, only the situation in which pedestrians move according to von Neumann’s
neighbourhood rule (as shown in Figure 1a, pedestrians can only move in four directions:
up, down, left, and right) was considered in that paper, while Wurzer et al. [29] and Song
et al. [30] argue that pedestrians are more reasonable to evacuate according to Moore’s
neighbourhood rule (as shown in Figure 1b, pedestrians can move in eight directions). In
addition, aggressiveness borrowed from Stephen’s law [31] only considers the emergency
level of the overall environment. It does not consider the differences in the pedestrian’s
specific situation and choices. However, differences in particular conditions will affect
pedestrians’ reaction to the same danger. For example, if they are attacked similarly,
pedestrians react differently in open spaces and spaces with no room for escape, such as
elevators [32]. Their preferences also vary based on the pros and cons of their options [33,34].
Therefore, we introduce optimised aggressiveness [35], which considers the pedestrian’s
specific situation and the pros and cons of each choice, into the model and stipulate that
pedestrians evacuate following Moore’s neighbourhood rule. On this basis, we simulate
and analyse the changes in the total evacuation time at different time step sizes under
various degrees of emergency and friction.
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Figure 1. The cells (grey cells) that pedestrians (red cells) can move to when following (a) von
Neumann’s neighbourhood rule and (b) Moore’s neighbourhood rule.

The paper is structured as follows: Section 2 introduces the relevant theories and
strategies of the model, Section 3 conducts the model simulations and analysis, and Section 4
provides a summary, conclusion, and future work.

2. Materials and Methods

We will conduct the research in the software written by our team based on the Qt
compiler, which is used in other studies [35–37], as well. This software can accurately
read and display drawing exchange format (DXF) graphic files in ASCII format output
by AutoCAD, discretize the read graphic files with one click, select and set different grids
(such as setting them as safety exits, etc.), add pedestrians randomly or at fixed points, and
display the evacuation process in real time. Based on this software framework, we set up
the cellular automaton model as follows: the space is discretised into 0.5 m × 0.5 m cells,
which are either free or occupied by pedestrians or obstacles, and time is also discretised
into time segments of different sizes according to experimental requirements.

2.1. The Static Floor Field and Selection of the Target Cell

The static floor field value does not change over time and reflects the distance between
the cells and the exits. Here, we use a method similar to the iterative approach mentioned
in a previous study [38] to obtain the static floor field and the floor field value of the cell
(i, j) is calculated using Equation (1).

Si,j = ϵVi,j + (1 − ϵ)Mi,j (0 ≤ ϵ ≤ 1), (1)

where Vi,j is the value of cell (i, j) in von Neumann’s static floor field (from the exit, the
value of cells will increase according to von Neumann’s neighbourhood rule as follows:
up, down, left, and right). Mi,j represents the value of cell (i, j) in Moore’s static floor field
(from the exit, the value of cells will increase according to Moore’s neighbourhood rule
as follows: eight directions). Parameter ϵ controls the weight of von Neumann’s static
floor field. If ϵ = 1, then Si,j = Vi,j, and the static floor field is as shown in Figure 2a. If
ϵ = 0, then Si,j = Mi,j, and the static floor field is as shown in Figure 2b. If ϵ = 0.5, then
Si,j = 0.5 ∗ Vi,j + 0.5 ∗ Mi,j, and the static floor field is as shown in Figure 2c. The exits are
represented by the green cells, obstacles are represented by the blue cells, and the static
floor field value Si,j of one cell is the number in that cell.

