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Abstract: Indonesia needs a daily monitoring system due to its frequent fires and, more importantly,
to assist stakeholders in the field in taking action to mitigate disasters. Our method simplified
the number of hotspots for field-based purposes and was verified by comparing the point-based
(point-HS) VIIRS (Visible Infrared Imaging Radiometer Suite) 375m-derived temperature anomalies
(hotspots) and clustered-based hotspots (cluster-HS, our suggested method). Using Euclidean
clustering, we calculated the distance between hotspot points and applied specific criteria to reduce
the number of hotspots while aligning them closely with fire incidents. We evaluated accuracy at
different fire sizes, burned areas, peatlands, and distances from the reported burn center. We found
that the accuracy increases at 1.5 km from the center of the fire for both point- and cluster-HS at
52% and 53%, respectively. For areas larger than 14 ha, both types of hotspots yielded superior
results of 83%. Cluster-HS performs better on peatlands than non-peatlands (62% vs. 57%). Without
diminishing the precision of the hotspot observation, this study indicates that our method is reliable
for assisting field stakeholders in the field in taking actions. Therefore, this product could be
implemented into Indonesia’s daily hotspot monitoring.

Keywords: VIIRS; active fire; clustering method; fire management; peatland

1. Introduction

Forest and land fires are recurrent disasters in Indonesia that have had significant
impacts, particularly in 2015, and caused an estimated loss of up to USD 16 billion [1].
These fires can potentially impact air quality, as was the case with those in Sumatra and
Kalimantan in particular, which have had consequences for the air quality of neighboring
countries [2]. Fires emit toxic gasses into the atmosphere, including carbon dioxide and
carbon monoxide [3]. The long-term effects of these fires can be detrimental to the cardiovas-
cular system, respiratory health, mortality rates, and even the height of individuals [4–7].

The consequences of fires are already well known, yet pinpointing fire sources or
affected areas remains challenging. These are critical for national fire management in
a large archipelagic country. Indonesia requires effective techniques to address its fire
management needs. Remote sensing technology has been extensively employed to identify
hotspots and areas impacted by fires [8–10].

The detection of temperature anomalies on the Earth’s surface (hereafter referred
to as hotspot) is one of the most useful and widely used approaches, usually involving
data derived from satellite imagery. The thermal sensors on satellites such as Terra/Aqua
MODIS (Moderate-Resolution Imaging Spectroradiometer), NOAA/METOP AVHRR (Ad-
vanced Very-High-Resolution Radiometer), and Himawari-8 AHI (Advanced Himawari
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Imager) has enabled the development of a global algorithm for locating any hotspots [11,12].
These data are derived from imagery with a low spatial resolution (375–2000 m). However,
adapting Himawari-8 to produce data multiple times per day or every 10 min would allow
for more frequent observations. They are suitable for near-real-time fire monitoring. In
addition to high temporal observation [13,14], these satellites cover the globe and have
the ability to provide consistent and automatic hotspot data. The availability of long-term
data [15] makes them suitable for climate change-related topics as well.

The advancement of global hotspot algorithm development, typified by the MODIS
Collection 6 product [16], has increased the probability of detecting tropical fires and
decreased the number of false alarms. This algorithm employs a wavelength of 4 and
11 µm [17]. The SNPP (Suomi National Polar-orbiting Partnership) and NOAA-20 satel-
lites, which are the replacements for Terra/Aqua MODIS, continue to generate reliable
hotspots [18] with a higher spatial resolution (375 m and 750 m) [19] than their predecessor
(MODIS, 1 km) [18]. Visible Infrared Imaging Radiometer Suite (VIIRS) night-time data
could analyze the subpixel using the Planck curve fitting technique [19,20], allowing for the
rapid mapping of burned areas [21,22]. Hotspots are also necessary inputs for producing
burned maps using various methods [23–25]. At medium resolution, thanks to Landsat 8
and Sentinel-2, which have an Operational Land Imager (OLI) sensor and Multispectral
Instrument (MSI), respectively, hotspots can also be derived by employing Shortwave
Infrared bands [26,27]. Because their resolution is as low as five days, however, these
satellites are not ideal for more frequent monitoring.

