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Abstract: In order to solve the problem of emergency decision-making with incomplete information
and deal with the accident information in different time series at the scenes of major accidents,
this paper proposes a method of sequential decision-making by utilizing the relevant knowledge
of D-S evidence theory and game theory. Firstly, we took an oil tank fire accident as an example
and sorted out historical cases and expert experiences to establish a logical relationship between
key accident scenes and accident scene symptoms in the accident. Meanwhile, we applied the
logistic regression analysis method to obtain the basic probability distribution of each key accident
scene in the oil tank fire, and on this basis, we constructed an evidence set of the fire. Secondly,
based on the D-S evidence theory, we effectively quantified the knowledge uncertainty and evidence
uncertainty, with the incomplete and insufficient information taken as an evidence system of the
development of key accident scenes to construct a situation prediction model of these accident scenes.
Thirdly, based on the game theory, we viewed emergency decision-makers and major accidents as
two sides of the game to compare and analyze accident states at different time points and solve the
contradiction between loss costs of decision-making and information collection costs. Therefore, this
paper has provided a solution for the optimization of accident schemes at different time stages, thus
realizing the sequential decision-making at the scenes of major accidents. Furthermore, we combined
the situation prediction model with sequential decision-making, with the basic steps described
below: (1) We drew up an initial action plan in the case of an extreme lack of information; then, we
(2) started to address the accident and constructed a framework of accident identification, (3) collected
and dealt with the continuously added evidence information with the evolution of the accident,
(4) calculated the confidence levels of key accident scenarios after evaluating different evidence and
then predicted the accident state in the next stage, and (5) calculated the profit–loss ratio between
the current decision-making scheme and the decision-making scheme of the next stage. Finally, we
(6) repeated steps (3) to (5) until the accident completely vanished. We verified the feasibility of the
proposed method with the explosion accident of the Zhangzhou P.X. project in Fujian on 6 April used
as an example. Based on the D-S evidence theory, this method employs approximate reasoning on
the incomplete and insufficient information obtained at the scenes of major accidents, thus realizing
the situation prediction of key scenes of these accidents. Additionally, this method uses the game
theory to solve the contradiction between decision-making loss costs and information collection costs,
thus optimizing the decision-making schemes at different time stages of major accidents.

Keywords: sequential decision-making; incomplete information; approximate reasoning; situation
prediction; D-S evidence theory

1. Introduction

In recent years, the rapid industrial development in China has brought about great
convenience to people’s lives. However, with the gradual progress of industrialization and
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urbanization, safety accidents have occurred frequently in various industries due to natural
reasons or human errors. Additionally, safety accidents have posed a great threat to the
national economic development and people lives, hindering the social development to a
certain extent. For example, on 21 March 2019, the explosion accident of Xiangshui Chemi-
cal Company, Yancheng, China, killed 78 people and seriously injured 76, with 640 people
hospitalized and a direct economic loss of 1.986 billion yuan. On 10 January 2021, ten
people were killed, and one person was reported missing in a major explosion accident
at Hushan Gold Mine in Qixia City, China, with a direct economic loss of 68.4733 million
yuan. On 18 April 2023, a sudden fire broke out in Changfeng Hospital, Fengtai Dis-
trict, Beijing, China, killing 29 people and resulting in an extremely bad social impact.
Nowadays, for the national emergency departments and academic circles, how to make
effective emergency decisions in case of major accidents, such as fires and explosions, and
minimize accident losses has always been an important problem that needs to be urgently
addressed. Therefore, scholars at home and abroad have conducted a lot of research on
the emergency decision-making problem of major accidents. In 2007, Fan [1] proposed the
concept of emergency decision-making and pointed out that emergency decision-making is
a dynamic process in which emergency commanders collect and sort out relevant informa-
tion in the first place and formulate emergency plans that are immediately implemented
and timely adjusted. Based on the systematic framework of emergency management of
information-based railway, Liu [2] introduced a regret theory, in which the relevance of
decision attributes and the rational characteristics of decision-makers have been considered,
and a multi-attribute group decision-making method involving regret avoidance has been
put forward. Liu et al. [3] proposed a fuzzy multi-attribute and synergy-based emergency
decision-making method for addressing network public opinion emergencies. To address
the problems of uncertain information and bounded rationality of decision-makers during
the emergency decision-making process, Li et al. [4] proposed a decision-making method
of emergency responses based on the prospect theory and probabilistic language terms. To
solve the problem of incomplete preference information of experts during their decision-
making processes, Xu et al. [5] studied the influences of public risk perception on the quality
of emergency responses at different stages. On the basis of the conventional group decision-
making process, Wu [6] combined the D-S evidence theory with factors such as expert
preference to study and analyze the group decision-making performances of earthquake
emergency rescues. From the perspective of prediction and group analysis, those studies
described above have primarily applied theoretical methods, such as optimization models,
to perform various research on the decision-making in emergency accidents, solving the
problem of fuzzy and random decision-making of emergency responses to a large extent.

After the occurrence of a major accident, its state will continuously change with time.
Therefore, emergency decision-making in a major accident is a dynamic process, with
the results of a previous decision directly influencing a later one. Therefore, dynamic
decision-making, also called sequential decision-making, has become a hot research topic
at home and abroad. For example, by combining the Bayesian method with the dynamic
game theory, Ding et al. [7] proposed a generation method for urban rainstorm emergency
plans and illustrated the method with an algorithmic example. Considering that the psy-
chological activities of decision-makers will constantly change under the influences of
decision-making factors and effects, Xu et al. [8,9] put forward a dynamic decision-making
method based on big data. Integrating fuzzy decision-making ideas with the sequential
game method, Song [10] constructed an emergency decision-making approach to smart city
disasters. Using a multi-dimensional scenario space method, Wang et al. [11] systematically
analyzed the scenario evolution mechanisms of environmental emergency accidents and
constructed an emergency decision-making model of environmental emergency accidents
based on case reasoning. By introducing the optimal decision transition into the Logic
Petri Net, Li et al. [12] constructed a game decision Petri net, which can better describe
such systematic variables as uncertain elements and utility functions, thus optimizing
the selection of a contingency plan. With the introduction of Bayesian theory, Liu [13]
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constructed a sequential game model of off-site emergency decision-making for nuclear
accidents, satisfying the requirements of generating disposal plans during the grouping
phase of emergency decision-making in nuclear accidents. Most existing studies on dy-
namic decision-making have focused on the influences of multi-target and multi-subject
coordination in emergency responses of dynamic decision-making, with a lack of research
on the selection and adjustment of decision-making during the sub-stage of the disposal
scheme [14,15]. Studies on accident evolution reasoning are isolated from studies on emer-
gency decision-making, and most scholars have even completely separated these two topics
in their studies. Meanwhile, few studies have considered the condition of incomplete infor-
mation in major accident responses, with a lack of an effective decision-making method
for major accidents with incomplete information. Therefore, in this paper, we have taken
the emergency decision-making of major accidents as the research object and applied the
situation prediction model based on the D-S evidence theory (Dempster–Shafer evidence
theory) to correct the subjective deviation of decision-makers with incomplete information.
Meanwhile, we used the idea of sequential game theory to compare the profit–loss ratios
of decision-making schemes at different practical stages, thus realizing the emergency
decision-making of major accidents with incomplete information.

