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Abstract: Anyone who has tried lighting a campfire on a windy day can appreciate how difficult
it could be. However, despite real-life experience and despite laboratory experiments which have
demonstrated that fire ignition risk dramatically decreases beyond a certain wind threshold, current
fire weather indices (FWIs) do not take this effect into account and assume a monotonic relation
between wind velocity and ignition risk. In this paper, we perform a global analysis which empirically
quantifies the probability of ignition as a function of wind velocity. Using both traditional methods
(a logistic regression and a generalized additive model) and machine learning techniques, we find
that beyond a threshold of approximately 3–4 m/s, the ignition risk substantially decreases. The
effect holds when accounting for additional factors such as temperature and relative humidity. We
recommend updating FWIs to account for this issue.

Keywords: machine learning; fire weather indices; wind velocity; forest management

1. Introduction

Wind velocity is a central determinant of wildfire propagation rate. Numerous studies
have demonstrated the effect of strong winds on wildfire expansion rate. For example,
Ref. [1] study the development of wildfires across the US and demonstrate how high winds
drive rapid fire growth and overcome many restraining factors: strong winds limit aerial
fire suppression efforts and completely ground aircrafts at wind over 15 m/s [2]; the strong
winds increase flame lengths, encouraging the spread of the fire and making it difficult for
fire suppression crews to perform direct attack [3]; finally, strong winds lead to increased
spotting and support convective pre-heating, which are factors that have been identified as
leading to firestorms and fatalities [4]. Many additional studies recognize wind velocity as
one of the major factors that leads to extreme fires and rapid wildfire growth (e.g., [5]). A
recent study has found that wind velocity is the most important factor in determining the
wildfire propagation rate, making it possible to estimate the wildfire propagation rate as
roughly 10% of the 10 m open wind velocity [6].

The positive correlation of strong winds and rapid wildfire propagation is not only
acknowledged in scientific research but is also reflected in all of the common fire weather
indices (FWIs). In the National Fire Danger Ratings System (NFDRS), the most common
FWI in the US [7], wind speed only directly affects the spread component (SC), which is
numerically equal to the theoretical ideal rate of spread expressed in feet per minute [7].
The index monotonically increases with wind speed [8]. The McArthur Forest Fire Danger
Index [9] includes a simple exponent which doubles the FWI when the wind velocity
increases at about 20 km/h [10,11]. In the Canadian Fire Weather Index [12], the influence
of wind over the Initial Spread Index (ISI) is described using a similar exponent. Ref. [12]
notes that this exponent was derived empirically, and its validity at high wind speed may
be uncertain [12].

While strong winds undoubtedly lead to a faster expansion rate in existing wildfires,
we claim that the probability of wildfire ignition is substantially reduced in the presence of

Fire 2023, 6, 338. https://doi.org/10.3390/fire6090338 https://www.mdpi.com/journal/fire

https://doi.org/10.3390/fire6090338
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fire
https://www.mdpi.com
https://orcid.org/0000-0002-1794-9381
https://orcid.org/0000-0002-3584-3978
https://doi.org/10.3390/fire6090338
https://www.mdpi.com/journal/fire
https://www.mdpi.com/article/10.3390/fire6090338?type=check_update&version=1


Fire 2023, 6, 338 2 of 10

strong winds. Intermediate wind of approximately 3 m/s increases oxygen supply and has
been shown to encourage wildfire ignition more than weak winds of 0–1 m/s (e.g., [13–18]).
Beyond a certain wind velocity threshold, effects which decrease the probability of ignition
may apply. For example, studies have found that beyond a wind velocity of 4–6 m/s, lit
cigarettes are most likely to be carried by the wind [19], and beyond a threshold of 4 m/s,
they are likely to be extinguished [20]. Strong winds could cool firebrands and extinguish
ignition sources [21]. Although the wind increases oxygen supply, its cooling effect can
reduce the transition from smoldering to flaming beyond a certain threshold [22].

The effect of strong winds on ignition has been demonstrated in several laboratory
experiments. Ref. [23] performed 2500 ignition experiments to estimate the probability that
cigarette butts would ignite a fuel bed in the presence of different weather conditions. They
found that up to a certain threshold, stronger wind increases the probability of ignition, but
beyond that threshold, higher wind velocities reduce ignitions. An additional laboratory
experiment in cotton balls ignition also demonstrated a negative correlation between wind
and ignition probability [24]. Ref. [25] developed a physical model which forecasts a
non-monotonic correlation between wind velocity and ignition risk.

