
Citation: Xu, F.; Chen, W.; Xie, R.;

Wu, Y.; Jiang, D. Vegetation

Classification and a Biomass

Inversion Model for Wildfires in

Chongli Based on Remote Sensing

Data. Fire 2024, 7, 58. https://

doi.org/10.3390/fire7020058

Academic Editor: Grant Williamson

Received: 23 November 2023

Revised: 13 February 2024

Accepted: 14 February 2024

Published: 17 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fire

Article

Vegetation Classification and a Biomass Inversion Model for
Wildfires in Chongli Based on Remote Sensing Data
Feng Xu *, Wenjing Chen, Rui Xie, Yihui Wu and Dongming Jiang

College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China;
wjchen@njfu.edu.cn (W.C.); ruixie@njfu.edu.cn (R.X.); wuyihui@njfu.edu.cn (Y.W.);
17660975577@njfu.edu.cn (D.J.)
* Correspondence: ramboxufeng@njfu.edu.cn; Tel.: +86-139-1391-7970

Abstract: Vegetation classification, biomass assessment, and wildfire dynamics are interconnected
wildfire-ecosystem components. The Chongli District, located in Zhangjiakou City, was the venue for
skiing at the 2022 Winter Olympics. Its high mountains and dense forests create a unique environment.
The establishment of alpine ski resorts highlighted the importance of comprehensive forest surveys.
Understanding vegetation types and their biomass is critical to assessing the distribution of local
forest resources and predicting the likelihood of forest fires. This study used satellite multispectral
data from the Sentinel-2B satellite to classify the surface vegetation in the Chongli District through
K-means clustering. By combining this classification with a biomass inversion model, the total
biomass of the survey area can be calculated. The biomass inversion equation established based
on multispectral remote sensing data and terrain information in the Chongli area have a strong
correlation (shrub forest R2 = 0.811, broadleaf forest R2 = 0.356, coniferous forest R2 = 0.223). These
correlation coefficients are key indicators for our understanding of the relationship between remote
sensing data and actual vegetation biomass, reflecting the performance of the biomass inversion
model. Taking shrubland as an example, a correlation coefficient as high as 0.811 shows the model’s
ability to accurately predict the biomass of this type of vegetation. In addition, through multiple
linear regression, the optimal shrub, broadleaf, and coniferous forest biomass models were obtained,
with the overall accuracy reaching 93.58%, 89.56%, and 97.53%, respectively, meeting the strict
requirements for survey accuracy. This study successfully conducted vegetation classification and
biomass inversion in the Chongli District using remote sensing data. The research results have
important implications for the prevention and control of forest fires.

Keywords: vegetation classification; biomass; remote sensing data; sentinel data

1. Introduction

Wildfires are uncontrolled fires caused by vegetation that spread rapidly across natural
landscapes [1]. Their ignition and spread are affected by weather conditions, topography,
and combustible vegetation [2]. The intricate interactions between vegetation classification,
biomass, and wildfire are critical to understanding wildfire dynamics, which underscores
the need for effective wildfire management and prevention. In recent years, the frequency
and severity of forest fires have increased significantly over much of the world [3]. Large-
scale forest fires can result in considerable environmental damage [4–6], disrupting the
composition and structure of ecosystems significantly [7,8]. Forest fire risk in China shows
an increasing trend, with more areas under the high-risk zone [9],highlighting the urgency
of responding to this escalating threat.

The Chongli District, renowned as the venue for China’s esteemed 2022 Winter Olympics
skiing program, necessitates prompt forest resource surveys. The region’s mountainous terrain
and distinctive microclimate contribute to a diverse array of natural conditions, rendering
the assessment of forest stand structures and surveying forest resources a formidable task.
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Traditional ground surveys reliant on manual labor are not only costly but also time consuming.
To address these challenges, remote sensing technology offers a more efficient and accurate
approach to swiftly identify vegetation types and discern surface vegetation by analyzing the
spectral characteristics of remote sensing data [10].

Earlier studies on vegetation remote sensing classification primarily relied on visual
interpretation. However, the accuracy of interpretation often relied upon image quality and
manual expertise, resulting in lengthy and time-sensitive operations [11]. The professionals
must obtain precise target feature data from remote sensing images through direct assess-
ment or by utilizing auxiliary decoding instruments. In recent years, rapid advancements
in remote sensing and sensor technologies have yielded a wealth of abundant and precise
multispectral and hyper-spectral images, enabling vegetation classification based on remote
sensing [12–14] data. Hyperspectral remote sensing employs imaging spectrometers to
capture high-resolution spectral image data across various regions of the electromagnetic
spectrum, including the visible, near-infrared, mid-infrared, and thermal-infrared bands,
within a narrow and continuous wavelength range [15]. This advanced technology not
only captures target images but also obtains precise spectral data, providing the capability
to create hyperspectral “maps in one”. Compared to traditional remote sensing methods,
hyperspectral imaging offers more comprehensive data due to its exceptional spectral
resolution. Hyperspectral images with narrow-band data extract more information than
multispectral images with wide-band data. Therefore, it is better suited for quantitatively
distinguishing feature components and improving accuracy in feature inversion.