The probability that a pedestrian selects cell (i, j) as the target cell of the next time step
is obtained using the following formula:

Pi,j = N·exp
[
−KS·

(
Si,j − Smin

)]
·
(
1 − δi,j

)
·λi,j, (2)
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where N is a normalisation factor. KS indicating the sensitivity of pedestrians to the static
floor field is the weight of the static floor field. δi,j indicates whether a pedestrian occupies
the target cell; if the cell (i, j) is occupied by another pedestrian, δi,j = 1, otherwise, δi,j = 0.
Likewise, λi,j indicates whether the target cell is occupied by an obstacle; if it is occupied
by an obstacle, λi,j = 0, otherwise, λi,j = 1.
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2.2. Update Scheme

The update schemes are divided into four types: the parallel/synchronous scheme, the
random scheme, the order-sequential scheme, and the shuffled scheme [39]. The parallel
update scheme, which can better reflect the competition between pedestrians during a
dense crowd evacuation, is selected in this paper. We use two modes in the model, including
fixed time step size and variable time step size. In the fixed time step size mode, the time
step will be set to many fixed values, which is also the most commonly used method. In
the variable time step size mode, the time step of each evacuation simulation is obtained
based on the speed of the pedestrian, which means that it changes with the emergency level
because speed is related to the environment. In addition, in the fixed time step mode, as
the emergency level increases, the pedestrian’s speed gradually increases [24], and the time
required to move one step gradually decreases so that the pedestrian may move multiple
steps in one time step. In this case, dealing with the conflicts caused by partial overlaps
and jumps in the evacuation routes is necessary when using the parallel update method.

Figure 3 presents examples of human movement following Moore’s neighbourhood
rule explaining how to handle the situation of a pedestrian’s position jumping; the red
circle represents the pedestrian, the green cells and yellow cells indicate the places he can
move to, and the pedestrian can maintain the original position at each step. Figure 3a
shows a situation in which a pedestrian can only move one step per time step. The black
arrows indicate the possible directions of his action. Figure 3b shows a situation in which a
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pedestrian can move two steps at one time step. The black arrows also indicate the possible
directions of the first step, and the orange arrows are the possible directions of the second
step. If the cell in the first step is occupied by a person or structure, the pedestrian cannot
skip the occupied cell directly to the position of the second step, although the position
meets the requirements in terms of distance; that is, in Figure 3b, although the person can
move two steps, and the grey cells are just about two steps away from him, he cannot jump
over the blue cells to reach a grey cell in one time step. In this way, the problem of position
jumping when pedestrians move multiple steps at one time step is solved. If multiple
pedestrians select the same cell as their target, as shown in Figure 4, conflict occurs; we use
the conflict resolution method presented in Section 2.3 to solve this problem.
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Figure 4. Three people’s target cells conflict (two people move two steps, and one person moves
one step).

However, when some pedestrians move multiple steps within a time step, their target
cells may not conflict, but their movement routes may intersect or partially overlap. A
handling method is needed based on the specific conflict situation. Also, use the example of
pedestrians moving according to von Neumann neighbourhood rules, as shown in Figure 5;
pedestrian No. 1 selects cell No. 1 as the target cell, and pedestrian No. 2 selects cell
No. 2 as the target cell. In Figure 5a, pedestrian No. 1 moves two steps at one time step,
and pedestrian No. 2 moves one step. Although pedestrian No. 1 needs to pass through
pedestrian No. 2’s target cell in the first step, we think they can successfully avoid route
conflicts and move smoothly. Similarly, in Figure 5b,c, although one pedestrian’s first step
conflicts with other people’s second step, we also think they can successfully avoid walking
route conflicts and move smoothly. In Figure 5d, both pedestrians move two steps at one
time step and their first steps conflict. At this time, only one person can move to the target
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cell smoothly. In this case, we use the conflict resolution method presented in Section 2.3 to
determine who ultimately moves.
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two’s first step, (c) person one’s first step is intersected with person two’s destination (second step)
and (d) person one’s first step is overlap with person two’s first step.

In the variable time step mode, pedestrians can only move at most one step per time step.
We do not need to resolve the conflict of evacuation routes intersecting or partially overlapping,
but there are things to consider. In this mode, the time step increases with the pedestrian’s
speed (risk levels). It is obtained using formula Tl =

∆L
Vl

, in which ∆L represents the cell size
(which is 0.5 m) and Vl represents the velocity of pedestrians at different aggressiveness. That
is to say, when the pedestrian speed is 1, the time step is 500 ms, when the pedestrian speed
is 1.1, the time step is about 455 ms, and so on. Make sure that the time step of the model is
equal to the time it takes for a pedestrian to move one step.