While the lower probability of human-caused wildfires ignition can be explained by
the aforementioned factors, the ignition mechanism of lightning-caused wildfires is entirely
different. Scholars have studied the necessary meteorological conditions for lightning-
caused wildfire ignition in several regions. Although some meteorological conditions are
different in such circumstances (e.g., higher RH values), the probability of lightning-caused
wildfire ignition is highest at intermediate range wind velocity values, which is similar
to human-caused wildfires. For example, Ref. [26] find that lightning-caused wildfires in
central Brazil are typically ignited at a wind speed of approximately 2 m/s.

In this study, we aim to empirically examine the effect of strong winds on ignition
probability using a global dataset. The paper is organized as follows. We begin by providing
a detailed summary of our data, which is followed by a description of the methods we
apply in the research. We then present an analysis of the probability of wildfire ignition as
a function of wind velocity, either based on traditional statistical models or on machine
learning (ML) techniques. In the final section, we discuss the contribution, implications
and limitations of the study, and propose directions for future research.

2. Research Design
2.1. Data

Our target variable is the daily burned area at a 0.25◦ resolution global land grid. We
produce this grid based on the dataset published in [27], which includes global wildfire
data in a daily resolution. We use the entire observations of the year 2016, which include
a total of 1,024,926 different wildfires. We assign the value of 1 to regions in which a
wildfire ignited on the day of the observation and 0 otherwise. Approximately 1.4% of the
observations were assigned the value of 1.

The independent variables in our models include meteorological factors, anthro-
pogenic factors, and fuel loads. The meteorological data are taken from the ERA5 hourly
reanalysis dataset [28]. We use 2-m temperature, relative humidity and 10 m wind velocity.

Previous studies have shown that population density has a substantial effect on
wildfire occurrence (e.g., [29]). We include population density based on the dataset of the
Center for International Earth Science Information Network [30]. While the original dataset
is provided with a resolution of ~1 km, we calculate the mean population density in each
0.25◦ region.

Leaf area index (LAI) is a variable that describes the leaf material in a given location.
LAI is a dimensionless variable that varies between 0 and approximately 10. LAI data at a
1/112◦ (~1 km) resolution are taken from [31]. The LAI data are originally separated to low
and high vegetation; we include one variable describing their sum.

For plotting partial dependencies (as explained in the following section), we use two
common wildfire indices: the Canadian Forest Service Fire Weather Index Rating System
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(FWI) and the Australian Forest Fire Danger Index (FFDI). All data are available in 0.25◦

resolution and were obtained from the Copernicus Climate Change Service [32]. Table 1
summarizes the features and data sources used in the paper.

Table 1. Summary of features and data sources.

Variable Abbreviation Source

daily burned classification burned [27]

2 m temperature temp

[28]relative humidity RH

10 m wind speed wind_speed

population density population [30]

leaf area index LAI [31]

daily fire weather index FWI
[32]

daily fire danger index FFDI

2.2. Methodology

We perform several analyses to evaluate the effect of strong winds on wildfire ignition
risk. All of the analyses are performed using Python. We begin by applying traditional
statistical models and fit a logistic regression [33,34] whose dependent variable is the
probability of ignition. A logistic regression is a widely used statistical model when
predicting binary variables (such as wildfire occurrence). A logistic regression was applied
based on the following equation:

Pi =
1

1 + e−zi

where Pi is the probability of wildfire occurrence, zi is a linear function of the independent
variables we use as predictors (x1 . . . x_n):

zi = α + β1x1i + β2x2i . . . .βnxni

α is a constant and β1 . . . βn are the regression coefficients. We evaluate the logistic
regression using Python’s Scikit-learn library using its default parameters: L2 regularization
and the LBGFS optimizer. In the basic model, we include five terms: wind velocity, RH,
temperature, population, and LAI. The dependent variable is the occurrence of a wildfire
in the spatiotemporal observation. We tested whether removing one of the independent
variables could improve (decrease) the Akaike’s Information Criterion (AIC) score [35] and
found that it did not. To capture the expected nonlinear relation between wind velocity and
ignition risk, we present a model which includes both wind velocity and its square value in
addition to a model which only includes the wind velocity (increasing the number of terms
to 6). We use several control variables in these analyses: relative humidity, temperature,
population density and leaf area index. We emphasize that we do not include fire weather
indices in this analysis, as this may lead to collinearity.