2. Evidence Set Construction of Major Accidents
2.1. Definition of Key Accident Scenarios and Symptoms

Key accident scenarios refer to the on-site events or factors that have a decisive influ-
ence on the transformation, spread, derivation, coupling, and mutation mechanisms of
major accidents. These scenarios promote the state and stage transformation of major acci-
dents, interact with the composition of on-site emergency rescue forces, or play a leading
role in the objectives of emergency decision-making activities. Key accident scenarios are a
key factor that decision-makers need to focus on when setting decision-making objectives
and making decision-making plans at the scenes of major accidents, and an important part
and manifestation of major accidents themselves. Key accident scenario symptoms refer
to the specific events or states leading to the occurrences of key accident scenarios. There
is an internal relationship between accident scenario symptoms and accident scenarios.
Objectively, it is a certain logical relationship that can be easily discovered through the col-
lection of on-site information. Therefore, it can provide an important basis for approximate
reasoning of major accident scenes through enriched field information collection means,
sufficient key accident scenario symptoms acquired, and logical relationships between key
accident scenarios and key accident scenario symptoms explored.

2.2. Construction Methods of Major Accident Evidence Sets

In order to obtain the evidence sets of major accident scenarios, it is necessary to con-
struct the accident scenarios. The construction of accident scenarios refers to the processes
of extracting different scenario elements and constructing corresponding scenarios through
data induction, integration, statistics, and analysis. The technical route of major accident
scenario construction primarily contains the following three steps: The first step is to collect
and decompose data. In this step, a large number of major accident cases are collected and
analyzed, and these accidents are decomposed into many accident scenarios with their
basic data obtained. The second step is to evaluate and converge the data. In this step,
mining, cleaning, clustering, and absorbing of the massive amounts of data obtained are
performed by centering on major accidents and relying on professionals and methods. The
third step is to integrate and describe the data. In this step, through data collection and
appraisal of major accident scenarios, several most common accident scenarios are singled
out. That is, the scenario space of accidents. According to the approximate reasoning
method, key accident scenarios of major accidents can be identified through the study of
historical materials or interviews with experts in related fields. Then, key accident scenario
symptoms corresponding to each key accident scenario can be identified. Key accident
scenario symptoms refer to the direct accident information available to decision-makers
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at the scenes of major accidents. This accident information can reflect the characteristics
of accident evolution. With all possible key accident scenarios at the scenes of major acci-
dents and their corresponding key symptoms summarized, their logical relationships can
be constructed.

2.3. Construction of Accident Scenario Evidence Sets—Taking an Oil Tank Fire as an Example

With an oil tank fire taken as an example, through analysis of historical cases and
interviews with experts in related fields, this study has identified key accident scenarios of
major accidents, as well as scenario symptoms corresponding to each key accident scenario,
with logical relationships between major accident symptoms and key accident scenarios
constructed.

Figure 1 shows logical relationships between accident symptoms and key accident
scenarios of the oil tank fire accident.

Figure 1. Logical relationships between accident symptoms and key accident scenarios.

On the basis of the identified logical relationships between accident symptoms and
key accident scenarios, a scenario space was extracted as the dependent variable, and the
accident symptom corresponding to that scenario was taken as the independent variable.
Then, logistic regression analysis with binary variables [16] was performed in this study.
Table 1 shows the results of the logistic regression analysis using SPSS statistical software
(https://www.ibm.com/products/spss-statistics, accessed on 15 December 2023), with
flowing fire as the dependent variable, and pipeline leakage fire, oil tank deformation,
leakage of corrosive substances in the tank farm, and valve damage and close failure as
independent variables.

https://www.ibm.com/products/spss-statistics
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Table 1. Logistic regression analysis results, with flowing fire as the dependent variable.

Symptom Space B S.E. Wals df Sig Exp (B)

EXP (B)
95% C.I.

Lower
Limit

Upper
Limit

Pipeline leakage
fire 0.917 22,670.964 0 1 0.290 2.358 0

Oil tank
deformation 1.414 0.826 2.928 1 0.087 4.114 0.814 20.783

Leakage of
corrosive materials

in the tank farm
1.088 0.915 1.413 1 0.034 2.967 0.494 17.829

Valve damage and
close failure 0.006 0.911 0 1 0.045 1.006 0.169 5.999

Constant 19.157 22,670.964 0 1 0.999 208,919,956.9

In Table 1, B represents the regression coefficient, S.E. represents the standard error,
Wals represents the chi-square value, df represents the degrees of freedom, Sig represents
the significance value, and Exp (B) represents the odds ratio.

From Table 1, it can be seen that for the key accident scenario of oil tank deformation
causing a flowing fire, the calculated value of Exp (B) is 4.114, indicating that the probability
of oil tank deformation causing a flowing fire is 4.114 times that of an oil tank with no
deformation causing a flowing fire. Therefore, it can be concluded that the probability of oil
tank deformation causing a flowing fire has a value of 0.804. Similarly, it can be calculated
that the probability of corrosive substance leakage in the tank farm causing a flowing fire
has a value of 0.748, the probability of pipeline leakage fire causing a flowing fire has a
value of 0.702, and the probability of valve damage and close failure causing a flowing fire
has a value of 0.501. Through the above analysis, the probability of accident symptoms
corresponding to each key accident scenario was calculated and summarized, with the
completed oil tank fire evidence set listed in Table 2.

