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Abstract: Galicia is the Spanish region most affected by wildfires, and these wildfire patterns are the
object of intense research. However, within Galicia, the mountain areas have certain socioeconomic
and ecological characteristics that differentiate them from the rest of the region and have thus far
not received any specific research attention. This paper proposes an analysis of the spatial wildfire
patterns in the core Galician mountain systems in terms of the frequency, ratio of affected area,
suppression time, and extension. The contiguity relations of these variables were examined in
order to establish neighbour interactions and identify local concentrations of wildfire incidences.
Furthermore, a spatial econometric model is proposed for these dependent variables in terms of a
set of land cover (coniferous, transitional woodland–shrub) and land use (agricultural, industrial),
complemented by population density, ecological protection, and common lands. The relevance
of these parameters was studied, and it was found amongst other results, that economic value
(agricultural and/or industrial) mitigates wildfire risk and impact, whereas ecological protection
does not. In terms of land cover, conifers reduce the frequency and affected area of wildfires, whereas
transitional land has a mixed effect, mitigating suppression time and extension but increasing the
wildfire frequency. Suggestions for policy improvements are given based on these results, with a
particular emphasis on the need for coordination of local policies in order to take into account the
neighbour dependencies of wildfire risk and impact.

Keywords: wildfire patterns; mountain areas; spatial econometrics; spatial statistics; forest land
cover; Galicia

1. Introduction

Galicia is the most northwestern autonomous community of Spain, accounting for
approximately 8% of the national forest area. Galicia can roughly be divided into two
regions with different economic dynamics. The mainland has a strong dependence on the
agricultural and livestock sectors, whereas the more densely populated Atlantic coast
area is more industrialized. However, the cultural heritage and socioeconomic rela-
tionships in both regions are strongly determined by the presence of the forest. First,
the Galician forests provide goods and services that significantly influence the local econ-
omy. In particular, the region provides about 54% of the overall Spanish timber logging
from coniferous and hardwoods [1]. Forest ownership is mostly spread over many pri-
vate owners, with small land parcels (fewer than 0.3 ha per plot with a total average of
1.6 hectares per owner, [2]). They employ the forest as a financial asset focused on satisfying
the family’s occasional economic needs, such as buying a car or remodelling a house. There-
fore, the widely spread character of forest property reduces the industrial incentive but
represents a strategic source of family savings. Second, the local population also develops
many leisure activities in the forest. The Galician woodland thus plays a socioeconomic
role that shapes the local lifestyle and cultural heritage in a more general sense, and public
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policies should consequently protect this natural resource by preserving both the forest
stand and ecosystem services.

A peculiarity of the Galician woodland is the heterogeneity and variety of land own-
ership, in combination with a small average terrain size. This results in the existence of
different types of forest landowners who, in their choice of land management options, must
take into account the spatial relations with the neighbouring terrains and owners [3,4].
These relations influence the landscape, the ecosystem values, and the fire risk, and should
therefore be taken into account by private as well as public agents, in particular when
developing forest administration policies, for instance, those related to the promotion of
proper forest cover and land usage, and their effect on wildfire risk.

Indeed, wildfires are the most critical hazard faced by the Galician forests. Uncon-
trolled wildfires cause critical natural and material damages as well as a high social disrup-
tion. This is not only because of the socioeconomic importance of forest land, as described
above, but also because of the increasing ecological awareness of the importance of ecosys-
tem conservation and preservation and the intense coverage of wildfires by the mass
media [5]. The occurrence of wildfires presents strong anthropomorphic influences linked
with the disruption of traditional land management and changes in the patterns of forest
environment uses. While this diagnosis is generally valid for the whole of Galicia, there is
also an important need to differentiate both the analysis and suggestions for improvement.
This is because there are strong (spatial and temporal) heterogeneities in the patterns of
wildfires which should be taken into account when designing and implementing efficient
forest policies [6]. Apart from the obvious concentration of wildfires during summer, some
years also see global hot spots in comparison with the overall time series trends [7,8]. The
spatial distribution in the past decades also manifests strong spatial heterogeneity trends,
with some regions showing increasing rates wildfires and other regions, on the contrary,
showing decreasing rates [6,9]. For all these reasons, it makes sense to differentiate the
wildfire analysis in Galicia depending on the geographical area.

In this paper, we particularly focus on the Galician mountain systems. The core of
the Galician mountains lies in the provinces of Lugo and Ourense. Both are relatively
wild areas whose ecosystem reservoir is important in terms of air quality, water supply,
and biodiversity. In economic terms, they have a low presence of industry, and the small
population depends strongly on the primary sector, from the obvious timber resources
to the highly appreciated agrifood products, such as wild harvesting, game hunting, and
honey production. In the present paper, we will develop a statistic and econometric
modelling of wildfires in the Galician mountain area, with a particular emphasis on the
effect of spatial heterogeneity and land use. Although the main point of the model is to
describe and understand this spatial heterogeneity and some of the factors that influence it,
we will also make some remarks about how these effects could be taken into account when
designing prevention policies and the protection of forest services and goods.