An additional method to capture the nonlinear effect of wind velocity on wildfire
occurrence is the Generalized Additive Model (GAM) [36,37]. The GAM model has the
form η(x) = α + σ f j

(
xj
)
, where η is either the regression function in a multiple regression

or the logistic transformation of the posterior probability in a logistic regression [36]. It
is recommended to use a GAM model when a model contains nonlinear effects, as GAM
provides regularized and interpretable solutions in such cases. As our hypothesis is of a
nonlinear relationship between wind velocity and wildfire occurrence, we develop a GAM
model using the Python pyGAM library [38] and present the partial dependence plot (PDP)
based on this model.

Next, we apply a machine learning model to capture more complex relations between
wind velocity and wildfire ignition risk. We develop a model based on an Extreme Gradient
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Boosting (XGBoost) classification model [39]. XGBoost is an advanced implementation
of gradient boosting algorithm—an ensemble tree method that uses gradient descent
to boost weak learners [40,41]. The XGBoost implementation has been widely used in
numerous ML applications and proven its outstanding performance (e.g., [42–44]). We use
the following hyperparameters: 100 estimators, maximum tree depth of 6, learning rate of
0.1, gbtree booster, and a ‘binary:logistic’ objective. As the number of features is relatively
small, hyperparameter tuning had little effect on the models. The hyperparameter tuning
included changing the number of estimators in the range of 50–200, the maximum tree
depth in the range of 4–8, and the learning rate in the range of 0.05–0.2. We do not present
the full results in the paper, as these hyperparameters had little effect on the model.

One of our primary concerns is that the hypothesized negative correlative between
strong wind and ignition probability is not a direct effect of the wind but rather that a third
variable is involved. For example, wildfires are significantly less likely to occur during
winter days, but winter days are commonly characterized by strong winds. We perform
several different analyses to address this concern. First, in addition to the PDP over the
entire data, we perform three similar analyses over subsets of the data in which the RH
is relatively low (<20, <30, and <40) and three more analyses for subsets in which the
fire weather index is relatively high (>25, >50 and >75). By using these subsets of the
data, we remove days in which wildfires are less likely to ignite, such as winter days.
We acknowledge that FWI values are affected by wind velocity, which may somewhat
affect our conclusions; however, we have several justifications for this analysis: (a) we also
present an analysis in which the subsets of the data are determined by RH, which is not
directly affected by wind velocity; (b) the correlation between FWI and wind velocity was
relatively low (0.2 for FWI–wind velocity compared to 0.41 for FWI–temperature and −0.78
for FWI–RH).

In addition, we present several three-dimensional PDPs which present the dependence
of ignition on wind velocity as well as FWI, FFDI or RH. These analyses demonstrate the
influence of wind velocity under different fire danger levels. The PDPs are performed using
Python’s Scikit package [45].

3. Results
3.1. Probability of Ignition Based on Statistical Models

Table 2 presents the probability of ignition based on a logistic regression as a function
of wind velocity, squared wind velocity and several control variables (RH, temperature,
population, and LAI). When assuming a linear dependence on wind velocity (Model #1),
we find that an increase of 1 m/s in wind velocity reduces the probability of ignition by 14%.
By adding a variable representing the squared value of wind velocity, the wind velocity
becomes positively correlated with fire ignition probability, while the squared wind velocity
variable is negative. This result verifies the expected dependence of ignition probability
on wind velocity—at very low wind speeds, an increase in wind velocity increases the
probability of ignition by approximately 8% per 1 m/s increase in wind velocity. Beyond a
certain threshold, however, wind velocity reduces the probability of ignition. For example,
an increase from 4 to 5 m/s reduces the probability of ignition by approximately 28%.

We next present the results of the GAM model. Figure 1 presents a PDP of wind
velocity based on the GAM model. Winds beyond 13 m/s are rare in the data, as is evident
from the wide confidence interval. We therefore only address the range between 0 and
13 m/s. These results support the hypothesis of reduced wildfire ignition in the presence
of strong winds. In fact, this decrease is much more substantial than the known increase
in wildfire ignition risk at low wind velocities (below 3 m/s), which is hardly statistically
significant in the current analysis.
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Table 2. Coefficients and odds ratios for the probability of ignition based on a logistic regression.