Recent increases in the abundance of hotspot data raise the question of whether this
aids or hinders fire management in the field. To our knowledge, there have been no
detailed discussions on this in Indonesia. In addition, the types of fires in Indonesia are
not similar to those in other countries, where the size of many fires is small and tends
to underestimate hotspots, not only because of their size but also because of persistent
clouds [28]. The Indonesian government is attempting to control fires, particularly in areas
across the country that are prone to fires and smoke. Hotspots have become the main
avenue for field checking. More hotspots imply that more locations must be investigated.
Thus, a strategy to decide which hotspots should be investigated must be developed using
a reliable approach.

Global algorithms are designed to produce reliable results across different regions by
reducing sensitivity in certain areas while preserving consistency in others. However, the
variation in fire regimes across the globe may be unique and necessitate a particular focus
on identifying biomass burning [29]. To this end, persistent anomalies originating from
non-biomass burning activities, such as volcano activity, road, settlement, offshore and
water bodies [30], can be eliminated [31–33].

Another technique for dealing with how to simplify which hotspots should be checked
first is to use spatial clustering hotspots by, for example, using the Euclidean distance
method. Clustering can be performed both spatially and temporally [11,34–42]. Among
the techniques used for this are K-mean, Fuzzy-C Means, and Linkage [39,43,44], as well
as the Poisson Method [45] and Density-Based Spatial Clustering Algorithm with Noise
(DBSCAN) [46–49]. However, they have not yet been used for daily fire monitoring, as they
predominantly focus on analyzing archive data to identify fire-prone regions.

The development of fire detection and monitoring methods is still lacking in certain
areas to fulfill the need for rapid responses and the ground checking of any fire occurrence
in the field. The existing methods using high resolution data [50,51] can present detailed
information on fire events, but they cannot be applied for daily fire monitoring. On the
other hand, fire detection or monitoring using low spatial resolution data usually produces
several points over large fire areas [33,52]. The large number of fire points could lead to
more efforts in preparing a quick response in the field. Therefore, there is an urgent need
to develop or enhance the method by clustering the fire points to reduce the number of
locations to be checked in the field. Clustering methods could be developed using various
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approaches. Among these methods is Euclidean distance, which is the simplest one to
apply to daily satellite data for fire monitoring.

The use of vision-based methods should be more intuitive to detect fire and burned
areas by image processing or machine learning methods [53,54]. Vision-based methods are
widely used and serve as a typical method for detecting both fires and burned areas [55].
However, this study did not use high-spatial-resolution data due to low temporal resolution.
This limitation could not fulfil the need for daily fire monitoring. In addition, fire behavior
can be site-specific.

This study attempts to fill this gap. We aimed to develop and evaluate the effectiveness
of the VIIRS 375m-derived hotspot clustering method, using the present situation in Indone-
sia as a case study. We used the Euclidean clustering method by calculating the distance
between the points of hotspots and applying specific criteria to minimize the number of
hotspots while aligning them closely with actual fire incidents. Our findings are expected
to be able to assist relevant stakeholders in planning field actions, such as deciding which
location should be investigated first based on an understanding of fire consequences.

2. Materials and Methods
2.1. VIIRS Data Product Description

The characteristics of the VIIRS sensor aboard the SNPP and NOAA-20 satellites are
essentially identical; in fact, it outperforms those of the MODIS sensor. This sensor can be
used to obtain hotspot information [18]. To obtain hotspot information, band M13 and M15
VIIRS data, which have wavelengths of 3.973–4.128 and 10.263–11.263 µm, respectively, with
a moderate resolution of 750 m were used. This algorithm operates at a resolution of 375 m
by utilizing bands I4 and I5, which have wavelengths of 3.55–3.93 and 10.5–12.4 µm [56].
The performance of this algorithm can also provide additional information about the
affected area [21]. Although the radiometric characteristics of VIIRS data obtained from
the SNPP and JPSS (Joint Polar Satellite System) satellites may slightly differ, they share
similarities [57]. The processing of VIIRS data utilizes the Community Satellite Processing
Package (CSPP), a data processing software developed by the University of Wisconsin. This
software can process data through various stages, from raw data records to active fires,
using separate processing modules [58]. Furthermore, to enable automatic integration, it is
necessary to develop a system that connects these processing modules [59].