The paper begins with a brief literature review of the previous research on wildfires,
mountain regions, and forest management. Section 3 contains a description of the research
methodology, with an emphasis on the definition of the spatial weight matrices and an
overview of the statistical and econometric models. The data are described in Section 4, with
a detailed description of the area under study and of some essential statistical characteristics.
The main research results are presented in Section 5, while Section 6 contains a brief
discussion, conclusions, and recommendations for future research.

2. Background

Wildfires can occur naturally, but in many cases human factors are involved. They
are thus a very relevant field of study to analyse the anthropomorphic hazards faced by
natural resources at a global level as well as specifically for Spain [10–15]. Previous studies
highlight the relevance of different types of socioeconomic patterns on the wildfire risk
through variables such as the population density, community structures, agricultural use,
livestock activity, and economic organisation.
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Research on wildfires applies a wide range of statistical and econometric frameworks,
from discrete statistical models [16,17] over beta regressions [18] to panel data [19] or spatial
econometric models [20]. However, in most cases, spatial relations are not explicitly
taken into account through specific statistics and econometric models; instead, panel data
models are used to control temporal and spatial patterns. This research proposes to focus
explicitly on spatial statistics and econometrics to relate the wildfire occurrence to other
independent variables.

Within the context of mountain research in Spain, there exists a certain focus on forest
management and wildfire prevention. For example, the work by Ortega et al. (2012) [21]
centres on the agricultural changes in Spain and how these have conditioned the wildfire
risk during the last decades. Other factors that have been studied within the same scope
are, for example, soil moisture [22,23], climate, and topographic features [24,25]. With
respect to the Galician mountain systems in particular, Lombao et al. (2015) [26] analysed
how wildfires change the natural mountain environment, while other papers such as those
by Fuentes et al. (2013) [27] and Marey-Perez et al. (2021) [28] contribute to the design
of preventive measures for avoiding wildfire risk through public policy improvements.
The regulation and administration of natural resources in the Galician mountain regions are
also the subject of papers by Pérez et al. (2010), Bruña and Pérez (2018), Caballero (2015), and
Nieto-Romero et al (2021) [29–32]. Several of these works have emphasized the relevance
of local particularities and specifically of property fragmentation and type of ownership
to the degree of success of the implementation of public policies. There exist studies on
wildfires in other Mediterranean mountain areas, such as those by Fonseca et al. (2017),
Martínez et al. (2022), and Colonico et al. (2022) [33–35]. However, the present authors
are not aware of any research that explicitly uses spatial statistical and/or econometric
methods to investigate wildfire risk in Spanish mountain and rural areas, let alone for the
specific case of the Galician mountain areas.

The present work thus aims to contribute to the protection and preservation of the
natural environment in the Galician mountain range. This topic is not only of high ecologi-
cal and socioeconomic interest, but also of academic interest. It involves both ex ante and
ex post policies as well as the triangular relation between, first, policy; second, variables
that encode local conditions such as the ratio of agricultural land; and third, purely spatial
factors such as contiguity. In this sense, we have applied methodologies that are innovative
in this particular context, and thus contribute to a better understanding and hopefully a
better protection and management of the natural resources in Galicia.

3. Methodology

This paper focuses on spatial statistical and econometric models to describe and
analyse wildfire patterns. In particular, the spatial relations between each pair of local
entities determine a binary weight matrix W, as defined by Equation (1). Here, wij = 1 if
the element in row i and the element in column j are contiguous; otherwise, wij = 0, with
wii = 0 by definition.

W =


w11 w12 · · · w1j
w21 w22 · · · w2j

...
...

. . .
...

wi1 wi2 · · · wij

 (1)

This matrix can be used at different lag levels. The W(1) matrix encodes only direct
contiguity, whereas W(2) also includes spatial relations in which two entities border a
common ("lag-1”) entity but are not necessarily direct neighbours, up to n spatial lags.

These spatial lags themselves can be defined in different ways, the most common
being the “rook” and the “queen” relationships, as seen in Figure 1. The rook model takes
into account the direct contact with the nonzero-length contiguity border. The bishop
relation incorporates only the diagonal cross on the chessboard, representing entities which
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have a common vertex but no common border. Finally, the queen frame combines the rook
and bishop connection models. Note that a bishop relation of order 1 always represents
a rook relation of order 2, but not all rook relations of order 2 can be written as a bishop
relation of order 1. Since our intention is to analyse the relevance of spatial relations to
wildfire patterns at different levels, we will use the most general relationship, namely the
queen contiguity model.

Figure 1. Contiguity matrix levels: 1. rook; 2. bishop; 3. queen.

The contiguity matrix defined above allows for the calculation of different indicators
of spatial (auto)correlation. The first indicator is Moran’s I index. This index is a global
indicator of the existence of spatial autocorrelations among nearby units. It is calculated at
different spatial lag values, and the value that results (after the adequate normalization) in
the optimal level of spatial autocorrelation is the one that will be used in the remainder
of the study. Equation (3) describes Moran’s I index, calculated in terms of the number
of observations (N), the sum of the weight matrix (wij), the recorded data (x) for each
pair of entities (i, j)—for example, the frequency of wildfires—and the global average (X̄).
If the result is significantly different from zero, then it confirms the existence of spatial
autocorrelations. Otherwise, there is no evidence to support the existence of spatial cluster
patterns as opposed to the null hypothesis of spatial randomness.