Model #1 #2

Coefficient Odds Ratio Coefficient Odds Ratio

Wind Velocity −0.15 *** −0.14 *** 0.07 *** 0.08 ***
(0.00) (0.00) (0.00) (0.00)

Wind Velocity - - −0.04 *** −0.04 ***
Squared (0.00) (0.00)

RH −0.05 *** −0.05 *** −0.05 *** −0.05 ***
(0.00) (0.00) (0.00) (0.00)

Temperature −0.007 *** −0.007 *** −0.008 *** −0.007 ***
(0.00) (0.00) (0.00) (0.00)

Population −0.0005 *** −0.0005 *** −0.0004 *** −0.0004 ***
(0.00) (0.00) (0.00) (0.00)

LAI 0.22 *** 0.25 *** 0.22 *** 0.25 ***
(0.00) (0.00) (0.00) (0.00)

Coefficients and odds ratios for the probability of ignition. The odds ratios are calculated as the exponentiated
coefficients of a logistic regression subtracted by 1; p-values in parentheses. *** p < 0.01.

Fire 2023, 6, x FOR PEER REVIEW 5 of 10 
 

 

Table 2. Coefficients and odds ratios for the probability of ignition based on a logistic regression. 

Model #1 #2 
 Coefficient Odds Ratio Coefficient Odds Ratio 

Wind Velocity −0.15 *** −0.14 *** 0.07 *** 0.08 *** 
 (0.00) (0.00) (0.00) (0.00) 

Wind Velocity - - −0.04 *** −0.04 *** 
Squared   (0.00) (0.00) 

RH −0.05 *** −0.05 *** −0.05 *** −0.05 *** 
 (0.00) (0.00) (0.00) (0.00) 

Temperature −0.007 *** −0.007 *** −0.008 *** −0.007 *** 
 (0.00) (0.00) (0.00) (0.00) 

Population −0.0005 *** −0.0005 *** −0.0004 *** −0.0004 *** 
 (0.00) (0.00) (0.00) (0.00) 

LAI 0.22 *** 0.25 *** 0.22 *** 0.25 *** 
 (0.00) (0.00) (0.00) (0.00) 

Coefficients and odds ratios for the probability of ignition. The odds ratios are calculated as the 
exponentiated coefficients of a logistic regression subtracted by 1; p-values in parentheses. *** p < 
0.01. 

We next present the results of the GAM model. Figure 1 presents a PDP of wind ve-
locity based on the GAM model. Winds beyond 13 m/s are rare in the data, as is evident 
from the wide confidence interval. We therefore only address the range between 0 and 13 
m/s. These results support the hypothesis of reduced wildfire ignition in the presence of 
strong winds. In fact, this decrease is much more substantial than the known increase in 
wildfire ignition risk at low wind velocities (below 3 m/s), which is hardly statistically 
significant in the current analysis. 

 
Figure 1. PDP for wind velocity based on the GAM model. A PDP analysis of the effect of wind 
velocity on the probability of wildfire ignition based on a GAM model. The red line presents the 
[25%, 75%] confidence interval. 

3.2. Probability of Ignition Based on a Machine Learning Model 
We now present a wind velocity PDP for the probability of ignition based on a ma-

chine learning model. The results are presented in Figure 2. The black line describes the 
partial dependence when accounting for the full dataset. As expected, the probability of 
ignition increases up to a wind velocity of 3 m/s and decreases for stronger winds. The 

Figure 1. PDP for wind velocity based on the GAM model. A PDP analysis of the effect of wind
velocity on the probability of wildfire ignition based on a GAM model. The red line presents the [25%,
75%] confidence interval.

3.2. Probability of Ignition Based on a Machine Learning Model

We now present a wind velocity PDP for the probability of ignition based on a machine
learning model. The results are presented in Figure 2. The black line describes the partial
dependence when accounting for the full dataset. As expected, the probability of ignition
increases up to a wind velocity of 3 m/s and decreases for stronger winds. The three
remaining lines describe a similar analysis when accounting for subsets of the data which
only include low RH values or high FWI values. While the partial dependence values are
not identical, the shape of the dependence plot is similar: for all four analyses, we find an
initial increase in ignition probability up to a certain threshold beyond which we receive a
strong decrease in ignition probability. In addition, in all four analyses, the threshold is set
at approximately 3 m/s.
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Figure 2. Probability of wildfire ignition as a function of wind velocity—different subsets of the data.
A PDP analysis of the effect of wind velocity on the probability of wildfire ignition. The figure is
based on an XGBoost model with 100 estimators. (a) we divide the data by RH; (b), we divide the
data by FWI values. A similar effect is obtained for all subsets of the data.