We used the VIIRS active fire global product algorithm (see [56] for more details),
which can be ran using VIIRS AF Software Version 1.1.1. from the CSPP (Community Satel-
lite Processing Package) [33,58,60]. Input data were obtained from the Parepare ground
station, which was previously managed by the Indonesian National Institute of Aeronau-
tics and Space (LAPAN) (currently merged into the National Research and Innovation
Agency). From this running program, the initial information generated consists of loca-
tion (latitude/longitude), time, confidence level, and satellite source data. For national
interests, we added information on administrative location and radius of possibility (see
detail in Section 2.3.1). The radius of possibility is 3 times the sensor resolution (3 × 375 m).
This number was chosen to anticipate inaccuracies in spatial resolution because sensor
resolution is a measure of the nadir position, whereas off-nadir can be several times lower
than the resolution at nadir. In addition, since the product focuses on vegetation fires, the
product excluded the persistent anomaly provided by [32]. From this point forward, all
hotspot data generated by this product will be referred to as point-HS.

2.2. Data Types and Sources
2.2.1. Field Data and the Burned Area Map

Fire information encompassing all provinces in Indonesia (Figure 1) was gathered
using field data and a burned area map. Both were acquired from the Ministry of Environ-
ment and Forestry (MoEF) of the Republic of Indonesia. Field data consisted of suppression
or ground truth points concerning fire incidents compiled from 1 January to 30 November
2020. The data provide specific information regarding the rough estimated burned areas,
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dates, and coordinates. During that period, a total of 1881 fire occurrences were docu-
mented, with the majority (80%) resulting in burns of less than 3.5 hectares (see Table 1).
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Figure 1. Distribution map of field data, burned areas, and peatlands.

Table 1. Summary of field data overlaid on maps of burned areas and peatlands.

Estimation of Burn
Area (ha) Field Data (%) Burn Area Map (%) Number of Points in

Peatlands Only
Number of Points in
Non-Peatlands Only

≤3.5 80.06 25.16 318 1188
>3.5 19.94 74.84 169 206
>7.0 9.14 57.93 95 77
>14.0 4.04 41.65 47 29

Burned area maps, on the other hand, are represented as polygons and include detailed
information such as the size of each fire event and the specific images used to create the
map. The MoEF made this national-scale map from Landsat 8 images (30 m resolution)
primarily by visual interpretation. The shapefile data are now inaccessible to the public;
however, the key statistics can be obtained by downloading them from the official website
of the MoEF (https://sipongi.menlhk.go.id/, accessed on 1 August 2023). Among the 1881
field locations, only around 473 points were identified by the burned area map (Table 1),
primarily concentrated in areas affected by large fires. It should be noted that only a quarter
of small fires (with an area ≤ 3.5 hectares) are incorporated into the map. Table 1 provides a
comprehensive summary of the field data in conjunction with the burned area and peatland
maps that are of critical interest to us.

2.2.2. Peatland Map

We used the 2011 version of the peatland map provided by the Ministry of Agriculture
of the Republic of Indonesia [61]. According to this map, peatland occupied around
11.2 million hectares of land in Indonesia. Out of the 1881 field data points, 26% were in
peatlands. The peatland map consists of polygons.

https://sipongi.menlhk.go.id/
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2.3. Research Method

Figure 2 shows the overall research design. The following subsection explains the
details for each step. All available VIIRS I-band images from 2020 at SDR (Science Data
Record) level were processed for further analysis.
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Figure 2. Research design. Visible Infrared Imaging Radiometer Suite (VIIRS) I-band images (375 m)
at Science Data Record (SDR) level were the main input data, as required by the global product
algorithm [58]. Maps of burned areas, peatlands, and field data were used to evaluate the proposed
clustered hotspots (cluster-HS).

2.3.1. Hotspot Clustering Method

The hotspot clustering method (hereinafter, cluster-HS) initially involved reading the
list of point-based hotspots (hereinafter, point-HS), per satellite per time, to be clustered.
Point-HS refers to hotspot information derived using the global algorithm [56]. All point-
HS has information such as coordinates (latitude/longitude), level of confidence values,
administrative location data, and radius of possibility data. Figure 3 shows a flowchart of
the clustering method, along with an illustration; the following paragraphs explain each
part of the method.