I =
N

∑i ∑j wij

∑i ∑j wij(xi − X̄)(xj − X̄)

∑i(xi − X̄)2 (2)

The previous statistic is a global measure of the presence or absence of spatial patterns.
In order to identify the concrete local spatial autocorrelation patterns, i.e., to pinpoint the
location of spatial clusters as well as outliers, a local Moran index Ii is also calculated for
each local entity i:

Ii =
(xi − x̄)

∑n
k=1(xk − x̄)2/(n − 1)

n

∑
j=1

wij(xj − x̄) (3)

where the index k is the sum of all entities, whereas j is the sum of only thee entity i’s
neighbours (i.e., wij = 0 if i and j are not contiguous).

With these data, a local indicator spatial autocorrelation (LISA) map is constructed
for all locally significant autocorrelation values by using the position in the scatter plot of
absolute differences between this local Moran index and the global mean [36]. Thus, points
that falls in the top-right quadrant of the scatter plot represent a high–high cluster relation
because the location i and its neighbours (at the spatial lag in question) both show high
values (for instance, of the frequency of wildfires) relative to the global mean. Likewise,
low–low values (the bottom-left quadrant of the scatter plot) represent a cluster of low
incidence relative to the global mean. Outliers correspond to high–low (bottom-right) and
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low–high (top-left) relations, i.e., entities with a high incidence in spite of the fact that their
neighbours show values below the global average, or vice versa.

Another indicator of local clustering patterns used in this research is the Local
Getis–Ord (G∗i) statistic. This analyses the presence of hot and cold spots in the data,
i.e., neighbourhoods that are significantly higher or lower than a globally average neigh-
bourhood. Equation (4) explains how this G∗i statistic is obtained from the adjacent data
(xj), its standard deviation (S), and global mean (X̄).

G∗i =
∑n

j=1 wi,jxj − X̄ ∑n
j=1 wi,j

S

√
n ∑n

j=1 w2
i,j−

(
∑n

j=1 wi,j

)2

n−1

(4)

A z-score is then obtained for each location by comparing this result with the global
expected value, which is divided by the standard deviation; see Equation ((5)). These
values are expected to follow a standard normal distribution, and thus a z-score of 1.65
(in absolute value) or higher is significant at an α = 0.10 level, 1.96 at an α = 0.05 level
etc., with positive values indicating hot spots and negative values indicating cold spots.
Note that the Getis–Ord statistic verifies only the value of a variable in a neighbourhood
(entity i included) and compares this with the globally expected value, whereas the local
Moran index compares the local value in a certain entity i with its direct neighbours j. In
this sense, most Getis–Ord hot spots roughly (but not necessarily) correspond to high–high
Local Moran spots, while cold spots correlate with low–low spots.

Zi =
G ∗i −E[G]

SD[G]
(5)

Finally, the analysis implements a spatial econometric model to identify how well the
application of spatial relations and land use works to describe and predict wildfire patterns
in the study area. Equation (6) describes the Durbin model, which is a complete spatial
econometric design that involves a dependent variable Y and its spatial lag(s) WijY, a set of
independent variables X and their spatial lag(s) WijXki, the spatial error µi, and the random
error ε.

Yi = αi + ρiWijYi−1 + βkiXki + γkiWijXki + λiWijµi + εi (6)

Rather than imposing a concrete econometric model beforehand, the approach fol-
lowed here dictates that the data should decide which model is best. The most commonly
used models in this type of spatial econometric research are the spatial lag model (SLM),
spatial error model (SEM), and spatial simultaneous autoregressive model (SAC). De-
pending on the concrete model selected, one or more of the terms in Equation (6) will
be absent.

Lagrange multipliers (LM) and a portmanteau SARMA test (Spatial AutoRegressive
Moving Average) are used to decide upon the most adequate one between these mod-
els [37–39]. Essentially, the LM statistics determines if there exists a spatial dependence
by considering the spatial lag (SLM) or spatial error model (SEM), separately, while the
portmanteau SARMA test involves both spatial effects simultaneously, combined into a
SAC model. Thus, if all tests are significant (p-value below 0.05), a SAC will be indicated. If
one of the LM tests is significant but the SARMA test is not (or less) significant, then either
an SLM or an SEM will be implemented. If all tests are not significant, then an ordinary
least squares (OLS) should be run without considering spatial patterns. Note that LM tests
are run also for robust error and robust lag, which should be considered if both normal LM
test statistics are significant in order to decide which model to apply [40]. Figure 2 offers a
more complete summary of the different steps and models, depending whether or not the
null value of certain parameters is rejected.
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Figure 2. Types of spatial econometric models. Source: Elhorst and Vega (2013) [41].