We now present a similar analysis using a contour plot to clearly demonstrate the
dependence of the target variable on wind velocity and fire danger. Figures 3–5 present
the probability of ignition based on wind velocity and one of three control variables: FWI,
FFDI and RH. Similar results are obtained in all three analyses: the probability of ignition
decreases beyond the threshold of 3–4 m/s.

Fire 2023, 6, x FOR PEER REVIEW 6 of 10 
 

 

three remaining lines describe a similar analysis when accounting for subsets of the data 
which only include low RH values or high FWI values. While the partial dependence val-
ues are not identical, the shape of the dependence plot is similar: for all four analyses, we 
find an initial increase in ignition probability up to a certain threshold beyond which we 
receive a strong decrease in ignition probability. In addition, in all four analyses, the 
threshold is set at approximately 3 m/s. 

 
Figure 2. Probability of wildfire ignition as a function of wind velocity—different subsets of the 
data. A PDP analysis of the effect of wind velocity on the probability of wildfire ignition. The figure 
is based on an XGBoost model with 100 estimators. (a) we divide the data by RH; (b), we divide the 
data by FWI values. A similar effect is obtained for all subsets of the data. 

We now present a similar analysis using a contour plot to clearly demonstrate the 
dependence of the target variable on wind velocity and fire danger. Figures 3–5 present 
the probability of ignition based on wind velocity and one of three control variables: FWI, 
FFDI and RH. Similar results are obtained in all three analyses: the probability of ignition 
decreases beyond the threshold of 3–4 m/s. 

 
Figure 3. Probability of wildfire ignition as a function of wind velocity and FWI. Estimation of igni-
tion probability based on wind velocity and FWI values. The histograms on the bottom and left sides 
of the figure present the distributions of wind velocity and FWI values. The figure is based on an 

Figure 3. Probability of wildfire ignition as a function of wind velocity and FWI. Estimation of
ignition probability based on wind velocity and FWI values. The histograms on the bottom and left
sides of the figure present the distributions of wind velocity and FWI values. The figure is based
on an XGBoost model with 100 estimators. As expected, the probability increases with FWI for all
wind velocity values. For substantial FWI values (FWI > 30), the probability of wildfire ignition
substantially decreases above a threshold of approximately 3–4 m/s.
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4. Discussion

In this paper, we performed an empirical examination of the effect of wind velocity
on the risk of wildfire ignition. We applied both logistic regressions and ML models to
validate the negative effect of strong winds on wildfire ignition risk and quantify the wind
velocity threshold beyond which wildfires are less likely to ignite. The results of the study
show that strong winds are indeed negatively correlated to wildfire ignition risk. This
result holds when accounting for additional factors which determine wildfire risk. Beyond
a threshold of approximately 3–4 m/s, the probability of ignition substantially decreases
and becomes almost negligible at wind velocities of around 6 m/s. These values are in
line with previous laboratory studies which have demonstrated that ignition probability
is reduced at similar values [24,25] and cigarette butts are normally extinguished by such
winds [19,20].

Several limitations of this study should be noted. First, we performed this analysis
in a 25 km resolution, possibly missing mesoscale phenomena which affect the variability
of wind velocity within each region. For example, topography or canopy cover affect the
distribution of wind velocity within each region. An additional limitation is that this study
was performed using a daily temporal resolution; spatiotemporal observations in which
the winds only occur in certain hours of the day could still be at relatively high wildfire
ignition risk during some hours of the day. Future studies could examine the effect of wind
in finer resolution, such as the maximal daily wind gusts.

The results of this study could have important implications for fire weather indices.
To the best of our knowledge, the most common indices assume a monotonic correlation
between wind velocity and fire risk—both for ignition probability and for wildfire propaga-
tion. While this assumption is appropriate for wildfire propagation, we believe that indices
describing wildfire ignition risk should reflect a negative correlation with wind velocity
beyond a certain wind velocity threshold. In this paper, we have demonstrated that this
effect can be substantial even when controlling for additional factors. Since wind is one of
the most important factors in wildfire prediction, we propose to re-examine its role in the
various fire weather indices to better reflect its complex and contradictory effect between
wildfire ignition and wildfire propagation.

5. Conclusions

We examine the effect of wind velocity on wildfire ignition risk using a global dataset.
We find that strong winds decrease the probability of wildfire ignition. This result is in line
previous studies which have demonstrated this effect in laboratory experiments. The nega-
tive effect of strong winds on wildfire ignition is in contrast to the (strong) positive effect of
strong winds on the rate of spread of wildfires which are already burning, demonstrating
the complex relationship between wind and wildfires.
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