Table 2. Evidence set of the oil tank fire.

Accident Scenario
Space Scenario Symptom Space Sig Value Exp (B)

Value
Basic

Probability

Flowing fire (S1)

Pipeline leakage fire 0.29 2.358 0.702
Oil tank deformation 0.087 4.114 0.815

Leakage of corrosive materials
in the tank farm 0.034 2.967 0.748

Valve damage and close failure 0.045 1.006 0.501
Pipeline spewing fire

(S2)
Pipeline leakage fire 0.047 1.875 0.652

Valve damage and close failure 0.054 2.385 0.705
Hidden dead corner

fire
(S3)

Oil tank deformation 0.025 8.222 0.892
Chucking accident of the

floating plate 0.033 4.760 0.826

Explosive combustion
of adjacent tank (S4)

Fierce combustion, high flame
temperature, and strong

radiant heat
0.407 2.131 0.681

Difference between oil
temperature and explosion

temperature limit exceeds the
alarm value

0.069 6.292 0.863

Distances between adjacent
tanks are smaller than the

standard distance
0.079 3.171 0.760
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Table 2. Cont.

Accident Scenario
Space Scenario Symptom Space Sig Value Exp (B)

Value
Basic

Probability

Tank secondary
explosion (S5)

Fierce combustion, high flame
temperature, and strong

radiant heat
0.041 3.867 0.795

Pressure equipment under the
effects of flame and strong

radiation heat
0.046 2.529 0.717

Not favorable wind direction
for the on-site firefighting and

rescue activity
0.026 4.909 0.831

Tank rekindling (S6)

Difference between oil
temperature and explosion

temperature limit exceeds the
alarm value

0.195 3.415 0.773

The oil flame point is
relatively low 0.039 1.529 0.605

Not favorable wind direction
for the on-site firefighting and

rescue activity
0.042 1.199 0.528

Spreading toxic gas,
poisoning the

environment (S7)

Hazardous chemicals existing
in the tank farm 0.055 2.830 0.739

Not favorable wind direction
for the on-site firefighting and

rescue activity
0.058 3.427 0.774

3. Situation Predictions of Major Accidents
3.1. D-S Evidence Theory

D-S evidence theory [17] is a kind of uncertainty processing method with the core
content of uncertainty measurement that can effectively reflect uncertain events. Through the
reasoning and fusion of uncertainty, in this theory, uncertainty can be reduced, and decision
accuracy can be improved. No prior knowledge is required in this method and the uncertainty
problem can be resolved with interval estimation. Therefore, it can effectively solve the
problem of incomplete and uncertain information in major accident decision-making.

3.2. Situation Prediction Method Based on D-S Evidence Theory

The occurrence and development of a major accident is a systematic process consisting
of information from different periods. Information on the accident scenes during different
periods is often incomplete and insufficient. However, this information can reflect scenario
states of the accident at different stages from different aspects. That is, the accident scenario
symptoms. Through these symptoms, evidence can be discovered to judge accident states.
Among the evidence, the preliminary judgment made by the decision-maker on the accident
scene can be viewed as an evidence system, and some historical data, data obtained
with various technical means, expert knowledge, and empirical data can be included
in the evidence system, too. The D-S evidence combination rules can be used to fuse
the accident evidence and, therefore, the prediction results of accident situations can be
obtained. With more data information obtained and used as the basis for the next step in
situation prediction, the development trends of new accidents can be predicted. Therefore,
foundations can be laid for on-site commanders to plan in advance and make deployment
decisions so as to implement scientific and effective emergency decision-making. Figure 2
shows the model framework.
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Figure 2. Model framework of situation prediction based on the D-S evidence theory.

(1) Analysis of scenario and symptom space: Based on on-site conditions, possible
scenarios on the scenes of accidents are analyzed, primary disposal targets are identified,
and accident identification frameworks are constructed.

(2) Processing of evidence information: The basic probability distribution shown in
the evidence set is based on the analysis and summary of a large number of accident cases
and is obtained through a certain method. Its significance lies in the basic grasp of relevant
key accident scenarios. The scene of a major accident is complex and dynamic, and the
prediction and emergency decision-making in the field situation of a major accident is
itself an approximate reasoning with a probability sum not equal to 1. Therefore, when
receiving information on accident symptoms, on-site decision-makers need to assign a
value of confidence level to the symptom information itself. For example, when a fire
breaks out in a storage tank in a chemical industry park, the accident symptom information
“pipeline leakage fire” is obtained through on-site reconnaissance, but the decision-maker
may not be able to completely determine the real combustion state of the pipeline. Under
such a circumstance, the confidence level of the decision-maker on the on-site situation
can be defined as Pz. Meanwhile, when receiving the information of the key scenario
symptom of “pipeline leakage fire”, the decision-maker can match the information with
key accident scenarios provided in the evidence set. Under the assumption that these
matched accident scenarios are flowing fire (S1) and pipeline spewing fire (S2), the basic
probabilities of these two key accident scenarios, which are defined as P (S1) and P (S2), can
be obtained. However, due to uncertain on-site situations, it is necessary to assign values
to the probabilities of no occurrences of these two accident scenarios, which are P′ (S1) and
P

′
(S2). Thus, a piece of evidence information has been processed.

(3) Obtaining new accident evidence: Step (2) is repeated to process the newly obtained
evidence.

(4) Evidence fusion: On the basis of combination rules of evidence theory, the syn-
thesized reliability function and plausibility function (F.B. (Em) and F.P. (Em)) of each key
accident scenario with different evidence can be obtained.