The analysis makes use of specialised software, including R-Project, GeoDa, and QGIS.
QGIS was used for spatial cleanings and shape management [42], GeoDa to create the
weight matrices [43], and R-Project (with spatial packages such as spdep [44] or tmap [45]
among others) to develop all the statistical and econometric models [46].

4. Data

In this research, the main Galician mountain systems are studied. These are the
Ancares-Caurel region in the province of Lugo, and Macizo Central, Pena Trevinca, and Pena
Maseira in the province of Ourense. Figure 3 shows where these regions are located within
the overall situation of Galicia, as well the all their parts that are protected as nature reserves
(the coloured polygons). The total area of these four regions totals 300,413.2 hectares
128,390.4 ha which have been affected by a total of 20,216 wildfires registered from 1991
to 2019. This paper uses parishes as local entities to analyse the wildfires’ patterns and
their relationship with land management. Parishes are originally religious units which are
still the most useful representation of the current distribution of Galicia into small social
districts, each with their own characteristic customs and lifestyles. These 232 parishes are
also shown (delimited by lines) in the right-hand side of Figure 3.

Figure 3. Study area: the main Galician mountain systems. The coloured parts are nature reserves.
The panel on the right shows the distribution in parishes, used as local entities in this study. (Source:
Xunta de Galicia, 2022 [47]).
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Figure 4 describes the key features of the main land use and dominant tree species for
both Galicia in general and the Galician mountain areas in particular. For Galicia in general,
the central region is characterised by the importance of agriculture, which is also prevalent
in some specific places on the coast. Outside of these, forest and shrub cover dominates
the landscape, but with a large irregularity in terms of density and of main species across
the territory. Woodlands and sparse tree stands, although present all over Galicia, are
dominant mainly in the coastal areas. Shrublands are principally present in Galicia’s
southeast, including the mountain areas studied in this study, with an important presence
also in the interior of the Pontevedra province. In terms of leading species, Eucalyptus
plantations prevail in the coastal areas, particularly along the north coast. On the Atlantic
coast, Eucalyptus coexists with Pinus, which is also common in some specific areas. Quercus
becomes ever more important, still coexisting with Pinus towards the interior regions,
including the mountain regions, where the Eucalyptus is residual.

Figure 4. Land use (left) and dominant species (right) in Galicia and in the Galician mountain areas.
(Source: MITECO, 2011 [48]).

The variables used in this study are shown in Table 1. As dependent variables,
four quantities are used that characterize the wildfire patterns, namely their frequency,
ratio of affected area, suppression time, and extension. The Galician Regional Forest Office
have collected these data since 1991, and the full range of available data was used in this
paper [49]. All these variables are expressed as yearly (total or average) quantities.

In the econometric model, these dependent variables will be linked to a set of indepen-
dent variables. The first four of these characterise the land cover and usage, namely the
ratios of agricultural land, of coniferous area, of transitional woodland–shrub area, and of
industrial and related facilities, with respect to either the total parish area, the parish forest
area, or the parish nonforest area. This information was obtained from the CORINE Land
Cover (CLC) maps, using the most recently published version for each year (1990, 2000,
2006, 2012, 2018) [50]. The ratio of agricultural land over total area is used to analyse how
the evolution of this parameter affects the occurrence and effect of wildfires. If this variable
turns out to be statistically significant, it could be useful to promote or limit (depending on
the sign of the estimated coefficient) this type of area. The remaining variables follow a
similar aim: the ratio of coniferous areas characterises the forest stand structure (which is
particularly relevant in terms of the combustion profile and wildfire propagation); transi-
tional woodland–shrub is indicative of shrubland presence; and the ratio of industrial area
and facilities typifies secondary and tertiary economic development.

The last three independent variables are the population density, the ratio of protected
land, and the ratio of common lands. The population density identifies where human
dwellings are most concentrated. Protected land (in particular, protected birdlife reserve
or ZEPA, which is the best-documented variable related to ecological protection in these
regions) and common lands are indicative of land regulation and the role it plays in risk
exposure in these mountain areas. These three variables were obtained from regional
government information [47].
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Table 1. Definition of Variables.

Dependent Variables

Variable Definition

Frequency Number of wildfires recorded (per year)
Ratio of affected area Yearly rate of forest area affected by wildfires (as a

percentage over total parish area)
Suppression time Average effective time dedicated to suppressing each

wildfire (in hours per wildfire)
Fire extension Average wildfire extension (in hectares per wildfire)

Independent Variables

Variable Definition

Ratio of agricultural lands Ratio of agricultural land over total parish area
Ratio of coniferous area Ratio of coniferous stand over forestry area in the

parish
Ratio of transitional woodland–
shrub

Ratio of woodland–shrub transitional cover as a pro-
portion of parish nonforest area

Ratio of industrial areas and facili-
ties

Ratio of area dedicated to industrial, commercial,
and (road and rail) transport infrastructure over total
parish area

Population density Inhabitants per hectare in the parish
Protected Birdlife Reserve (ZEPA) Ratio of land under special environmental protection
Common lands Ratio of lands under community-based management

Figure 5 shows the spatial distribution of the dependent wildfire variables as average
values over the full study period. Note first that the data present a marked spatial inho-
mogeneity both across and inside the different mountain areas and second that there are
important differences in these irregularities for the different variables under study. In other
words, it can be expected that the spatial patterns to be uncovered will be different across
the different variables.