At the hyperspectral image scale, the primary focus in studying vegetation identification
and classification lies in examining the impact of algorithms on classification accuracy. In a
study by Buddenbaum et al. [16], hyperspectral images were employed to classify both the
species and age classes of coniferous forests. The results demonstrated that the combination
of spectral information with dry density or texture information yielded comparable and
more accurate classification outcomes compared to using spectral information alone. Zhu
Honglei et al. [17] conducted a study on the diversity of riverbank plant communities in
the Henan section of the Yellow River, utilizing UAV remote sensing and artificial neural
networks. The overall classification accuracy achieved an impressive 61.42%. Li Chan et al. [18]
employed plant leaf spectral data and applied three machine learning algorithms, namely
k-nearest neighbor, support vector machine, and random forest, to classify plant species in the
agricultural region of Yixing, Jiangsu Province. The maximum classification accuracy attained
was 94.74%. Du Xin et al. [19] conducted research based on Pleiades 1A/1B remote sensing
data, integrating spectral, topographic, and texture information. By employing a combination
of projection tracing and machine learning techniques, plant classification in the eastern part
of Shenzhen City was achieved with an accuracy exceeding 70%.

Existing vegetation classification studies typically focus on flat terrains like river
mudflats, agricultural regions, and suburbs, characterized by limited vegetation species.
Commonly used methods include supervised machine learning algorithms like artificial
neural networks, k-nearest neighbor, support vector machines, and random forests. How-
ever, traditional methods achieve only modest accuracy, reaching a maximum of 70%. In
the case of Chongli, with its vast area, high altitudes, and diverse vegetation, a different
approach is needed. Using the unsupervised K-Means algorithm for remote vegetation
classification eliminates the need for manually annotating data, making data processing
more efficient in the large study area.

The results of vegetation classification have a direct impact on forest biomass [20],
which serves as an indicator of energy accumulation in the production and metabolic
processes of an ecosystem within a specific area. It is a crucial indicator that reflects the
structural and functional characteristics of the forest ecosystem, as well as its develop-
ment potential [21]. These results hold significant practical significance for the scientific
management and economic development of forested lands [22]. Analyzing the spatial and
temporal dynamics of biomass allows for a comprehensive understanding of long-term
trends in forest ecosystem carbon stock changes and the affected areas [23]. This knowledge
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is invaluable for studying terrestrial carbon cycles and forest fire prevention in the Chongli
District. Among the various methods for estimating biomass [24], the field survey method
is labor intensive, costly, and time consuming. Additionally, it lacks spatial and temporal
coverage, making it challenging to apply in large or remote areas. The use of airborne
LiDAR [25] systems, although effective, requires substantial resources and manpower and
is limited in its applicability to large-scale study areas. Therefore, exploring alternative
approaches, such as remote sensing and machine learning techniques, can provide a more
efficient and cost-effective means of estimating biomass in large study areas like Chongli
District. These methods leverage the advantages of remote sensing data and advanced
algorithms to overcome the limitations of traditional approaches.

Yali Zhu et al. [26] developed a model to estimate the crown and aboveground biomass
of poplar trees in the vicinity of the Tarim Basin in the Xinjiang Uygur Autonomous Region,
leveraging UAV remote sensing data. The model achieved an impressive accuracy of 95.63%.
In a similar vein, Ye Pingquan et al. [27] employed three machine learning regression al-
gorithms to estimate the aboveground biomass of acacia plantation forests, incorporating
slope-direction variables. This approach led to an enhancement in the accuracy of the
aboveground biomass estimation model. Guo Chaofan et al. [28] established a relationship
model between 21 representative vegetation indices and biomass, focusing on the grassland
area in Haiyan County, Qinghai Province. Moving on, Liu Yanhui et al. [29] devised a vege-
tation biomass inversion model for the reclamation area of a surface coal mine in the Inner
Mongolia grassland. They accomplished this by integrating Worldview-3 and Sentinel-1
SAR data, achieving a remarkable accuracy of R2 = 0.7983. Lastly, Li Tianchi et al. [30]
developed a biomass estimation model for winter wheat, utilizing correlation and stepwise
regression analyses in conjunction with digital images captured during its flowering period
and hyperspectral data. The model attained a peak accuracy of 90%.