For an identification framework A, the synthesis rule of two or more mass functions
can be described as follows:

(m1 ⊕ m2 ⊕ · · · ⊕ mn)(A) =
1

1 − K ∑A1∩···∩···An
m1(A1)m2(A2) · · ·mn(An) (1)
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where:
K = ∑A1∩···∩An

m1(A1)m2(A2) · · ·mn(An) (2)

Its reliability, FB (A), is defined as the sum of all basic probabilities corresponding to
all subsets in the framework A. That is,

FB : 2Ω → [0, 1]
FB(A) = ∑

B≤A
M(B), A ⊆ Ω (3)

The reliability function, FB (bel function), also called the lower bound function, reflects
all the confidence levels of A. The plausibility function, FP, also called the upper bound func-
tion, reflects all the non-false confidence levels of A. That is, the uncertainty measurement
of A. The reliability and plausibility functions present the following relationship:

FP(A) ≥ FB(A), A ⊆ Ω (4)

The uncertainty of A can be expressed with the following formula:

µ(A) = FP(A)− FB(A) (5)

(5) Situation prediction and emergency decision-making: A confidence interval is used
to compare the threshold values set by the decision-maker. Generally, threshold values
are determined by experts in the field based on real situations of the scenes to realize the
situation prediction of key accident scenarios.

4. Sequential Decision-Making in Major Accidents

Field situations of major accidents change with time. Therefore, decision-makers
should adjust their decisions upon the evolution of accidents. This indicates that on-site
decision-making of major accidents belongs to the typical type of sequential decision-
making [18]. Based on the situation prediction model constructed with the D-S evidence
theory, decision-makers can integrate all kinds of information obtained from the scenes of
major accidents and predict and analyze the development trends of accidents. Therefore,
they can predict possible key accident scenarios and symptoms, thus formulating their
proper disposal plans. However, during on-site decision-making processes of major acci-
dents, it is impossible for decision-makers to determine the types of accidents immediately.
They can only speculate on the accident types based on the on-site situations and take action
accordingly. At the same time, the evolution patterns of major accidents will sustain before
decision-makers act. Therefore, major accidents will continue to evolve under the effects of
measures taken by decision-makers. Under such a circumstance, major accidents can be
approximately viewed as a participating party with a game “ability”. Accordingly, game
theory was introduced in this paper to analyze the sequential decision-making processes of
major accidents.

4.1. Sequential Decision-Making

Sequential decision-making is a type of decision-making with uncertain relevant pa-
rameters varying with time. During the process of sequential decision-making, a decision-
maker should consider as many problems that would occur as possible [19,20] and for-
mulate corresponding countermeasures in a timely manner. The development of major
accident scenarios follows the evolution patterns of accidents themselves and, at the same
time, is determined by the disposal plans made by decision-makers. With the development
of accident situations, decision-makers should comprehensively consider various factors
and make decisions at different stages of time series. On-site decision-making in major
accidents bears the following characteristics:

(1) The systems being studied are dynamic. That is, the states of these systems vary
with time and can be observed periodically (or continuously).
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(2) Decision-making schemes are generated within certain time series. Due to insuf-
ficient information obtained, the implementation scheme adopted at an early stage of an
accident will be quite unreliable. However, if more time is spent on on-site data collection,
the scale of the accident could be expanded, and the optimal accident disposal time could
be missed.

(3) The possible system state in the next step (or in the future) is random or uncertain.
Subsequent situations that could occur in accident scenes can only be predicted scientifically
on the basis of the on-site information collected, and in such a case, the state probability of
each key accident scenario can be calculated.

4.2. Generation Method of Sequential Decision-Making Schemes

The conventional selection method of decision-making schemes can be described
as follows: For a specific accident scenario, there could be different alternative schemes
at the same time. By comparing the possible consequences of these alternative schemes,
a decision-maker can select the scheme that causes a minimum loss at that moment or
is more likely to make the accident evolve toward the most favorable direction. Such
a process is called scheme optimization. However, on-site information available at the
initial stages of major accidents is extremely scarce, and only with the progress of time
can more information be obtained. Therefore, under such a circumstance, there will be a
contradiction, as shown in Figure 3.

Figure 3. Sequential decision-making paradox.

It can be seen that at the T1 moment, under a specific scenario of the accident, the
information available to the decision-maker is H1 and the loss caused at this moment is
M1. In such a case, after comprehensively analyzing field situations, the decision-maker
adopts an optimal scheme of P1. At the T2 moment, the accident evolves into another
specific scenario, the information available to the decision maker is H2, and the loss caused
at this moment is M2. After comprehensively analyzing field situations, the decision-maker
adopts an optimal scheme of P2 at this moment. Between these two moments, the amount
of information available at moment T1 is less, with a smaller loss caused at that moment. On
the contrary, more information is available at moment T2. However, more losses are caused
at moment T2, compared to the losses caused at moment T1. Therefore, it is necessary
for the decision-maker to decide at that moment whether he or she should spend more
time to collect information for developing a more scientific disposal scheme. In order to
solve the contradiction mentioned above, it is necessary to introduce a decision-making
loss function in the selection of an optimal solution scheme. Assume that at a certain
moment, there are J key accident scenarios in a major accident, the jth scenario is denoted
as Sj (j = 1, 2, . . ., J), and the corresponding optimal solution scheme is Pi (i = 1, 2, . . ., J).
The inverse number of the decision loss cost (Bj) corresponding to the solution scheme
adopted by the decision-maker is used to represent the utility function (Uji) of the scheme.
That is,

Uji = −
{

Bji = 0, j = i
Bji ̸= 0, j ̸= i

(6)
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The cost of information collection at each stage is recorded as Ck, and the purpose of
collecting accident information is to predict the probabilities of various possible states of
accidents. That is, to test whether the decision-maker has adopted a corresponding optimal
emergency solution scheme under a true accident state at a specific stage. The decision
loss cost of sequential decision-making is defined as the difference between the benefit
of the selected scheme and the benefit of the optimal scheme under the same state. With
this definition, the effectiveness of different schemes can be determined. Suppose that
after k times of information collection, the probabilities of all states being true are µ(T1|hk ),
µ(T2|hk ), . . ., and µ(Tj|hk ). Under such a circumstance, the decision loss function L(hk, Pi)
using the scheme Pi can be expressed as:

L(hk, Pi) =
J

∑
j=1

µ(Tj|hk )Bji (7)

By calculating the decision loss functions of different schemes under a certain state,
the decision-maker can identify the scheme Pm

i with the smallest decision loss. With
the scheme with the minimum decision loss at a certain stage identified, the decision-
maker can compare the cost of information collection and the calculated result of the
anticipated decision loss function during the next stage to determine whether it is necessary
to continue to collect information at the next stage. The anticipated decision loss function,
namely, the next anticipated decision loss function after k times of information collection,
is denoted as Le(hk, Pi), and this anticipated decision loss function can also be calculated
using Formula (7).