Figure 5. Summary of wildfires variables: yearly average of frequency, affected area (as percentage of
total parish area), suppression time (in minutes), and fire extension (hectares).
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Figure 6 describes the spatial distribution of the land cover and other independent
variables. These plots also present important spatial pattern differences across the mountain
systems and between the individual parishes. For example, the coniferous rate is dominant
in the southern part of the Macizo Central, with a second significant contribution in the
south of the Ancares-Caurel system. The agricultural lands lie mainly in the central part
of Ancares-Caurel and on the north–south line across the Meseta Central, Pena Trevinca,
and Pena Maseira. The population density is low throughout the whole region, with the
exception of the two smallest parishes in Ancares-Caurel and Meseta Central, which have a
higher concentration. Finally, the protected areas lie mostly in the northeastern parts of
Ancares-Caurel and Pena Trevinca, while the common lands have a distribution that varies
greatly throughout the whole region of study.

Figure 6. Summary plot of dependent variables (left to right). Ratio of coniferous area, agricultural
lands, transitional woodland–shrub, and industrial areas and facilities (first row). Population density,
ratio of protected areas, and ratio of common lands (second row).

The correlations between all (dependent and independent) variables are shown in
Figure A1 in the Appendix. The results generally present low statistical correlations,
except amongst the dependent variables, where extension is significantly correlated with
frequency and especially suppression time. We can thus trust that the econometric models
will not present problems of redundant information and hence unreliable significance and
determination levels.

5. Results and Discussion

The first step of the study was to determine the number of lags to consider in the
construction of the weight matrix. Figure 7 plots the Moran‘s I statistic and the 95%
confidence interval for spatial lags from one to five, for all four dependent variables. For the
frequency and the ratio of affected area, all results (up to lag 5) are statistically different
from zero. For the suppression time and the fire extension, the I statistic shows a significant
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spatial influence up to level-2 neighbours. These results clearly demonstrate an important
spatial influence, even beyond the nearest neighbours. Nevertheless, the highest value of
the I statistic is obtained, in all four cases, for a single lag, i.e., taking into account only the
influence of the nearest neighbour. Moreover, we have also verified that the corresponding
p-values (indicative of how strongly the null hypothesis of spatial randomness can be
rejected) is much smaller for the suppression time and extension variables at lag 1 than
at lag 2.

Figure 7. Moran I results and 95% confidence intervals for the four dependent variables and spatial
lags 1–5.

Figure A2 shows the queen contiguity relations for one spatial lag, as well as a his-
togram for the number of neighbours per parish. Note that the average number of direct
(lag 1) parish neighbours is close to five.

Figure 8 shows the scatter plots with the local values (horizontal) and the neighbouring
values (vertical) at the optimum spatial lag, namely 1. For all variables, the relation between
the local data and spatial lagged values is positive, with a relatively narrow confidence
interval for the frequency, affected area, and suppression time variables. There is thus a
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clear positive correlation between the value of each variable at any location X and the same
variable in the neighbouring locations. Note that even for the extension, where the slope is
relatively flat and the confidence interval range quite wide, it still does not fall down to
zero (which would be indicative of a possible absence of spatial dependence).

Figure 8. Scatter plot of the local values of the dependent variables (X-axis) and their neighbours
(Y-axis) at the optimum spatial lag obtained from Figure 7, namely lag-1 for all four variables.

The analysis so far confirms the importance of spatial patterns and thus the relevance
of identifying clusters as well as hot/cold spots, and of performing an explanatory econo-
metric model. With respect to the first part, the clusters and hot/cold spots, the local Moran
I and the Getis–Ord G∗i statistics are shown in Figure 9. The first row plots the local Moran,
at a 5% significance level, highlighting many areas with significant high–high or low–low
spatial clustering patterns. The Getis–Ord results show several hot spots for all four vari-
ables and also a few cold spots in terms of frequency, affected area, and suppression time.
The most salient features from both figures are the following. There is an extended region
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of high fire frequencies which covers a large part of the Macizo Central and Pena Maseira.
This is clearly seen in the Moran plot as a high–high region and in the Getis–Ord plot as a
hotspot. A smaller and partially overlapping region shows similar features in terms of the
other variables. There is also a high–high region and corresponding hotspot for suppression
time in the northeastern corner of the Ancares-Caurel region, of which roughly half is also a
frequency high–high/hotspot region, with the other half being similar in terms of extension.
All of these are obviously regions that demand specific spatial attention in terms of fire
prevention and control. On the opposite end of the spectrum, there is a low–low region
and corresponding cold spot in terms of frequency in the central–southwestern part of the
Ancares-Caurel region, accompanied by small low–low/cold spot patches for the affected
area and suppression time. It would be interesting to verify whether this lower occurrence
is due (only) to natural factors or whether local land use and policy measures also play a
part which could be emulated in other areas.