The following steps involve selecting hotspot points and calculating the Euclidean
distance (d) between points. The Euclidean distance was calculated using Equation (1):

d =

√
(x1 − x2)

2 + (y1 − y2)
2 (1)

where
d = distance (m)

x1, y1 = Coordinates (latitude and longitude) o f f irst point

x2, y2 = Coordinates o f second point
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The Euclidean distance between each selected hotspot point and other points was
calculated. It searched for hotspot points in its vicinity that met specific distance criteria,
where the distance (d) satisfied the criteria described in Equation (2):

0 < d ≤ 1.5p (2)

where
d = distance between point (m)

p = pixel(ground)resolution (375 m)

When other hotspot points met the criteria, they were included in the same group.
This step involved calculating the distance between the selected points and other points
and searching for hotspot points around them that met the specified requirements. The
process was repeated for all other hotspot points to determine cluster groups. Once the
cluster groups were formed, the next step involved calculating the center coordinates of the
clusters, their levels of confidence, their administrative locations, and the radii of possibility
for the clusters. The center coordinates of the clusters were calculated using the formula
described in Equation (3):

xc =
∑n

i=1 xi
n

yc =
∑n

i=1 yi
n

(3)

where
n = number o f cluster members

xc, yc = Coordinates (latitude and longitude) o f cluster

xi, yi = Coordinates o f any given points
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The confidence levels (CLs) of the clusters were calculated by averaging all CL-point
members within the clustered group using the formula described in Equation (4):

CLc = int
(

∑n
i=1 CLi

n

)
(4)

where
n = number o f cluster members

CLc = Con f idence level o f cluster (rounded)

CLi = con f idence level o f cluster member pixel

The administrative locations of the clusters were calculated based on the mode of the
administrative locations among the cluster members. The radii of possibility (RK) were
determined using the formula described in Equation (5):

RKc = int
(

p ×
(√

n + 2
))

(5)

where
n = number o f clusters members

RKc = radius o f the possibility o f a cluster (rounded)

p = pixel resolution (in this case 375 m)

2.3.2. Assessments and Analysis

To validate the hotspot data, low-resolution satellite data were compared with medium-
resolution units [14,62,63]. For the low-resolution satellite data, an assessment was con-
ducted using field data to facilitate a comparison [9,64], and this was necessary to evaluate
the hotspot methods [65].

The field data were compared with VIIRS sensor hotspot units for the same period.
Validation was performed by matching the coordinates in the field data with the hotspot
database, considering date and distance criteria, using the Euclidean distance formula
(Equation (1)). The date criteria include two days before and one day after the field data,
labeled as detected since there was a hotspot in the database that met the criteria. The
selection of the duration for this day was made considering the potential discrepancy
between the date recorded in the field, as reported by officials, and the actual day of the
fire’s initiation. The success of this activity is contingent upon the availability of resources
and the accessibility of fire locations. We adhered to a strict policy of selecting the day
immediately after the field report’s date to ensure accurate calculation and prevent any
potential oversights. The distance buffer also needs to be used to compare locations based
on the field data and hotspots [63]. The distance buffer was used because most of the
ground truth data locations were collected about 0–2 km away from the fire area [66]. The
distance buffer criteria range from a 1- to 10-pixel resolution (see Figure 4). The percentage
of fire events detected by hotspots compared to the actual fire events was calculated using
the following:

POD =
NHS
NT

× 100% (6)

where
POD = Percentage o f detection

NHS = number o f f ire event detected by hotspots

NT = number o f total f ire events in the f ield data
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Figure 4. Illustration of fire events detected by hotspots.

To analyze the effectiveness of the buffer distance, the difference between the number
of detected hotspots from each buffer criterion by subtraction was used, and this was
calculated using the following:

Di f f erence = NHSn − NHSn−1 (7)

where
NHSn = number o f f ire event detected by hotspots at n

NHSn−1 = number o f f ire event detected by hotspots at n − 1 (previous)

The optimal buffer distance for application was calculated by comparing two trend
lines with clearly distinguishable slopes, with one being steep and the other sloping. The
intersection was identified as the most favorable buffer distance.

3. Results
3.1. Cluster-HS Product

Examples of cluster-HS products are presented in Table 2. The cluster-HS method
allows us to determine the number of neighborhoods in which the point-HS are identified
as cluster-HS. In Table 2, for example, the radius is represented by the numerical value
1280, which signifies the origin of the cluster-HS from two points-HS (see Equation (5)).
Based on Equation (5), a higher numerical value for RK indicates a higher number of cluster
members. Cluster-HS preserves the point-HS derived from many satellite sources, enabling
us to continuously monitor the original source of each point-HS.

Table 2. Examples of detailed information for each cluster-HS (CL = confidence level; RK= radius of
possibility). In the “Method” column, the associated technique (cluster or point) is indicated.