2.3. Aggressiveness and Conflict Resolution

Pedestrian aggressiveness is the possessiveness of a target that is manifested by the
interaction and influence of a person’s internal psychology and the external environment.
In general, the more urgent the situation, the higher their aggressiveness. Hu et al. [24] use
a power function borrowed from Stevens’ law [31] of psychophysics to represent pedestrian
aggressiveness. However, as mentioned, people react differently in different situations.
When they are attacked and there is a possibility of escape, they are most likely to run away;
however, when there is no possibility of escape (such as in an elevator), they will usually
fight back, and people’s decisions are also affected by the advantages and disadvantages of
their options [32–34]. We, therefore, use optimised aggressiveness [35] as follows:

.
rl = δl

1
λ ·Pi,j, (3)
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where δl is the pedestrian’s perception of the environment and other pedestrians. The
bigger the δl , the higher the emergency level, and δl ∈ [0, 1]. λ adjusts the growth rate of
aggressiveness, and λ > 0. Pi,j is the normalized value of the probability that pedestrian l
selects cell (i, j) according to Equation (2). This formula optimises a pedestrian’s aggres-
siveness in a specific situation, and the pros and cons of the available options can more
accurately express the pedestrian’s status.

Pedestrian speed is related to the emergency level, which is controlled by perception δ
and λ. Borrowing from Hu et al. [24], we express the change of speed affected by perception
δ and λ as Equation (4). Generally, the higher the emergency level (the bigger δl), the greater
the speed.

vl = v0 + δl
1
λ ∗ v0, (4)

v0 represents the speed under normal conditions, and vl represents the speed of pedestrians
under different competitive situations. Because δl ∈ [0, 1], vl ∈ [v0, 2 ∗ v0]; that is, the
maximum walking speed of a pedestrian is twice the initial velocity. In this study, we set
the velocity v0 = 1 m/s, so the maximum walking speed is 2 m/s.

As mentioned, the model in this article uses the parallel update method. In this
update method, there may be situations in which the resources (space and time) that
multiple pedestrians want to occupy overlap, and the limited resources cannot meet the
needs of each person’s movement at the next time step, so their interests conflict, such as
conflicts caused by multiple people choosing the same target cell and routes intersecting
or partially overlapping mentioned in Section 2.2. Conflicts accurately describe crowd
dynamics, especially in dense crowds near bottlenecks and intersections [13]. The friction
parameter was first introduced in the CA model to determine the probability of having
a winner in a conflict [28], and then a friction function was used to solve conflicts with
aggressiveness [24]. We use the optimised friction function [35] as follows:

ϕµ =

(
∑k

l=1
.
rl

rmax

)µ

, (5)

where µ is the allowable conflict coefficient of pedestrians, which is opposite to the friction
between pedestrians during evacuation. The larger µ, the smaller the friction, the smoother
the competition situation, and the more likely the conflict will be resolved. Parameter k
is the set of all pedestrians who are involved in the conflict, and rmax is the maximum
possible aggressiveness. In this study, we simulate the situation in which pedestrians move
according to Moore’s neighbourhood rule, so rmax = 8 (although there is the possibility of
pedestrians moving two steps, and the maximum number of people moving to a cell is 8
and 16 respectively, the possibility of rmax exceeding 4 and 8 respectively does not exist).