Figure 9. Local Moran I (top) and Getis–Ord (bottom) results.
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The above-mentioned statistics and plots prove that there exist important spatial
dependencies in the variables that are being studied. The next step was then to attempt
a partial explanation, namely to relate the wildfires with land management and spatial
modellings. For this purpose, a set of econometric models were developed according to
Figure 2 above. The Lagrange multiplier criterion determines the selected functional form
according to the significance of the spatial dependences (p-value < 0.05). Table 2 provides
the test results. Based on these results, it can be concluded that for the wildfire frequency, a
SAC model is appropriate because the SARMA as well as the LM error and LM lag null
hypotheses are all rejected with high significance. For the suppression time, the results also
indicate that a spatial model is appropriate, but, in this case, an SLM model is appropriate
because the LM error and LM lag statistics are more significant than is the SARMA, while
the LM lag has a higher value than does the LM Error.

With respect to the wildfire extension, the results in Table 2 show that an OLS model
is indicated rather than any spatial econometric model since none of the standard LM
statistics significantly rejects the corresponding null hypothesis. Note that this does not
imply that the spatial relations are not significant but rather that these spatial relations
are already accounted for through the dependence on the independent variables, without
the need for an explicit inclusion of the lagged dependent variable or error term. We
leave for further research whether this picture would change with the addition of more
independent variables or more fine-grained information (for example, about individual
terrains) and/or whether other statistical tools could be relevant to analyse the spatial
dependencies. Finally, with respect to the affected area, an SEM model is indicated because
of the significance of the (normal and robust) error statistic. In the following section, we
describe the development of the spatial econometric models for the frequency, suppression
time, affected area, and OLS for the fire extension.

Table 2. Model selection with the Lagrange multiplier and SARMA results.

Frequency Suppression Time Fire Extension Affected Area

LM error model 21.726 *** 2.861. 0.060 3.605.
LM lag Model 19.451 *** 3.801. 0.002 2.116
LM robust error Model 2.609 0.196 0.401 4.657 *
LM robust lag Model 0.333 1.136 0.352 3.168.
SARMA 22.060 *** 4.000 0.403 6.773 *

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 3 presents the spatial econometric models. Note that the constant parameter is
set to zero; in other words, the overall mean is distributed across the distinct mountain
areas through the use of one dummy variable for each region. These dummy variables
are significant in almost all cases. In the few cases where it is not (Pena Trevinca for
fire extension and the affected area, and Ancares-Caurel for the affected area), it should
nevertheless be retained in the model because the other levels are significant.

In regards to the independent variables, the rate of transitional woodland–shrub is the
most contradictory because it helps to reduce both the fire extension and suppression time,
but it has a significant influence in increasing the frequency of fires. We are not aware of
any previous paper studying this variable in similar areas, so we could not compare the
obtained result, which would certainly deserve further study. A possible interpretation
could be the following. The usual form of cleaning agrarian lands in the area under study
is by burning the cleared vegetation. Since these agrarian lands are often right next to
transitional land, which moreover presents a high amount of potential fuel, the presence
of this transitional land could increase the frequency of fire ignition. However, since it
typically lies close to farms and is well accessible, these fires are suppressed more rapidly
and affect a smaller extension compared with other types of forest fires.
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The ratios of agricultural land, industrial areas, and forestry coniferous cover have
various levels of significance but (whenever significant) always a mitigating impact on all
dependent variables. Agricultural land, in particular, will reduce the suppression time and
fire extension, whereas it has no significant influence on the frequency or the affected area.
This contrasts with previous studies on the whole of Galicia. Chas-Amil et al. (2015) [51]
found there to be a positive effect on wildfire number, while Barreal et al. (2011) find the
same effect on the recorded number of wildfires but a negative effect for affected areas [52].
The landscape could explain the result because, as already mentioned earlier, in the Galician
mountain systems, agricultural lands are relatively easily accessible to firemen, and in a
mountain area this could mark a significant difference in the time required to fight a fire as
well as its extension. The coniferous ratio is significant in explaining the wildfire recording
and the affected area. This result partially contradicts that reported by Barreal and Loureiro
(2015) [15], who again, studied Galicia as a whole. The reason could be the low ratio of
these plantations in part of the studied area, where they are located close to houses and
serve more for home firewood than do other species with more extended rotation periods
and more specific economic use which are more widespread in other parts of Galicia. The
proximity of such coniferous firewood to the dwellings implies an easier management and
could thus explain the mitigating impact. The presence of industrial facilities reduces the
wildfire frequency, probably because their economic relevance often linked to the primary
sector, making these regions better managed.