With the continuous collection of information, the calculated result of the current
decision loss function is compared with the calculated result of the anticipated decision
loss function at the next stage and the cost of continuous information collection. Once the
following condition is satisfied, the information collection should be stopped:

L(hk, Pi) ≤ Le(hk, Pi) + Ck+1 (8)

Through the calculation of information collection costs and decision loss functions, it
can be decided whether to collect information continuously or directly adopt the current
solution scheme that is matched. Therefore, such a dilemma that decisions made too early
will result in decision errors and decisions made too late will bring about the loss of decision
opportunity can be solved. Thus, spatiotemporal solution schemes can be optimized.

5. Methods of On-Site Emergency Decision-Making in Major Accidents

During the handling processes of major accidents, information is incomplete and
uncertain. In conventional sequential decision-making methods, expert judgment is heavily
relied on. Therefore, once experts make the wrong judgment, there could be poor accident
handling effects or even deteriorated on-site situations. In view of this, this paper proposes
an on-site emergency decision-making method for major accidents with the situation
prediction model based on the D-S evidence theory combined with the method of sequential
decision-making. With this method, evolution directions of major accidents with incomplete
information can be predicted, and possible accident states at the next stage can be judged.
Therefore, the solution schemes can be better determined.

5.1. Analysis of On-Site Game Processes of Major Accidents

Bayesian theory is generally used in probability calculations in the processes of se-
quential games [21]. The general idea applied in sequential decision-making of major
accidents using the Bayesian theory can be briefly described as follows: At the early stages
of major accidents, information on the accident scenes is complicated, with no effective
information available. Therefore, decision-makers must judge the accident states at the
current stage based on historical experiences, thus obtaining prior probabilities of these
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accident states. With the development and evolution of accidents, improved accident
information will be gradually collected, and decision-makers will modify the conditional
accident probabilities and obtain the posterior probabilities of accident states. With major
accident and emergency decision-makers taken as the two sides of the game, the game
process of emergency decision-making can be described as follows: Let t0 be the occurrence
moment of a major accident, and t1 and t2 be the first and the second decision-making
moments of the emergency decision-makers, respectively.

(1) At the t0 moment, the initial state of the major accident is settled with a “natural”
selection.

(2) During the period of t0–t1, the condition of the major accident further deteriorates,
with property losses and possible casualties caused.

(3) At the t1 moment, based on the preliminary information obtained, the emergency
decision-maker determines the prior probability of the major accident state at this moment.
At the same time, an emergency expert group is convened for the major accident. Based
on the information collected, the expert group judges and determines the conditional
probability of each key accident scenario so as to calculate the posterior probabilities of
accident states. Following the principle of maximum expected utility, the expert group
chooses the most suitable emergency scheme for immediate implementation.

(4) During the period of t1–t2, under the joint effect of the disposal scheme and
evolution rule, the major accident will evolve into a new state.

(5) Similarly, at the t2 moment, the emergency decision-maker evaluates the accident
state at the current stage. Through the collection and analysis of accident information, the
decision-maker uses the posterior probability of the accident state at the previous stage
as the prior probability of the accident state at the current stage to calculate the posterior
probability of the current accident state, and then selects an appropriate rescue scheme for
implementation.

(6) Steps (4) and (5) are repeated until the major accident is completely under control
and its impacts are significantly alleviated.

The on-site sequential game flow of a major accident under a conventional mode is
shown in Figure 4.

Figure 4. Game flow of sequential decision-making of a major accident.

5.2. Emergency Decision-Making Processes of Major Accidents

In order to effectively avoid the subjective biases of expert groups and provide more
accurate state information for decision-makers, a situation prediction model based on
the D-S evidence theory is introduced in this paper. The aim is to analyze the next-stage
key accident scenarios of major accidents more accurately through scenario symptoms
to predict the accident states at the next stage. Therefore, through the calculations of
decision-making profit and loss functions, different time and space solution schemes can
be better determined. The basic idea is as follows:

(1) At the initial moment, the decision-maker is informed of the occurrence of a major
accident, and at this very moment, the decision-maker needs to make a judgment
with almost no information. Additionally, the decision-maker needs to extract useful
information from a brief description of the accident state, compare historical cases,
assume the on-site accident situation, and formulate a solution scheme. Assume that
there occurs a chemical accident. Firstly, according to the accident evolution situation,
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it is assumed that the state of the accident scene could be one of four states, namely
T1, T2, T3, and T4, which are briefly described as follows:

T1: A major danger is about to happen on the scene,
T2: Temporarily, there is no major danger risk at the scene of the accident,
T3: The accident state tends to stabilize,
T4: The accident gradually vanishes.

Four disposal schemes corresponding to these four possible accident states mentioned
above are designated. Denoted as P1, P2, P3, and P4, these four schemes are briefly described
as follows:

P1: Continuously observe the state of the disaster and prevent casualties.
P2: Take all necessary measures to control the accident in a stable state.
P3: Launch an all-out attack to make the accident gradually vanish.
P4: Go to the accident site to deal with the accident.

(2) With data obtained from the accident database or historical cases, a profit and loss
matrix and an accident loss probability distribution table should be created. Assume
that the cost of information collection at each stage is one unit (Ck = 1, k = 1, 2, . . ., N),
and the sample spaces represent the degrees of losses caused by accident, namely,
I1 (particularly serious), I2 (serious), I3 (relatively serious), and I4 (general serious).
Based on the field situation, the accident states and the benefits and losses caused by
the corresponding solution schemes are listed in Table 3.

Table 3. Profit and loss matrix.

Accident State

T1 T2 T3 T4

Benefit Loss Benefit Loss Benefit Loss Benefit Loss

Solution
scheme

P1 100 0 −50 150 −100 200 −150 250
P2 −200 300 100 0 −50 150 −100 200
P3 −300 400 −200 300 100 0 −50 150
P4 −400 500 −300 400 −200 300 100 0

The most effective disposal measure corresponding to the specific accident state needs
to be used in the field of a major accident. For example, under an accident state of T1, if
a firefighting attack instead of emergency avoidance is carried out, huge losses could be
caused. Table 4 shows the loss probabilities of different schemes corresponding to different
accident states developed based on historical data [22–24].