Id Date Time Latitude Longitude CL Satellite RK Subdistrict District Province Method

1 3 March 2020 00:52:43 −0.06421 103.1234 8 noaa20 1280 Gaunganakserka Indragiri Hilir Riau Cluster
2 3 March 2020 00:52:43 −0.25836 103.0436 8 noaa20 1125 Batang Tuaka Indragiri Hilir Riau Cluster
3 3 March 2020 00:52:43 −0.39327 102.9552 8 noaa20 1500 Tempuling Indragiri Hilir Riau Cluster
4 3 March 2020 13:30:53 1.926316 101.4626 8 noaa20 1125 Rupat Bengkalis Riau Cluster
5 3 March 2020 00:52:43 1.927811 101.4431 8 noaa20 2968 Rupat Bengkalis Riau Cluster
6 3 March 2020 01:45:21 1.920925 101.4551 8 snpp 2769 Rupat Bengkalis Riau Cluster
7 3 March 2020 01:45:21 1.966086 101.556 8 snpp 1668 Rupat Utara Bengkalis Riau Cluster
8 3 March 2020 01:45:21 1.058746 102.953 8 snpp 1810 Tebing Tinggi Kepulauan Meranti Riau Cluster
9 3 March 2020 01:45:21 1.090938 102.9439 8 snpp 1742 Tebing Tinggi Kepulauan Meranti Riau Cluster
10 3 March 2020 01:45:21 0.995505 102.2071 8 snpp 2384 Sungai Apit Siak Riau Cluster

Figure 5 presents the proportion of field fire incidents identified by two different types
of hotspots (point and cluster), along with the connections to burned areas and peatlands.
The following subsection elaborates on these findings.
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Figure 5. The percentage of field fire events accurately detected by two different types of hotspots
(cluster (C) and point (P) hotspots) in connection to areas identified as burned on the burned map
and the fire events found in peatlands or non-peatlands only. The dark-to-light shift in the shades of
the colors represents the hotspot buffer range (from 375 m to ~4 km).

The total data evaluation comprised 1881 field points, 145,839 point-HS, and 98,188 cluster-
HS, which means cluster-HS reduced the number of point-HS by up to 32.67%.

A comparison with field data showed that for both clustered- and point based hotspots,
the accuracy increases at a buffer radius four times the size of the pixel VIIRS or around
1.5 km from the center of the fire (see Figure 6). Beyond a 1.5 km radius, these two types of
hotspots no longer show a significant increase in accuracy.
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Figure 6. Assessment of cluster- and point-HS concerning the buffer distance. The x- and y-axes
represent the buffer distance and the number of detected fire incidents, respectively. The two
regression lines represent distinct slopes, with one being steep (yellow dashed line) and the other
sloping (gray dashed line). The lines are perpendicular to the gray vertical line at buffer distance 4,
indicating the optimal buffer distance for the number of detected fire events.
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Our assessment of cluster-based and point-based hotspots concerning the buffer
distance revealed that the distinction between point- and cluster-HS becomes negligible
after exceeding 4 VIIRS pixels (equivalent to 1500 m). The gray vertical line in Figure 6
indicates the point of intersection between the two regression lines (yellow and gray dashed
lines), which show the optimal buffer distance for achieving high accuracy in detecting
actual fire incidents. However, as the saturation occurs beyond 5 VIIRS pixels (equivalent
to 1875 m), it is recommended to look for fires within a radius of 5 pixels (less than 2 km)
from the center of any fires, based on the cluster-HS point, for field verification.

Our findings indicate that most cluster-HS (95%) of all identified fire occurrences
(Figure 7) were detected at a medium confidence level (CL = 8). Meanwhile, only around
2% were discovered at a high confidence level (CL = 9). These were found for all buffer
distances from 375 to 3750 m.
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Figure 7. Overall results for clustered-based hotspots (cluster-HS) in terms of confidence levels.

3.2. The Validation of the Clustered- and Point-Based Hotspots and their Relationship with
Burned Areas

Out of the 1881 fire points recorded in the field data, 473 of them coincide with the
burned area data provided by the Ministry of Environment and Forestry. Out of the total
of 473 points, only 22 points fall inside the radius of the buffer distance at 375 m. We
discovered that by multiplying the buffer distance by four, the pixel size of VIIRS-375
(1500 m), the number of reported fire spots, and their overlap with the burned area grew
by 20%. Notably, there was a substantial 16% increase between the first and second buffer
distances. The significance of this rise diminishes after the fourth buffer (see Figure 8).