The population density, protected areas, and the ratio of common lands are relevant
to explain some wildfire features, but in contrast to the previously mentioned variables,
they have a positive (fire-enhancing) effect. In particular, a higher population density has a
strongly significant influence on the affected area, which is in contrast to the mitigating
impact found by De Diego et al. 2021 [12], but in agreement with the positive (increas-
ing) effect found by Barreal and Loureiro (2015) [15]; however, these authors found this
increasing effect for all considered wildfire-dependent variables, not only the affected
area. The ratio of protected areas significantly increases fire occurrence, suppression time,
and affected area. Thus, it is clear that ecological protection does not translate into better
protection against fire hazard in this area. Finally, common lands increase the affected area
of wildfires. This is due to an intricate combination of issues, in which conflicts between
forest communities as well as between commoners of the same community often play a
crucial role [53].

The interpretation of these results and their comparison with previous results in
the literature shows that there are clearly several subtle issues at play in explaining the
wildfire patterns in the Galician mountain systems (and in Galicia in general). It would be
interesting, for future research, to verify the importance of the elder and scattered character
of the population, who manage the areas close to their houses but entrust the managing of
the lands further away to their progeny who are mainly motivated by economic factors.
More generally, the different management models and their relation to economic interests
should be scrutinized in detail.

From an econometric point of view, note that the ρ and λ parameters, where present
in the model in question, are indeed significant, thus confirming the consistency of the
model selection. Note also that the negative value of ρ for the frequency has no direct
interpretation because it is combined with λ in the SAC model [54]. In fact, when an LM
lag model (without error term) is run for the frequency variable, this returns a positive ρ,
thereby confirming the amplifying character of the neighbours’ influence on the wildfire
frequency, as seen above in Figure 8. The highly significant, positive value of λ for the
wildfire frequency, and to a slightly lesser degree for the affected area, is probably indicative
of the obvious fact that other factors beyond the ones included in the present model are
also relevant to explain the wildfire behaviour.
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In the models with an autoregressive spatial parameter ρ, i.e.,: for the frequency and
suppression time, a correct interpretation of the coefficients implies an impact analysis.
For this purpose, the total effect is calculated and split into two terms: the direct effect,
and the indirect effect or spillover influence, as shown in Table 4. For the frequency variable,
in all cases, the direct and indirect effects have opposite signs. However, as pointed out
above, this is likely due to the interplay between the negative value of ρ and the positive
λ, and therefore should not be attached too much importance. The total effects, however,
can safely be interpreted and compared. In particular, the strong mitigating value of the
presence of industrial land stands out when compared to the other variables, which is
indicative of the above-mentioned importance of economic interest and the associated
models of management in fire prevention. For the suppression time, agricultural land and
transitional woodland–shrub have similar mitigating effects, mainly direct. Curiously, this
is also of the same magnitude (but opposite sign) as that of the ratio of protected land.
Thus, if the ratio of agricultural land is increased by 1%, for example, then the average
time to extinguish the fire decreases directly by 0.02 h, which is further augmented by the
indirect effect which increases the reduction to reach a global effect of 0.024 h/fire. The
opposite happens with the protected areas, which have a magnifying effect, both directly
and indirectly, leading to a total increment of 0.02 h/fire for a 1% increase in protected areas.

Table 3. Econometric model results.

Frequency Suppression Time Fire Extension Affected Area

Ancares-Caurel 2.075 *** 2.286 *** 5.470 ** 0.425
Macizo Central 5.291 *** 2.477 *** 6.851 *** 2.106 ***
Pena Maseira 7.390 *** 2.339 *** 6.057 * 1.719 **
Pena Trevinca 3.700 *** 1.483 *** 2.220 0.758
Agricultural land −0.001 −0.020 *** −0.077 * −0.006
Coniferous −0.010 * −0.003 −0.016 −0.013 **
Transitional
woodland−shrub

0.027 * −0.017 * −0.114 * −0.001

Industrial areas −0.788 * −0.060 −0.448 −0.029
Density −0.005 −0.007 −0.023 0.016 ***
ZEPA 0.026 *** 0.017 *** 0.049 0.010.
Common lands 0.002 0.001 0.041 0.10 *
ρ −0.527 *** 0.161.
λ 0.723 *** 0.218 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 4. Direct, indirect, and total effects on variables of the autoregressive spatial model.

Frequency Suppression Time
Direct Indirect Total Direct Indirect Total

Ancares-Caurel 2.214 −0.893 1.320 2.300 0.425 2.725
Macizo Central 5.643 −2.277 3.366 2.492 0.461 3.185
Pena Maseira 7.882 −3.180 4.702 2.353 0.435 2.788
Pena Trevinca 2.878 −1.161 1.717 1.492 0.276 1.768
Agricultural land not relevant −0.020 −0.004 −0.024
Coniferous −0.011 0.004 −0.007 not relevant
Transitional
woodland−shrub

0.029 −0.011 0.017 −0.017 −0.003 −0.020

Industrial areas −0.841 0.339 −0.501 not relevant
Density not relevant not relevant
ZEPA 0.028 −0.011 0.017 0.017 0.003 0.020
Common lands not relevant not relevant
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A comparison of the fitted values based on the previously mentioned results with the
original data is shown in Figure 10. The upper figures show the fitted results; the bottom
ones the residuals. Note that the higher concentration of frequency in the south is well
captured by the model. The peak in the upper-northeast corner is correctly predicted, but
its actual value is underestimated by the model, thus leading to a substantial residual. The
same occurs with the frequency peak in the bottom-left corner (western part of the Macizo
Central), which is also correctly identified but underestimated by the model, again leading
to a substantial residual. Likewise, in terms of suppression time, the peaks in the south
part of the Galician mountain system are well approximated. The more isolated regions
of high concentrations in the northern part are correctly located by the model, but there
are a few isolated parishes where the actual value is underestimated, thus showing high
residuals. Finally, for the affected area, the prediction is in general very good, except for
a few individual parishes. The presence of residual outliers (for each of the variables)
is again indicative that there are additional variables beyond the ones considered here that
influence the spatial wildfire patterns.