With a probability of 1 − ϕµ, the conflict is successfully resolved. At this time, one
of the pedestrians involved becomes the winner and can successfully move to his target
cell; otherwise, no one involved can successfully reach his target cell. The probability of a
pedestrian winning the conflict is determined by the optimised aggressiveness of all people
involved in the conflict, according to the following equation [35].

pl =

.
rl

∑k
j=1

.
rj

, (6)

2.4. Simulation Parameters and Measurement Methodology

We apply the optimised aggressiveness to the model, stipulate that pedestrian evacua-
tion follows Moore’s neighbourhood rule, gradually increase the time step of the model
to conduct evacuation simulations, and then analyse and compare the evacuation results
under different time step sizes. To reduce factors contributing to differences in evacua-
tion results, we stipulate that the pedestrian’s perception remains unchanged during the
evacuation process, the initial velocity is 1.0 m/s, the static floor field weight parameter
ϵ = 0.5, and the sensitivity parameter KS = 5. In addition, we set λ = 1, and the emergency
level is adjusted by adjusting the perception. For comparison with previously conducted
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actual experiments [25], we use the same scenarios in the model. In addition, in the actual
experiment, volunteers wore protective vests (as shown in Figure 6) and evacuated from
the experimental area through the safety exit. The rigidity of this protective vest limited
the smoothness of pedestrian evacuation; that is, the friction during pedestrian evacuation
was very large. In the model, we change the friction of pedestrian evacuation by changing
the allowable conflict coefficient µ.
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Figure 6. Protective vest [25] (a) photo of a protective vest and (b) a participant in the vest.

The actual experimental room is 8 m long and 4 m wide, with one safety exit, as
shown in Figure 7a. In the model, the room is discretised into square cells with a side
length of 0.5 m, so the internal space of the room (excluding the cells occupied by the
wall) has 16 cells on the long side and 8 cells on the short side, as shown in Figure 7b.
A total of 55 pedestrians were randomly added to the model, as shown in Figure 7d,
which corresponds to the 55 male college students in the actual experiment, as shown in
Figure 7c. The average evacuation times in the actual experiment for low, medium, and
high competitiveness were 60.3 ± 2.71 s, 68.9 ± 4.42 s, and 74.8 ± 8.11 s, respectively.
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The allowable conflict coefficient µ changes from close to 0 to 1 at a step of 0.2. In
addition, the special situation in which the allowable conflict coefficient approaches infinity
is also considered. For each µ, perception ranges from 0.1 to 1 at a step of 0.1 and remains
unchanged during the simulation.

3. Results
3.1. Evacuation Time under Different Time Step Sizes with Friction

In this section, we first simulate crowd evacuation in fixed time step mode, in which
the time step gradually increases from 250 ms to 500 ms at a step of 50 ms. Then we simulate
crowd evacuation in variable time step mode, in which the time step varies according to the
speed of the pedestrians in the model under different perception levels. Finally, the total
evacuation times in the two modes are compared. Each simulation is repeated 50 times,
and the average total evacuation time of fixed time step and varied step time is shown in
Figure 8. From the result, we can see that the average evacuation time varies significantly
with pedestrian perception in different time step sizes. For the fixed time step model, the
total evacuation time increases with the increase of pedestrian perception, showing the
‘fast is slow’ (FIS) effect, and the smaller the allowable conflict coefficient (the greater the
friction), the greater the evacuation time increases with perception, the more obvious the
result of ‘FIS’ effect. Under the same allowable conflict coefficient and perception, the larger
the time step, the larger the evacuation time. For the variable time step mode, the time
step of the model decreases as pedestrian perception increases (speed increases), and the
total evacuation time changes very little in this mode. Under a smaller allowable conflict
coefficient, it first increases a little and then reduces a little, and under a larger allowable
conflict coefficient, it reduces a little.