Previous research on biomass inversion has predominantly focused on individual
vegetation species, neglecting areas with a more intricate distribution of forest plant species.
In this study, we aim to address this gap by constructing a multiple linear regression
model that integrates the outcomes of remote sensing-based plant classification and data
from the regional forest resources type II survey. This step-by-step approach enhances the
practicality and feasibility of developing a biomass inversion model for complex study
areas. Investigating surface vegetation classification and biomass inversion in Chongli
serves as both a foundation for understanding the local ecosystem and a means of providing
technical support for real-time monitoring of vegetation changes in the region.

2. Materials and Methods
2.1. Overview of the Study Area

The study was conducted in the Chongli District, located in Zhangjiakou City, Hebei
Province (40◦47′–41◦17′ N, 114◦17′–115◦34′ E) [31]. This region lies within the transitional
zone between the Inner Mongolia Plateau and the North China Plateau [31]. It is character-
ized by the presence of the Inner Mongolia Grassland to the north and the downtown area
of Zhangjiakou to the south. The topography exhibits a general pattern of higher elevations
in the northeast and lower elevations in the southwest, with a natural inclination. The
study area is encompassed by mountains, with undulating terrain in the east, middle, and
west, and three large ditches traversing the entire region. The total area of the study area is
approximately 2300 km2, with elevations ranging from 812 m to 2169 m [32]. Geomorpho-
logically, the region can be divided into two types: tectonic denudation plateau areas and
eroded mountain areas. Figure 1 is a true-color satellite imagery of the Chongli District.

The climate in Chongli County belongs to the temperate subarid zone of the East
Asian continental monsoon climate [31]. Due to its geographical location and topography,
the air activity is frequent in winter, the temperature rises quickly in spring, but fluctuates
greatly, the frost period is late, the rainfall is low, and the number of windy days is high.
Summer is cool and short, the temperature is relatively stable, the temperature difference
between day and night is large, and the rainfall is concentrated. Due to the topography of
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the mountainous areas, there are hailstorms and rainstorms from time to time. Autumn
temperatures drop rapidly, and the first frost appears earlier.

Chongli District has an average summer temperature of 19 ◦C, an average winter
temperature of −12 ◦C [33], an average wind speed of only two degrees, early snowfall,
thick snow, and a long snow-storage period. The average precipitation in a calendar year
is 488 mm [33], the total precipitation is 1.13 billion cubic meters, the total annual runoff
is 100.69 million cubic meters, and the average temperature of the calendar year is 3.7 ◦C.
Chongli District is rich in vegetation resources, with an afforestation area of 3867 hectares.
The area of forest conservation is 10,220 hectares. The total area of forest land is 2.35 million
mu. By 2021, the forest coverage rate will reach 67% [33].
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Figure 1. True-color satellite imagery of the Chongli District.

The vegetation in the Chongli area is primarily composed of deciduous broad-leaved
forests. Various types of forests are present, including shrub forests, economic forests, broad-
leaved forests (both artificial and natural), and coniferous forests. Based on the survey
results, it is evident that shrub forests predominantly constitute the broad-leaved forests,
with a significant number of them located in parks and green spaces. Moreover, ornamental
shrubs, such as octagonal golden discs, contribute to the landscape. In contrast, nurseries
and sparse forests cover a smaller area, primarily situated within parks or designated green
spaces. The prevailing tree species in the region encompass birch, cypress, poplar, hazel
wood, larch, and others.

2.2. The Source and Processing of Data

The Sentinel-2B [34] satellite plays a crucial role in the Copernicus program, which is
led by the European Space Agency (ESA) and focuses on global monitoring for environment
and security (GMES). Launched on 7 March 2017, and placed into orbit by the ESA, the
Sentinel-2B satellite is an integral part of this program. It captures images in three different
resolution bands: 10 m, 20 m, and 60 m. In this study, remote sensing data from the
L1C satellite were obtained by downloading from the European Space Agency website
(https://scihub.copernicus.eu/dhus/#/home, accessed on 16 June 2021).