Above the buffer distance that is 5 times pixel size of VIIRS-375, cluster-HS and
point-HS no longer differ significantly in accuracy beyond this distance (Figure 8). This
demonstrates that cluster hotspots will be highly effective and practical for conducting
field inspections within distances that are five times the size of the VIIRS pixel radius from
the fire center (less than 2 km).

3.3. Clustered- and Point-Based Hotspot Validation with Peatlands and Non-Peatlands

Our analysis revealed that the accuracy varied more substantially in peatland areas
compared to non-peatland areas for both the point-HS and cluster-HS hotspots (Figure 5).
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The point-HS variants range from 46% to 62%, while the cluster-HS variations range from
36% to 62%. On non-peatlands, the discrepancy in precision remains very consistent for
both types of hotspots across all distances. The discrepancy is minimal, approximately
0–1%, in terms of point-HS and cluster-HS in non-peatland areas. Differences in precision
associated with this buffer distance were observed in fires located on peatlands, despite the
fact that fires on peatlands account for just 25% of the field data. However, the precision in
identifying peatland areas can be considerably improved to detection rate of up to 62%,
compared to that of non-peatland areas, for which only a detection rate of 57% was obtained
(see Figure 9).
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Figure 8. The assessment of clustered- and point-based hotspots in relation to the burned area map.
The gray vertical line in buffer distance 4 shows the optimal point for the number of detected fire
events (see also the two perpendicular regression lines) before being saturated at buffer size 5. In
buffer 5, both types of hotspots no longer show a significant difference in the number of detected
events. The first slope line is from buffer distance 1 to 4 (yellow dashed line), and the second is from
buffer distance 5 to 10 (gray dashed line). The gray vertical line in buffer distance 5 shows that the
difference between point-HS and cluster-HS is no longer significant after this line.Fire 2024, 7, x FOR PEER REVIEW 13 of 22 
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Figure 9. Percentage of detection (POD) fire events correctly detected by hotspots in peatland and
non-peatland areas. The black line represents peatland areas; the blue line represents non-peatland
areas. The dashed line represents point-based hotspot data (point-HS); the solid line represents
clustered-based hotspot data (cluster-HS).
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3.4. Clustered-Based Hotspot Assessment in Relation to Estimated Fire Size

The accuracy of hotspot detection in both peatland and non-peatland areas is highly
influenced by the size of the fire, as shown in Figure 10. Typically, a fire size greater than
14 hectares (or the size of 1 pixel of VIIRS-375 image) has the highest level of accuracy,
reaching up to 83%. For small fires (with a size of 3.5 hectares or less), the accuracy is
greater in non-peatland areas compared to peatland areas. Additionally, Figure 10c displays
suggestions for inspecting non-peat land, with a recommended radius of five times the
pixel size (<2 km). Unlike peatland, non-peatland areas show a substantial increase in
accuracy when the buffer distance is three times the pixel size (approximately 1 km).
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Figure 10. Cluster-HS assessment in relation to estimated fire size in: (a) all types of land; (b) peatland
areas only; (c) non-peatland areas only. The two regression lines represent distinct slopes, with one
being steep (dashed dot line) and the other sloping (dashed line).

4. Discussion

Previous research on peatland areas in Kalimantan and Sumatra is more varied than
that for these locations’ non-peatland areas [67]. The results for fire detection (POD), as
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presented in Figure 9, are also similar to a previous study, in which better performance for
peatland areas than non-peatland was observed. However, the POD values over peatland
areas have more variation than those for non-peatland areas. This could mean that fire
detection in peatland areas is more challenging.

The results show that both point-HS and cluster-HS range from 52 to 53% POD,
proving superior when compared to the results reported in a study in Heilongjiang province,
China. This study, for comparison purposes, used field data, as was the case in the present
study. In the above-mentioned study, VIIRS-375 data could detect no more than 30%
POD [68]. This also shows that the global algorithm has a better ability to detect forest
and land fires in Indonesia. In a study conducted on the Provinces of Riau and Central
Kalimantan, the results showed that 71% of the field data could be detected by the VIIRS-
375 hotspot [66]. Though the results of the present study, which covered the entire territory
of Indonesia by 52% and 53% for cluster-HS and point-HS in general, look much smaller
than the results of the study conducted on the Provinces of Riau and Central Kalimantan, it
is important to note that study was only conducted on peatland areas. In our study, the
results were pertained to peatland areas throughout Indonesia, showing a detection ability
of 59 and 60% for cluster-HS and point-HS. This is due to the vast territory of Indonesia, the
regions of which have several different characteristics. If we consider the estimated burn
area from the field data, the POD can reach up to 83% for burn distances more than 14 ha.