When the allowable conflict coefficient is close to 0, that is, when the friction is close to
infinite, there is an interesting phenomenon. When the time step is 450 ms, the evacuation
time increases sharply when the pedestrian’s perception rises to 0.1, that is the pedestrian
velocity increases to 1.1 m/s (500 mm ÷ 1.1 m/s ≈ 455 ms). When the time step is 400 ms,
a dramatic increase appears when the pedestrian perception increases to 0.2; pedestrian
velocity increases to 1.2 m/s (500 mm ÷ 1.2 m/s ≈ 417 ms). When the time step is 350 ms,
a dramatic increase appears when the pedestrian perception increases to 0.4; pedestrian
velocity increases to 1.4 m/s (500 mm ÷ 1.4 m/s ≈ 357 ms). When the time step is 300 ms,
a dramatic increase appears when the pedestrian perception increases to 0.6; pedestrian
velocity increases to 1.6 m/s (500 mm ÷ 1.6 m/s ≈ 312 ms). It shows that total evacuation
time rises dramatically when the time step is larger than the time required for a pedestrian
to move one step, which means that when the model updates, all people can move one
step or two steps; of course, they can also stay still if they have no cells available or they
are the loser of a conflict. Furthermore, a significant increase occurs when pedestrian
aggressiveness increases to one (pedestrian speed increases to 2 m/s), when the time step
is 500 ms. The time step is now twice the time it takes for a pedestrian to move one step,
which means that when the model updates, all people can move two steps; of course,
they can also stay still if they have no cells available or they are the loser of a conflict;
they can also move one step if they choose to. This is mainly due to the fact that after
the point at which these perceptions increase, there is a drastic increase in the number of
pedestrians competing at the same moment. For example, when everyone moves one step,
there are more people participating in the competition than when the pedestrian moves
one step with probability, and when everyone moves two steps, there are more people
participating in the competition than when the pedestrian moves one or two steps with
probability. The increase in competing pedestrians has a great impact on the evacuation
time at a small allowable conflict coefficient, so the evacuation time increases dramatically
at these perception points.
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In addition, for different allowable conflict coefficients, the intersection points of the
total evacuation time in the variable time step mode and in the fixed time step mode are
also exactly the perception points corresponding to the speed of the pedestrian moving
one grid in the fixed time step mode. For example, the variable time step mode and the
fixed time step mode of 450 ms intersect at the perception of 0.1, and 350 ms intersects at
0.4, etc., which means that the ratio of the cell size (500 mm) to the velocity corresponding
to the intersection is equal to the time step of the curve. Although the total evacuation
time decreases slightly with the increase of perception in the variable time step mode, the
number of total steps increases, and the larger the allowable conflict coefficient, the more
the evacuation time decreases, the less the number of steps increases. The situation in
which the time for a pedestrian to move one square is exactly equal to the time step sounds
like the best simulation. However, it is found from the simulation results that the variable
time step mode cannot reflect the ‘fast-is-slow’ effect, which is inconsistent with the actual
experimental results [25]. Therefore, when pedestrian congestion is serious at the safety
exit, using the variable time step mode cannot obtain realistic simulation results.
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3.2. Evacuation Time under Different Time Step Sizes without Friction

When the allowable conflict coefficient tends to be infinity (when there is no friction),
the average total evacuation time changes with the perception level, as shown in Figure 9a.
Its corresponding average number of evacuation steps is shown in Figure 9b. In Figure 9a,
although evacuation time changes very little as perception increases, the intersection points
of the total evacuation time in the variable time step mode and in the fixed time step mode
have the same x value (same perception) as the intersection point when there is friction in
Figure 8. In Figure 9b, under different time step modes, as the perception increases, the
evacuation step curve gradually converges to the same horizontal line. The pedestrian
moves exactly one step at this convergence position. The time for a pedestrian to move one
step at the speed corresponding to the x value of the convergence point of each curve is the
same as the time step of the curve. That is to say, when there is no friction in pedestrian
evacuation, as the perception increases, the number of evacuation steps first gradually
decreases in each time step mode and then remains unchanged after the perception rises to
a point at which the time for the pedestrian to move one step is equal to the time step of
the curve. This is also consistent with the fact that the number of evacuation steps in the
variable time step mode remains unchanged as the perception increases.
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The curves of evacuation steps with different time step sizes gradually tend to have
the same value as the perception increases because the exit is narrow and pedestrians are
blocked at the exit, which is also what often happens when crowds of people are evacuated.
When the perception is low (the speed is low), the time required for a pedestrian to move
one step is greater than the time step, so the pedestrian does not meet the movement
requirements at the time level, resulting in not moving. Thus, the number of evacuation
steps is high. When the perception is higher (the speed is higher), the time required for
the pedestrian to move one step is less than the time step, and the pedestrian meets the
movement requirements at the time level. Even if a conflict occurs, since there is no friction
between pedestrians, the conflict can always be resolved smoothly, and the number of
evacuation steps remains unchanged as the perception continues to increase.