To enhance the accuracy of the remote sensing data, atmospheric corrections were
performed on the 10 m and 20 m resolution bands of the L1C-level data. This correction
process was carried out using the Sen2Cor plug-in, which is provided by the European
Space Agency (ESA). After the corrections, the data were transformed into L2A level.
Subsequently, the L2A-level data were resampled to a 10 m resolution using the nearest

https://scihub.copernicus.eu/dhus/#/home
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neighbor method in the SNAP (Sentinel Application Platform) software, also provided by
the ESA. The resampled data were then exported to file types that are compatible with
ENVI software and projected to the Beijing 54 coordinate system for further analysis.

The vector boundary data of Chongli District were obtained using the National Ge-
ographic Information Resource Service Catalog System. The specific dataset used was
the new map number K50, which was produced in 2017. The geodetic datum utilized
for this dataset is the 2000 National Geodetic Coordinate System. Once the original data
were obtained, the vector boundary of Chongli District in Zhangjiakou City was extracted
individually using ArcGIS software. This extraction process resulted in the acquisition
of the vector boundary data for the study area. Finally, the data were reprojected to the
Beijing 54 coordinate system for consistency and compatibility.

The field survey data used in this study were obtained from the Class II survey of
forest resources in Chongli District, Zhangjiakou City. It was assumed that the sample plots
selected during the survey represented a single vegetation type, meaning there was no
mixing of different types of vegetation. The Digital Elevation Model (DEM) [35] used in this
research is a digital representation of the land surface morphology, providing information
about factors such as slope, slope direction, and slope change rate across space. The
specific DEM used in this study was obtained from NASA EARTH SEARCH and has a
horizontal spatial resolution of 30 m and a vertical spatial resolution of 1 m. To facilitate
subsequent calculations, the horizontal spatial resolution was oversampled to 10 m using
the nearest neighbor method. Additionally, the Beijing 54 coordinate system was selected
as the coordinate system for this study.

The Normalized Difference Vegetation Index (NDVI) [36] can be calculated using the
following equation:

NDVI =
NIR− RED
NIR + RED

(1)

where NIR, RED are the infrared band reflectance values, respectively.
There is a high correlation between the green plant covered area and NDVI, so the

study area can be masked using NDVI to remove the interference of non-plant components
in the study. The images of the study area were masked using NDVI greater than 1, 2, 3, 4,
5, 6, 7 and 8 as thresholds and the results obtained are shown in Figure 2.

Fire 2024, 7, x FOR PEER REVIEW 6 of 17 
 

 

    

    

Figure 2. Different NDVI threshold mask effects. 

The red part of the figure shows the vegetation cover area, and the non-vegetation 

cover area has been removed by the mask. By combining the visual observation with the 

true color satellite image (R:G:B = Band4:Band3:Band2), we can see that, when NDVI > 0.7, 

the area covered by vegetation and the area obtained from the mask have a higher degree 

of conformity, and therefore the pixels obtained from the mask when NDVI > 0.7 are taken 

as the effective pixels in the subsequent studies. 

3. Method 

3.1.  Vegetation Classification 

The K-Means Clustering Algorithm is an iterative cluster analysis algorithm, catego-

rized as an unsupervised classification algorithm. It operates on the principle of iteratively 

identifying the centroid of each cluster and reallocating objects within the clusters based 

on their mean values. This process facilitates the classification of data points into distinct 

clusters. 

Cluster analysis was predominantly carried out in this study using ENVI and Python. 

From the previously obtained field survey data, 500 groups of three vegetation types, 

namely shrub forest, coniferous forest, and broad-leaved forest, were randomly selected 

for cluster analysis. The training set consisted of the initial 80% (400 groups) of each veg-

etation type, while the remaining 20% (100 groups) formed the test set. Remote sensing 

images were initially classified into 10 classes using ENVI, and the preliminary 

Figure 2. Different NDVI threshold mask effects.

The red part of the figure shows the vegetation cover area, and the non-vegetation
cover area has been removed by the mask. By combining the visual observation with the
true color satellite image (R:G:B = Band4:Band3:Band2), we can see that, when NDVI > 0.7,
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the area covered by vegetation and the area obtained from the mask have a higher degree
of conformity, and therefore the pixels obtained from the mask when NDVI > 0.7 are taken
as the effective pixels in the subsequent studies.

3. Method
3.1. Vegetation Classification

The K-Means Clustering Algorithm is an iterative cluster analysis algorithm, categorized
as an unsupervised classification algorithm. It operates on the principle of iteratively identi-
fying the centroid of each cluster and reallocating objects within the clusters based on their
mean values. This process facilitates the classification of data points into distinct clusters.