Table 4. Probability distribution of accident losses.

T1 T2 T3 T4

I1 0.6 0.2 0.15 0.05
I2 0.2 0.6 0.2 0.15
I3 0.15 0.2 0.6 0.2
I4 0.05 0.15 0.2 0.6

(3) A first round of decision-making is initiated, and decision-making losses of those
four schemes of P1, P2, P3, and P4 corresponding to four accident states of T1, T2,
T3, and T4 are calculated, respectively. By comparing these decision-making losses
with calculated results of decision-making loss functions, the decision-maker needs
to decide when and which solution scheme should be adopted and simultaneously
start the first-round information collection. During the information collection process,
with sufficient key accident scenarios and accident scenario symptoms obtained,
the decision-maker needs to judge the current accident state and use the situation
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prediction model based on the D-S evidence theory to predict the next-stage accident
state. Based on the situation prediction results, the decision-maker should calculate
the anticipated decision loss at the next stage and compare the calculated result of the
decision loss function at the current stage with the calculated result of the anticipated
decision loss function to make the emergency decision for the current stage.

(4) Step (3) should be repeated until the accident completely vanishes.
(5) Application example: The emergency decision-making of key accident scenarios of the

“P.X. project explosion accident in Zhangzhou, China, on 6 April” was taken as an example.

At 18:54 on 6 April 2015, due to welding defects, an adsorption and separation device
broke in the Gu Lei Petrochemical Tenglong Aromatics Co., Ltd. in Zhangzhou City, China,
resulting in a fire in the adsorption and separation device and three storage tanks in the
intermediate tank farm. After the fire broke out, all department levels quickly started the
contingency plan and coordinated the accident disposal on the scene. At 16:40 on 7 April,
the open flame was extinguished for the first time. After that time, fires were rekindled
several times. On 15 April, after firefighting techniques were applied and residual liquids
were transferred and disposed of, the on-site danger was eliminated, and the firefighting
and rescue work was accomplished.

After receiving the alarm, the Gu Lei Brigade of Zhangzhou detachment quickly
responded and dispatched ten vehicles and sixty firefighters to the scene and reported
the disaster situation to the detachment, the headquarters, the provincial public security
department, and the command center of the department and bureau, step-by-step. At the
same time, the command center of the headquarters also informed the duty room of the
provincial government about the situation.

After the rescue force received the alarm and before it arrived at the accident scene:
When receiving the alarm, normally decision-makers do not have any information. Based
on historical cases, it can be assumed that the accident at that moment could be at one of
four stages, namely T1, T2, T3, and T4, which are described as follows:

T1: The accident is at a stage of violent growth, and there could occur a major danger.
Thus, emergency danger avoidance measures should be employed.

T2: The accident is in a serious state, but there is no risk of major danger. Therefore,
relevant measures should be taken to control the accident in a stable state as much as possible.

T3: The accident is in a relatively stable state, and certain measures can be taken to
reduce the impacts of the accident.

T4: The accident state is less threatening. Therefore, the rescue force can go deep into
the accident site for disposal.

At this moment, the decision-maker cannot determine the actual state of the accident.
Therefore, it is assumed that each accident state has an equal probability. That is, µ(T1|φ) = 0.25,
µ(T2|φ ) = 0.25, µ(T3|φ ) = 0.25, and µ(T4|φ ) = 0.25.

Four disposal schemes corresponding to the four possible accident states are desig-
nated. These four schemes, namely P1, P2, P3, and P4, are briefly described as follows:

P1: After arriving at the scene, decision-makers judge the safe distance, continuously
observe the disaster situation by means of remote investigation, and prepare to deal with
any major danger that could occur.

P2: After arriving at the scene, decision-makers control the accident in a stable state
through measures of setting up positions and extinguishing fires with cooling.

P3: After arriving at the scene, decision-makers put all forces into the firefighting and
rescue activity, thus making the accident gradually vanish.

P4: After analyzing the on-site situation, decision-makers send the rescue force deep
into the site to handle the accident with techniques of danger elimination and methods of
fire extinguishing from the top.

Therefore, the decision-making loss function of each scheme can be calculated
as follows:

Scheme P1: L(h0, P1) = B11µ(T1|φ ) + B12µ(T1|φ ) + B13µ(T1|φ ) + B14µ(T1|φ ) = 0 × 0.25 +
150 × 0.25 + 200 × 0.25 + 250 × 0.25 = 150
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Scheme P2: L(h0, P2) = 162
Scheme P3: L(h0, P3) = 212.5
Scheme P4: L(h0, P4) = 300

It can be seen that scheme P1 is the optimal scheme for the moment in question. That
is, after arriving at the scene, decision-makers should judge the safe distance, continuously
observe the disaster situation by means of remote investigation, and prepare to deal with
any major danger that could occur. Suppose that after arriving at the accident scene, the
rescue force starts the first round of information collection (h1). Additionally, suppose that
the loss incurred in each accident state has an equal probability. That is, µ(I1) = µ(I2) =
µ(I3) = µ(I4) = 0.25. Then, the value of the expected posterior probability of each accident
state can be calculated as follows: µ(T1|h1 ) = 0.261, µ(T2|h1 ) = 0.241, µ(T3|h1 ) = 0.240, and
µ(T4|h1 ) = 0.258. Therefore, the expected decision-making loss functions of those four
solution schemes applied at that moment can be calculated as follows:

Scheme P1:Le(h1, P1) = B11µe(T1|h1 ) + B12µ(T2|h1 ) + B13µ(T3|h1 ) + B14µ(T4|h1 ) = 148.65
Scheme P2: Le(h1, P2) = 165.9
Scheme P3: Le(h1, P3) = 215.4
Scheme P4: Le(h1, P4) = 298.9
Additionally, Le(h0, Pi) = Pm

i = 148.65.

A comparison of these calculated values of loss functions shows that the loss incurred
with the direct implementation of scheme P1 by emergency decision-makers without
information collection is higher than that incurred with the implementation of scheme
P1 by decision-makers after one round of information collection. That is, with a lack of
information, decision-makers could make less precise decisions. Therefore, decision-makers
should continue to collect information.