4. Conclusions

In this study, the aggressiveness affecting friction and selection functions during
pedestrian evacuation simulations is optimised based on the pros and cons of each choice
and the pedestrian’s specific circumstances. The optimised aggressiveness was applied
to the model, and the changes in crowd evacuation time with perception under different
allowable conflict coefficients and time step sizes were explored. Through experiments, we
found the following:

1. When there is friction in pedestrian evacuation for the fixed time step mode (1) no
matter what the time step is, the total evacuation time always increases with the in-
crease of the perception, showing the ‘faster is slower’ effect and the smaller allowable
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conflict coefficient is, the more obvious the effect is; (2) under the same conditions,
the larger the time step, the larger the total evacuation time; and (3) when the fric-
tion is significantly high, the total evacuation time increases sharply when the time
required for the corresponding pedestrian to move one step is an integer multiple of
the time step.

2. When there is no friction in pedestrian evacuation for a fixed time step mode (1) as the
perception increases, the total evacuation time first decreases slightly and then remains
unchanged; (2) the larger the time step, the smaller the perception when it remains
unchanged and the greater the evacuation time after remaining unchanged; and (3) as
the perception increases, the total number of evacuation steps gradually decreases
and remains unchanged, and the larger the time step, the smaller the perception when
the steps remaining unchanged.

3. In the variable time step mode, when the friction between pedestrians approaches
infinity (allowable conflict coefficient close to 0), the total evacuation time remains
almost constant as the perception increases; when the friction between pedestrians
gradually decreases (allowable conflict coefficient increases), the total evacuation time
decreases slightly with the rise of perception, and the smaller the friction, the more
significant the decrease.

4. When pedestrian congestion is severe at the safety exit, the variable time step mode
cannot obtain realistic simulation results, although it sounds like the best simulation.

In summary, under the same allowable conflict coefficient and perception, the evac-
uation time under different time step sizes is different; the smaller the allowable conflict
coefficient, the more significant the difference in evacuation time. The simulation result
also shows that when the allowable conflict coefficient and the time step are 0.4 and 450 ms,
the evacuation time under high perception conditions (when perceptions are 0.7, 0.8, and
0.9) can match the evacuation time under low, medium, and high competition degrees
in the actual evacuation experiment (as shown in Figure 10), which were 60.3 ± 2.71 s,
68.9 ± 4.42 s, and 74.8 ± 8.11 s, respectively [25]. This also matches the fact that in the
actual experiment, the friction caused by the experimenters wearing protective vests (as
shown in Figure 6) is very high (the allowable conflict coefficient is very small).
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Due to its advantages, the CA model has become an essential means of studying
pedestrian evacuation dynamics, and the time step is one of its key elements. This paper
fixed the cell size and simulated the evacuation time under different time step sizes,
highlighting the strong influence of the time step size on the total evacuation time in the
CA model. With a deeper understanding of the significant differences in evacuation time
under different time step sizes, researchers can set the time step better when using the
CA model for evacuation simulation, thereby obtaining more realistic simulation results.
This will facilitate the correct assessment of building evacuation capabilities and safety, as
well as personnel capacity, correctly determine evacuation routes and exit locations, help
firefighters and other emergency personnel understand more realistic evacuation situations,
and formulate more reasonable evacuation strategies.
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Although our findings are meaningful, there are also some shortcomings. It is stipu-
lated that pedestrian evacuation uses a specific neighbourhood rule, which may be more
complex in reality, the types and attributes of pedestrians are single, only one safety exit
is considered, and pedestrians will never be exhausted when evacuating. Nevertheless,
we hope our work can help us understand more clearly that the time step size used in CA
models strongly impacts evacuation time and should be treated carefully.
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