Cluster analysis was predominantly carried out in this study using ENVI and Python.
From the previously obtained field survey data, 500 groups of three vegetation types,
namely shrub forest, coniferous forest, and broad-leaved forest, were randomly selected for
cluster analysis. The training set consisted of the initial 80% (400 groups) of each vegetation
type, while the remaining 20% (100 groups) formed the test set. Remote sensing images
were initially classified into 10 classes using ENVI, and the preliminary classification results
were summarized as shown in Figure 3.

Following the substitution of sample points from the training set into the classification
result map using Python, the proportions of the three vegetation types in each class were
computed. The dominant vegetation within the region was selected to represent the current
classification. The statistical findings are presented in Table 1.

The preliminary classification results of K-Means clustering can be merged to further
obtain the merged classification results as shown in Figure 4.

From Table 2, it is evident that the number of valid points (points located within areas
other than the non-study area and non-vegetation cover area) is smaller compared to the
points used in the test, regardless of whether it pertains to shrub forest, coniferous forest,
or broad-leaved forest. Approximately 21% to 29% of the points fell within the non-study
area or the non-vegetation cover area. The reason for points falling within the non-study
area could be attributed to imprecise vector boundaries of the Chongli District or some
data collection points exceeding the administrative boundaries during the field survey.
Similarly, points falling within the non-vegetation cover area can be attributed to the NDVI
threshold being set higher, resulting in the masking of effective pixels with lower NDVI
values. For points falling in these two places, we do not calculate the number of valid
points, the number of correct points and the accuracy, so we use ‘/’ as placeholders.
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Table 1. K-Means preliminary classification results.

Classes Shrub Coniferous Forest Broadleaf Forest Dominant Vegetation Emark

class 0 0.00% 0.00% 0.00% none non-research
area

class 1 27.11% 31.50% 41.39% none non-vegetation
area

class 2 0.00% 100.00% 0.00% coniferous forest
class 3 0.00% 0.00% 100.00% broadleaf forest
class 4 0.00% 0.00% 0.00% none
class 5 0.00% 100.00% 0.00% coniferous forest
class 6 16.00% 56.00% 28.00% coniferous forest
class 7 31.07% 48.54% 20.39% coniferous forest
class 8 39.68% 29.70% 30.63% shrub
class 9 32.69% 32.41% 34.90% broadleaf forest
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Table 2. Classification accuracy.

Classes Valid Point Correct Point Accuracy

non-research area / / /
non-vegetation area / / /

shrub 74 44 59.46%
coniferous forest 79 25 31.65%
broadleaf forest 71 43 60.56%

The classification results indicate that broadleaf forests achieved the highest accuracy
at 60.56%. The difference in accuracy between shrub forests and broad-leaf forests was
relatively small, with a rate of 59.49%. Coniferous forests exhibited the lowest classification
accuracy at 31.65%. It is worth noting that the accuracy of classification using unsupervised
methods is not particularly high for shrub forests, coniferous forests, or broadleaf forests.
However, based on these classification results, it can be observed that the K-Means classifi-
cation method can be utilized for rough classification of broadleaf forests and shrub forests
in scenarios where high accuracy requirements are not essential.

3.2. Biomass Inversion

The vegetation indices such as GNDVI [37], OSAVI [38], SR2 [39], SR3 [40], and GI [41]
in Table 3 can be obtained directly by substituting the raw band data as in Equations (2),
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(3), (4), (5) and (6), respectively. Texture features such as COR(*), VAR(*), and CONT(*) can
be calculated using the Gray-level Co-occurrence Matrix (GLCM) [42].

Table 3. Independent variables involved in the construction & calculation of biomass inversion models.

Types Independent Variables Number

original band CA, BLUE, GREEN, RED, VRE1, VRE2, VRE3
WV, NIR, N_NIR, SWIR1, SWIR2 12

vegetation abundance LOW, CLF 2
terrain factor DEM 1

vegetation index GNDVI, OSAVI, SR2, SR3, GI 5

texture feature Cor(*), Var(*), Cont(*), Mean(*), Homo(*)
Diss(*), Entr(*), Sec(*) 96

GNDVI =
N_NIR−GREEN
N_NIR + GREEN

(2)

OSAVI =
NIR− RED

NIR + RED + 0.16
(3)

SR2 =
NIR

VRE1
(4)

SR3 =
NNIR

BLUE
(5)

GI =
GREEN

RED
(6)

3.2.1. Portability Studies of Existing Biomass Models

The multiple linear regression method is employed to calculate biomass by considering
various independent variables such as original band, band index, texture features, elevation,
and other data [43]. The biomass is treated as the dependent variable, and multiple linear
regression equations are constructed to represent the linear relationships between variables
that exhibit high correlation with biomass.