The first arrival of the disposal force at the accident scene: At 19:03 on 6 April,
based on the on-site investigation, the precinct brigade found that the adsorption and
separation device of aromatic hydrocarbon had exploded, and the No. 607, No. 608, and
No. 610 tanks in the intermediate tank farm on the west side of the device cracked and
burned violently. That is, the first-round information collection obtained a result of I2 (the
information collected indicated an accident state of T2 at the current stage). Therefore, the
values of the actual posterior probabilities at this moment can be calculated as follows:
µ(T1|I2 ) = 0.18, µ(T2|I2 ) = 0.54, µ(T3|I2 ) = 0.14, and µ(T4|I2 ) = 0.14. Thus, the calculated
values of decision-making loss functions of those four solution schemes applied at this
moment are as follows: 144 (Scheme P1), 103 (Scheme P2), 255 (Scheme P3), and 348
(Scheme P4). Suppose that a second-round information collection (h1) was performed,
with the following values of expected posterior probabilities obtained: µ(T2|h2 ) = 0.236,
µ(T2|h2 ) = 0.272, µ(T3|h2 ) = 0.254, and µ(T4|h2 ) = 0.238. Under such a circumstance, the
expected decision-making loss function obtains a minimum value of 175.2. This indicates
that it is not necessary for decision-makers to collect information continuously at this
moment. Instead, decision-makers should employ the scheme P2 directly. That is, after
arriving at the accident scene, decision-makers should control the accident in a stable state
through such measures as setting up positions and extinguishing fires with cooling.

Stalemate stage of accident disposal: With the continuous evolution of the on-site
situation of the oil tank fire and the development of firefighting and rescue operations, as
well as the deepening of investigation work, firefighters and rescuers can obtain multiple
accident symptoms to form an accident symptom space. Therefore, the situation prediction
model based on the D-S evidence theory can be used by decision-makers to predict the
evolution patterns of major accidents and guide their decision-making in the next step. The
time series of key accident scenario symptoms in the field are listed in Table 5.
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Table 5. Time series of key accident scenario symptoms.

Time Key Accident Scenario Symptoms

19:03, 6 April

The adsorption and separation device of aromatic hydrocarbon
exploded, and the No. 607, No. 608, and No. 610 tanks cracked
and burned fiercely, with a high flame temperature and strong

radiation heat. The explosive combustion led to the leakage fires
of some pipelines.

23:40, 6 April A fire broke out in the main power station of the coal-fired power
generation facility in the south of the factory.

02:50, 7 April The rubber sealing ring on top of the No. 102 external floating
roof tank caught fire.

09:50, 7 April The fire of the No. 607 tank was extinguished, and at about 10:25,
the fire of the No. 608 tank was put out.

11:30, 7 April The No. 608 oil tank was rekindled.

17:05, 7 April

The open flame of the No. 610 burning tank was completely
extinguished. By 19:00, the wall temperatures of the No. 607, No.
608, and No. 610 tanks were 21 ◦C, 24 ◦C, and 24 ◦C, respectively.

The top temperature of the No. 610 tank was 60 ◦C, and the
temperature of each tank dropped rapidly.

19:40, 7 April The oil surface of the No. 610 tank was rekindled.

Based on the time series of on-site key accident scenario symptoms, key accident
scenarios were analyzed as follows:

At 19:03 on 6 April, the adsorption and separation device exploded and burned, and
the No. 607, No. 608, and No. 610 oil tanks burned violently, with a high flame temperature
and strong radiation heat. The explosive combustion resulted in leakage fires of some
pipelines, and the wind on the accident scene turned from a northerly wind to an easterly
wind, with a speed of category two and a gust of category four. Based on this field situation,
the evidence of a “pipeline leakage fire” has been confirmed. Therefore, its confidence
level was assigned with a value of 1. However, with the dangerous on-site situation, as for
the evidence of “fierce combustion, high flame temperature, and strong radiation heat”,
it was not possible for decision-makers to go deep into the tank farm to obtain accurate
data. Therefore, its confidence level was assigned with a value of 0.4. From Table 2, it can
be seen that key accident scenarios, which correspond to the evidence of “pipeline leakage
fire” and “fierce combustion, high flame temperature, and strong radiation heat” and could
occur on the scene of the accident, were as follows: “flowing fire” (S1), “pipeline spewing
fire” (S2), “explosive combustion of the adjacent tank” (S4), and “tank secondary explosion”
(S5). Based on the field situation, the key accident scenario of “flowing fire” (S1) was less
likely to occur at the accident scene because the adsorption and separation device had
burned steadily. Thus, the reverse probability of this scenario was assigned with a value
of 0.2. Similarly, the reverse probabilities of key accident scenarios of “pipeline spewing
fire”, “explosive combustion of the adjacent tank”, and “tank secondary explosion” were
assigned with values of 0.1, 0.1, and 0.2, respectively.

With the synthesis calculation in Formulas (1)–(5) based on the D-S evidence theory,
the following calculated values of probability distribution functions of all key accident
scenarios mentioned above were obtained: S1 (0.702, 0.80), S2 (0.652, 0.90), S4 (0.1362, 0.980),
and S5 (0.0795, 0.980).

Through probability distribution functions, the probabilities of four key accident
scenarios that may occur on the scene of the accident were obtained. The calculated value of
the probability distribution function of scenario S1, (0.702, 0.80), indicates that the practical
significance of this function lies in the fact that the decision-maker believes S1 will occur
with the lowest certainty level of 0.702 and the highest certainty level of 0.80. According
to the situation prediction model constructed in this paper, decision-making principles
themselves will also affect the results of decision-making. That is, in terms of judged
thresholds of probability functions, active decision-makers have a high threshold, while



Fire 2024, 7, 49 16 of 19

conservative decision-makers have a low threshold. Due to unclear accident situations
and an insufficient rescue force, it is assumed that decision-makers at accident scenes are
relatively conservative. Therefore, in this paper, the threshold was set at 0.7. Figure 5 shows
the constructed coordinate axis of threshold determination.

Figure 5. Coordinate axis of threshold determination.