A previous study that compared VIIRS-375 data with Landsat-8 data showed that
fire areas spanning more than 14 ha have better results than those spanning less than
14 ha [63]. This is in accordance with the results of this study, possibly due to the pixel size
of VIIRS-375, which is 375 m, forming an area of 140,725 m2, or around 14 ha. This makes
it easier to detect fires with an area of more than 14 ha. This was also confirmed by the
HS-cluster, which showed a POD of 83%, i.e., the best performance.

Indonesia already has a national hotspot information monitoring system; the system
runs in near-real-time with the time it takes for data to be received at a ground station for
30 min [60]. The clustering method has been used in the monitoring system since 2020 [33].
The cluster-HS method can reduce the amount of hotspot information by up to 67% [33]
after previously masking hotspot data so that this number is closer to fire events, which
makes it easier for field workers to conduct ground checking and is effective in using
resources in the field.

Figure 11a shows the large fires that occurred in the Riau Province, which were
detected with 96 point-HS, while the data from cluster-HS consisted of 5 points, and the
field data reported consisted of 3 points. Figure 11b shows that only 1 fire incident was
reported. The incident should be smaller than the 1-pixel size of VIIRS (375 m), so there
was only 1 point-HS and 1 cluster-HS that shared the same location. Figure 11c shows
fires detected by 3 point-HS, and the cluster-HS is shown by 1 point cluster-HS, which
originates from the 3 point-HS, while the reported fire incident is also 1 point. Figure 11d
shows that there were 2 adjacent fire incidents reported but that there was only 1 point-HS
and 1 cluster-HS at the exact same location. This is possible because the distance between
the two adjacent fire incidents is not more than one times of the VIIRS pixel size. The
several samples above show that for fire events with small areas, the information from
cluster-HS is almost the same as the information from point-HS. Thus, it can be seen that
for large fire incidents, cluster-HS is better in terms of determining the number of fires than
point-HS. This information can help the fire manager to locate the ongoing fire incidents.
Simplifying the number of fire incidents that must be extinguished or checked by field
officers or fire managers will speed up and facilitate coordination in the field. A smaller
number of hotspots will also require less resources to check. Moreover, the intended
location is relatively difficult to reach. However, for fires that are quite extensive, point-HS
information will tend to be overestimated, while the cluster-HS information is closer to
the number of real locations in the field. Those samples show the benefits of cluster-HS,
particularly in the context of large fire events.
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Figure 11. Example of cluster-HS vs. point-HS. Incident reported on 4 March 2020 in Riau Province
(hotspot data from 3 March 2020) (a), incident reported on 6 March 2020 in South Sumatra Province
(hotspot data from 6 March 2020) (b), incident reported on 15 August 2020 in West Kalimantan
Province (hotspot data from 14 August 2020), (c) and incident reported on 23 August in Central
Kalimantan Province (hotspot data from 22 August 2020) (d). The base map was made using data
from Google Earth.

The availability of field data appears to influence the accuracy of the clustering al-
gorithm outcomes. There were no documented fire occurrences in one sample in Central
Sulawesi (Figure 12), but the point-HS data contained four points, and the cluster-HS
contained one point originating from these four places. There were no field data or field
officers to check on the fire at this location. If this method is used in areas/locations with
limited field data, the results will be inaccurate or misleading. Based on the description
above, the clustering method’s strength is very good for use in the fire-prone areas of
Indonesia, such as Kalimantan and Sumatra. Because forest/land fire management is more
intensive in these two areas, officers frequently conduct field checks. The cluster method’s
output also helps with forest/land fire management by providing more precise information
on the number of locations. The cluster method’s weakness is that it is unsuitable for use in
areas with little or no field data.

Indonesia has data on the calculation of the burned area (issued by the Ministry of
Environment and Forestry). The data use medium-resolution satellite data (Landsat 8/9
and Sentinel 2) which uses a maximum distance of the pixel hotspot from the burn area
that is 1.5 times the pixel hotspot size, while this study shows that the best buffer is 4 times
the pixel size. This could be the consideration needed to make the maximum pixel hotspot
distance 4 times the pixel size.