In a previous study, Zhou Xisheng [44] optimized a biomass inversion model for low
vegetation, coniferous forests, and broad-leaved forests with high accuracy by building
stepwise regression models.

The low vegetation inversion equation is as follows:

Bs = 10×
[
−171.896− 49.335× LOW + 76.406×CLF + 316.404×GNDVI
−13.710× SR2− 0.365×COR(VRE2) + 1.807×DEM

]
(7)

In this study, it is assumed that there is a single type of vegetation in the samples
selected for the field survey, so for the low vegetation, LOW is taken as 1 and CLF is taken
as 0. The inverse equation for broadleaf forest is as follows.

Bb = 10×

 660.327− 16.739×COR(VRE2)− 3601.606×GREEN
+9.944×COR(SWIR1)− 695.210×OSAVI− 196.861×VAR(VRE2)

+98.126×CONT(SWIR1)

 (8)

The coniferous forest inversion equation is as follows.

Bc = 10×
[

183.909− 473.034× SWIR1− 0.016× SR3− 0.232×DEM
+0.299×GI + 14.747×COR(VRE2)

]
(9)
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The results obtained from the biomass measurements of the study area by the above
inverse equations are shown in Table 4.

Table 4. The biomass calculation results of the existing inversion models in Chongli District.

Classes Maximum Biomass
(kg/m2)

Minimum Biomass
(kg/m2)

Average Biomass
(kg/m2)

shrub 523.73 −1.71 275.75
coniferous forest −655.36 −139,715.28 −62,239.59
broadleaf forest 2830.66 −583,657.11 −167,978.80

Based on the table provided, it is evident that the biomass data obtained from the
aforementioned model includes negative numbers. This outcome clearly deviates from
the typical pattern of biomass values, leading to the conclusion that the biomass inversion
model is invalid. Therefore, it is not advisable to directly apply this inversion model for
biomass calculation in the Chongli area.

3.2.2. Construction of a Biomass Inversion Model

Stepwise Regression (SR) is a multivariate linear model that follows a specific con-
struction method. It involves the iterative addition or removal of variables based on their
significance in the equations, using forward, backward, and stepwise approaches. The
model is constructed by evaluating the changes in equation significance and incorporating
or eliminating variables accordingly.

The stepwise regression model was formulated utilizing the data acquired from the
Class II survey of forest resources in the Chongli District. In this survey, 100 sample points
were randomly selected from each vegetation type, and any invalid sample points were
excluded. The construction of the inversion model involved using the initial 80% of the
sample points, while the biomass of each vegetation type was directly calculated using the
respective biomass model and a specific formula. The remaining 20% of the sample points
were reserved for evaluating the inversion model. The model employed for calculating the
biomass of the initial 80% of the sample points can be represented as shown in Table 5.

The biomass per unit (or per unit area) of the plants calculated above can be further
estimated using the average biomass per image WX using the following equation.

The formula for broadleaf forests versus coniferous forests is as follows.

WX = 100× ρ

A∑ Wi, i = S, B, L, R, T1 (10)

where ρ is the vegetation density (plants per acre), A is the conversion factor, here,
A = 666.67, and Wi is the biomass of each part of the vegetation.

The formula for shrubland is as follows.

WX = 100×WT2 (11)

where WT2 is the whole plant biomass of a typical shrub.
The above sample points were subjected to regression modeling using Both-SRA and

R2 was used as an evaluation of the fitting results, which are shown in the following Table 6.
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Table 5. Biomass model of typical tree species in Chongli District.

Species Biomass Model Correlation Coefficient

Chinese cypress

Ws = 0.0573×
(

D2 ×H
)0.8657 0.97

WB = 0.0043×
(

D2 ×H
)1.1085 0.89

WL = 0.0038×
(

D2 ×H
)1.0385 0.84

WR = 0.0485×
(

D2 ×H
)0.6886 0.80

Cunninghamia (taxus)

Ws = 0.0146×
(

D2 ×H
)0.9835 0.993

WB = 0.0243×
(

D2 ×H
)0.7359 0.993

WL = 0.0949×
(

D2 ×H
)0.4795 0.982

WR = 0.0102×
(

D2 ×H
)0.8745 0.975

poplar tree

Ws = 0.006×
(

D2 ×H
)1.098 0.995

WB = 0.001×
(

D2 ×H
)1.157 0.984

WL = 0.012×
(

D2 ×H
)0.685 0.955

WR = 0.083×
(

D2 ×H
)0.636 0.915

larch tree (Pinus larix)