From the coordinate axis of threshold determination shown in Figure 5, it can be
seen that the values of the probability distribution function of S1 as a whole were located
on the right side of the threshold. Therefore, it is very likely that the S1 scenario will
occur. Additionally, the calculated probability of this scenario was (0.1), indicating that
its occurrence probability is 1. Similarly, analysis results of S2, S4, and S5 were obtained,
which are listed in Table 6.

Table 6. Information table of the first-round accident situation prediction (at 19:03 on 6 April).

Key Accident
Symptom Key Accident Scenario

Probability
Distribution

Function

Calculated
Probability

Pipeline leakage fire Flowing fire, S1 (0.702, 0.80) (0.1)
Pipeline spewing fire, S2 (0.652, 0.90) (0.19, 0.81)

Fierce combustion, high
flame temperature, and

strong radiation heat

Explosive combustion of
adjacent tank, S4

(0.1362, 0.980) (0.67, 0.33)

Tank secondary explosion, S5 (0.0795, 0.980) (0.1)

Table 6 shows that, according to the on-site accident situation, it can be judged that
scenarios S1, S2, and S5 were more likely to occur, and scenario S4 was less likely to occur.
Therefore, those four initial disposal schemes were adjusted accordingly, with the following
calculation results of the decision-making loss and expected loss of each scheme:

L(h3, P3) = 143.2 < Le(h1, P3) = 184.5

Therefore, it can be determined that information collection is not necessary under such
a circumstance. Instead, an immediate decision should be made, and multiple measures
should be taken to launch an all-around attack to make the major accident gradually vanish.
The actual accident situation is that, at 7:00 on 7 April, there was a sufficient rescue force at
the accident scene. In order to eliminate the threat of those three burning tanks to the No.
609 tank and prevent these tanks from being rekindled, the on-site command post decided
to launch a firefighting attack. Specifically, the cooling protection of the No. 609 tank was
strengthened, and the fires of the No. 607, No. 608, and No. 610 burning tanks were put
out, in turn, from the headwind direction to the downwind direction.

Vanishing stage of the accident: At 17:05 on 7 April, the open flame of the No. 610
burning tank was completely extinguished. Before that, the fires of the No. 607 and No. 608
tanks were also put out. During this period, the No. 608 tank was rekindled. By 19:00, the
wall temperatures of the No. 607, No. 608, and No. 610 tanks were 21 ◦C, 24 ◦C, and 24 ◦C,
respectively. The top temperature of the No. 610 tank was 60 ◦C, and the temperature of
each tank dropped rapidly. The meteorological conditions at that moment are as follows:
easterly wind, with an average wind speed of category four and a gust of category seven.
Table 7 shows the updated prediction details of the accident situation with the No. 610 tank
taken as the research object.
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Table 7. Information table of the second-round accident situation prediction (at 17:05 on 7 April).

Key Accident Symptom Key Accident Scenario
Probability

Distribution
Function

Threshold
Analysis Result

Not favorable wind direction
for the on-site firefighting

and rescue activity

Tank secondary
explosion, S5

(0.415, 0.682) (1.0)

Tank rekindling, S6 (0.626, 0.95) (0.23, 0.77)

The oil flame point is
relatively low

Spreading toxic gas,
poisoning the

environment, S7

(0.619, 0.728) (0.47, 0.53)

From Table 7, it can be seen that, basically, the tanks would not explode. However,
it was more likely that the tanks would be rekindled. Since there was no toxic gas at the
scene, it was not necessary to consider the problem of toxic gas spreading. Based on the
second-round situation prediction results, the recommended emergency solution was that
the No. 610 tank should be continuously cooled to prevent it from being rekindled. The
real situation was that, at 19:40 on 7 April, the foam coating on the oil surface of the No.
610 tank was destroyed by strong wind and rain, and the high-temperature oil in the tank
was exposed to the air and rekindled. Then, the command post immediately organized the
on-site force to enhance cooling of the tank, which is basically consistent with the proposed
solution described above.

Follow-up disposal: By 12:00 on 8 April, the on-site command post used an unmanned
aerial vehicle to survey the situation of the intermediate tank farm, with the following
information obtained: The materials in the No. 609 tank had been basically burned out, and
there were still residual liquids in the No. 607, No. 608, and No. 610 tanks. Based on the
information collected, it can be known that the on-site situation at that moment was T4, and
with the decision-making function loss compared with the expected decision-making loss,
it can be concluded that the scheme P4 should be directly implemented at that moment.
The real situation was that, based on the field situation, the command post decided to
continuously monitor the accident site and organize forces to eliminate the danger in a
technical way. By 15 April, residual liquids in the tanks were basically drained, and the
on-site danger was eliminated.

6. Conclusions

Based on D-S evidence theory and game theory, we investigated the sequential
decision-making method of major accidents with incomplete information, with main
conclusions drawn as follows:

(1) With databases of historical cases analyzed and an oil tank fire accident taken
as an example, this paper has established the logical relationship between key accident
scenarios and accident scenario symptoms, with the basic probability distribution of an
evidence set of oil tank fire accidents obtained through the logistic regression analysis.
Meanwhile, this paper showed that the relationship between key accident scenarios and
key accident scenario symptoms of major accidents can be analyzed in a quantitative rather
than a qualitative way, which can improve the accuracy of emergency decision-making
information.

(2) The situation prediction model based on the D-S evidence theory can fuse and
process the accident information under different time series of major accident scenes
and correct the subjective prediction biases of experts with incomplete information, thus
resulting in more scientific and reliable emergency decision-making. Therefore, accident
situations can be predicted dynamically.

(3) With the situation prediction model based on the D-S evidence theory applied
in the sequential decision-making of major accidents, the problem of difficult scheme
optimization at different time stages caused by the addition of time costs at the scenes
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of major accidents, as well as the contradiction between decision-making loss costs and
information collection costs, can be resolved.

(4) The decision-making model established in this paper solely focused on the analysis
of petrochemical fires, while further research is needed to establish case databases for other
types of disasters and analyze their decision-making processes. Additionally, the traditional
methods used for information collection and processing are inefficient and inadequate to
support the decision-making model proposed in this paper. However, future advancements in
big-data-related technologies can potentially provide support for the decision-making model.
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