In the case of small fires (less than 6.25 ha, which is the minimum size of a burned
area product), probably, the government has not thoroughly mapped the actual extent of
the fire, as recorded in the field data. This problem frequently arises when Landsat (the
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primary dataset employed by the Indonesian government) or other medium-resolution
images are used due to the images’ spectral or spatial resolution limitations [69].
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Figure 12. Example of cluster-HS vs. point-HS without a field report, as the incident was not reported
in Central Sulawesi Province (hotspot data from 11 March 2020). The base map was made using data
from Google Earth.

With the cluster-HS information, the fire manager can prioritize hotspot information
originating from data in which clusters consisting of more than 1 point-HS have a greater
possibility than clusters-HS which only originate from 1 point. To see if the data come
from more than 1 pixel, one case use radius of possibility results; that is, if the radius of
possibility value is greater, the data must come from more points.

Based on the results of the confidence level, it appears that only a small percentage
(around 2%) have a high confidence level (CL = 9). This suggests that focusing on field
checking does not align with a high confidence level. The confidence level of the generated
hotspot information also has different detection variations on the surrounding object being
detected [56], meaning that use in the field for prioritizing a high level of confidence
becomes less relevant. This suggests that it would be advisable to include the use of a
medium-confidence level product for field checking.

The aim of our study was to propose an improved approach for monitoring fires
by using the clustering Euclidean method to derive cluster-based VIIRS hotspots in both
peatlands and non-peatlands in Indonesia. This approach is straightforward but yields
accuracy that is comparable to the current point-based hotspot method (without clustering),
especially for burning detected within a radius of less than 2 km from the fire’s center.

Daily hotspot information can be easily incorporated into daily operations throughout
all regions of Indonesia due to the simplicity of the Euclidean distance clustering method.
Monitoring vast fire areas will be simplified by the clustering method, as field officers
will only receive a single data point for that area, as opposed to the multiple points that
point-HS previously received. This will facilitate the identification of the specific locations
that require inspection for forest fire management. The clustering method is particularly
effective when applied to fire-prone regions of Indonesia, such as Kalimantan and Sumatra,
where regular field checks are conducted. The clustering approach is not applicable,
however, in places with limited or nonexistent field data, which is its main drawback.

In general fire products, the information usually contains coordinates of fire locations
based on fire point number. The larger the area of fire occurrence, the higher the number of
fire coordinates. Improvements in fire monitoring could lead to better, quicker responses
for field checking and fire distinguishment efforts in the field.

The shortcomings of the clustering method have been identified, and they include
the following: The hotspot data used in clustering method come from using the active fire
global algorithm, which has its own shortcomings that come from clouds, water bodies, sun
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glints, semitransparent clouds, and bright objects [56]. Clustering methods are not superior
to small fires because the detected fire may consist of only one point (or even missing fires).
Clustering methods are not ideal for small fires because the detected fire may only be a
single point or may not be present at all. In this instance, no benefit was gained.

5. Conclusions

The Clustering Euclidean distance method is simple and achieves nearly the same
accuracy as the point method (without clustering), particularly in buffering areas that are
more than five times the pixel resolution. It also resulted in a reduction of up to 32.67% in
the number of hotspots.

The cluster-HS and point-HS methods for VIIRS data both achieved the highest level
of accuracy when the buffering area was four times the pixel resolution (1.5 km), resulting
in validation rates of 52% and 53%, respectively. The hotspot information obtained from
the VIIRS sensor offered highly accurate information for the hotspots, particularly for areas
larger than 14 hectares, with an accuracy rate of up to 83%.

Cluster-HS exhibits superior performance in peatland areas rather than non-peatland
areas. It accuracy can reach up to 62% for peatland areas (compared to 57% on non-peatland
areas), but there is greater variation for peatland areas. In a small buffer, the cluster-HS
accuracy could differ by up to 10% for peatland areas, while for non-peatland areas, it is
only 1%.

The benefit of the Euclidean distance clustering method is its simplicity, since it could
produce daily hotspot information which can be easily incorporated into daily operations
throughout all regions of Indonesia. However, the clustering approach is not applicable in
places with limited or nonexistent field data, which is its main drawback.
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