Ws = exp
(
− 2.8319 + 0.8379× ln

(
D2 ×H

)
) 0.9996

WB = exp
(
− 3.9021 + 0.8822× ln

(
D2 ×H

)
) 0.9015

WL = exp
(
− 4.0174 + 0.7659× ln

(
D2 ×H

)
) 0.9007

WR = exp
(
− 3.6497 + 0.8247× ln

(
D2 ×H

)
) 0.9994

Other hard broad WT1 = 0.07112×
(
D2 ×H

)0.910358078 /
Other typical shrubs WT2 = 0.157759×

(
Vc
)0.881 0.932

where D is the diameter at breast height, H is the tree height, Vc is the volume of plant crown per unit area, and
Ws, WB, WL, WR, WT1, and WT2 are the trunk biomass, branch biomass, leaf biomass, below-ground biomass,
above-ground biomass, and whole-plant biomass, respectively.

Table 6. Stepwise regression model fitting results.

Classes R2 Independent Variable Coefficient

shrub 0.811

constant −2.014
Cont(Red) 0.517

SR2 6.029
Mean(SWIR2) 2.465
Mean(Green) −0.610
Cor(N_NIR) 0.001
Cor(VRE3) 0.001

Mean(N_NIR) 0.133
Sec(SWIR2) 1.258

broadleaf forest 0.356

constant 220.571
Entr(VRE2) 89.329

WV −0.087
Sec(VRE1) 213.875

coniferous forest 0.223 constant −414.570

The inverse equation for shrubland biomass is as follows.

BS =

 −2.014 + 0.517×Cont(Red) + 6.029× SR2
+2.456×Mean(SWIR2)− 0.610×Mean(Green) + 0.001×Cor(NNIR)
+0.001×Cor(VRE3) + 0.133×Mean(NNIR) + 1.258× Sec(SWIR2)

 (12)

The broadleaf forest biomass inverse equation is as follows.

BB = 220.571 + 89.329× Entr(VRE2)− 0.087×WV + 213.875× Sec(VRE1) (13)
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The inverse equation for coniferous forest biomass is as follows:

BC = −414.570 + 406.537× Entr(Green)− 123.457×Var(CA) (14)

Combining the vegetation species obtained from the previous classification, the
biomass inversion equation for any image element in the study area is as follows.

B =


Bs, low wood

BB, broad− leaved forest
BC, coniferous forest

0, other

(15)

4. Results

For the three vegetation types, the accuracy of the inversion model was evaluated by
the coefficient of determination R2

yz, the root mean square error (RMSEyz), and the mean
relative error (MRE) using the last 20% of the data. The final evaluation results are shown
in Figure 5 and Table 7.
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Table 7. Inversion accuracy of different types of vegetation.

Classes R2
yz RMSEyz MRE

shrub 0.28 1.20 16.0%
broadleaf forest 0.49 139.13 42.8%
coniferous forest 0.14 315.63 65.0%

Based on Figure 5 and Table 7, it is evident that the multiple linear regression model
constructed using the stepwise approach exhibits a high level of accuracy when estimating
the biomass of broadleaf forests. However, it demonstrates poor estimation capabilities for
both broadleaf and coniferous forests. Moreover, the model tends to underestimate biomass
in high-biomass woodlands and overestimate it in low-biomass woodlands. In general,
the relationship between remote sensing images, texture characteristics, and other data
established by the multiple linear regression model does not achieve a particularly precise
estimation of biomass. This discrepancy may arise from the inherent challenge faced by the
multiple linear regression model in capturing the nonlinear relationship between biomass
and these variables, which aligns with the findings of previous studies [45].

5. Discussion

Vegetation classification refers to the categorization of plant species and their distribu-
tion in a specific area. Different types of vegetation have varying characteristics, including
plant density, moisture content, and flammability. These classifications are typically based
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on factors like plant species, growth form (e.g., grass, shrub, tree), and ecological character-
istics. Vegetation classification is fundamental to understanding the potential fuel sources
for wildfires [46].

Biomass represents the total mass of living or dead organic material in a specific
ecosystem. In the context of wildfires, the biomass of vegetation serves as the primary fuel
for the fire [47]. The amount and type of biomass in an area directly impacts the intensity
and spread of wildfires. Denser and more abundant vegetation often results in higher
biomass, which can lead to more intense and destructive wildfires when ignited.

Vegetation remote sensing classification and biomass estimation play a vital role
in the development of forest fire prevention projects and the sustainable management
of forest resources [48]. This study focuses on conducting comprehensive research on
vegetation remote sensing classification and biomass inversion in the Chongli District of
Zhangjiakou City.

The results demonstrate that utilizing the K-Means unsupervised classification method,
based on Sentinel-2B satellite data, enables the initial categorization of vegetation in the
Chongli area into shrub forests, broad-leaf forests, and coniferous forests. The accuracy of
classification is higher for shrub forests and broad-leaf forests, while it is relatively lower
for coniferous forests. Consequently, the K-Means algorithm can be applied to achieve a
preliminary classification of shrub forests and broadleaf forests in Chongli.

In the biomass inversion study of the three vegetation types, it is observed that
vegetation biomass shows a strong correlation with the texture characteristics of remote
sensing images. However, the correlation with original band data, vegetation-related band
indices, and topographic factors is not as pronounced. During the accuracy test of the
inversion model, all three vegetation types tend to be underestimated in high-biomass
forests and overestimated in low-biomass forests, leading to substantial errors in biomass
estimation for a small number of samples. However, further experiments indicate that, as
the estimated area expands, the discrepancy between the sum of biomass estimation and
the sum of biomass measurement decreases. The overall accuracy of the biomass model for
shrub, broad-leaf, and coniferous forests reaches 93.58%, 89.56%, and 97.53%, respectively,
meeting the requirements for forest surveys in the most ideal scenario. Nevertheless, future
research should concentrate on constructing more accurate linear or nonlinear biomass
estimation models using scientific approaches to adapt to smaller-scale biomass estimation.

It is noteworthy that this study did not consider the influence of climate, depression,
vegetation abundance, soil water content, and other factors on biomass in the study area
during the biomass inversion study. The selection of models was also confined to multiple
linear regression models, without incorporating nonlinear regression models. Therefore,
an important area of future research lies in integrating the aforementioned factors and
employing scientific and rational modeling techniques to construct a more precise model.

Nature displays a close correlation between biomass and fire, which is particularly
evident in forest ecosystems [49]. The interconnection between biomass and fire is complex
and influenced by various factors, holding significant implications for ecosystem stability
and sustainability. Fires can cause direct and severe harm to organisms, leading to mass
mortality [50]. For instance, forest fires can consume vegetation, destroy animal habitats,
and drive wildlife to the brink of extinction [47]. In extreme cases, high-intensity fires
can completely incinerate biomass, with ecosystems requiring an extensive period of
recovery [51]. On the other hand, moderate fires can foster the growth and renewal of
biomass. Within particular ecosystems, fire serves as a natural successional process that
eliminates accumulated dry matter and plant residues, thus facilitating opportunities
for growth [52]. Notably, certain plant seeds require the presence of fire to stimulate
germination [53], while specific plants and animals have developed selective adaptations
to take advantage of fire’s benefits.

Observing and monitoring changes in biomass can help predict fire risk [54]. For
example, if biomass remains high in an area for an extended period, the site may be at a
higher risk of fire. Conversely, if biomass continues to decline, it may indicate that the
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vegetation has been affected by disease, drought, or other unusual factors, reducing the
likelihood of fire spread.

The biomass inversion model presented in this study has the capacity to accurately
depict variations in biomass. Consequently, it facilitates the examination of pertinent
data for discerning the patterns of alterations in fire risk. Moreover, it enables swift
and effective spatial identification through remote sensing, thereby aiding scientists in
proactively managing biomass fluctuations to regulate fire severity. Additionally, this
model can serve as a foundation for developing standardized fire treatments rooted in
prioritized eco-efficiency.

6. Conclusions

This paper establishes a biomass inversion model to obtain information on vegetation
species distribution in the Chongli District, using remote sensing images and machine
learning. This is significant in guiding forest fire prevention projects and the rational
development of forest resources. The study classifies vegetation into three categories:
shrub forest, broadleaf forest, and coniferous forest, based on the K-Means unsupervised
classification method of Sentinel-2B satellite data. The classification accuracy of shrub and
broadleaf forests is higher than that of coniferous forests. The study finds that vegetation
biomass is highly correlated with texture features of remote sensing images, but not closely
related to original band data or the vegetation-related band index. The correlation with
the terrain factor is not significant either. In the accuracy test of the inversion model, the
difference between the sum of biomass estimation and measurement decreases with the
expansion of the estimated area. However, further research is needed to construct a more
accurate linear or nonlinear biomass estimation model. Future research should consider the
effects of climate, depressions, vegetation richness, and soil moisture content on biomass
in the study area. In conclusion, biomass and vegetation classification are critical to the
accuracy of fire behavior simulation, which is important for forest fire prevention and
control on a large scale.
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