Figure 10. Fitted values (top) and residuals (bottom) for the spatial models of the frequency, suppres-
sion time, and affected area.

6. Summary and Conclusions

A detailed analysis of the wildfire patterns and the factors that influence them is
crucial to understanding and anticipating their occurrence and impact. Several statistical
and econometric studies on the spatial wildfire patterns in Galicia exist and demonstrate
good awareness of the heterogeneity in these patterns. However, most of these studies
do not explicitly consider the interactions between neighbouring entities. Moreover, no
existing study that the authors are aware of focuses specifically on the Galician mountain
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system. The present study thus highlights the importance of these spatial interactions and
autocorrelations in the Galician mountains, an area with significant cultural heritage and
important ecosystem service provisions.

It was found that the neighbouring interactions are positive (effect-enhancing) for
all wildfire variables under study, with a maximum spatial autocorrelation at a lag of
one (direct neighbour). However, it should be stressed that the wildfire suppression
time and extension are significantly influenced by neighbours up to two lags away, and
even up to five lags for the frequency and affected area. This has important implications
for designing public actions against wildfires because if the policymaker implements a
regulation in a specific entity, this has consequences in the surrounding areas, conditioning
the neighbouring wildfire risk and potential impact. At present, however, there are no
specific plans in fire management to address the high mountain areas in Galicia; rather,
districts are generated that do not take this crucial issue into consideration.

These autocorrelation measures were then used to construct a lag-1 contiguity matrix
and look for specific local concentration patterns. Several regions of high-intensity concen-
tration (high–high local Moran I clusters as well as Getis–Ord hotspots) were identified,
particularly in the Macizo Central and the northeastern part of the Ancares-Laurel for sev-
eral variables, as well as for individual variables in part of the Pena Maseira (frequency) and
northeastern Pena Trevinca (suppression time and extension). These are obviously regions
that require specific attention from policymakers. Conversely, a few low–low clusters and
colds pots were identified, mainly in the south-central part of Ancares-Laurel. It would thus
be very interesting to verify whether these concentrations appear exclusively due to natural
factors or whether they are also influenced by local regulations and practices, and in partic-
ular, whether some of the local regulations and practices that exist in the low–low/cold
spot areas could be successfully transposed to the regions with higher intensity.

In order to allow policymakers to effectively act, both through prevention and actual
firefighting, it is critical to determine the factors that contribute to the different wildfire char-
acteristics and to identify those that can be acted upon. The previous statistical models were
therefore complemented by an econometric model. Several variables related to land use
(agriculture and industrial) and land cover (conifers; woodland–shrub transitional) were
considered and complemented by population density, ecological protection, and common
lands. With these external variables, an econometric model with spatial autoregressions
was constructed for the frequency, suppression time, and affected area, whereas for the fire
extension, an OLS was preferred. Amongst the results obtained, we highlight the mixed
effect of transitional woodland–shrub cover (mitigating suppression time and extension,
but enhancing frequency). Mitigating factors are coniferous cover (for the frequency and
affected area), agricultural land (for suppression time and extension), and industrial areas
(strong mitigating effect on frequency). Fire-enhancing factors are the population density
(for the affected area), ecologically protected areas (for the frequency and suppression time),
and to a lesser extent, common lands (for the affected area). Some of these results are in
contrast with previous results in the literature for Galicia as a whole, thus demonstrating
the idiosyncrasy of the mountainous part of Galicia in terms of wildfire patterns.

The results are in the first place descriptive, but nevertheless provide some clues for
policy recommendations. For example, economic relevance (through agriculture or indus-
try) has a preventive effect against wildfires and should thus be stimulated. Furthermore,
increasing the coniferous stand seems to be indicated. Conversely, ecological protection
does not contribute to wildfire prevention and has the opposite effect. The present re-
sults should be complemented by a careful analysis of the local policies and practices,
including qualitative aspects. However, an obvious point that must be stressed based on
the present results is the importance of coordinating local policies in order to take into
account the influence and importance of spatial contiguity in the risk and impact of wild-
fires. Indeed, effective and ineffective measures will have positive or negative implications,
respectively, not only locally but also for the neighbouring entities, which can propagate
surprisingly far.
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With regard to future research, the models developed here are all static. Evidently, not
all the years have the same wildfire numbers or impact. Taking the temporal evolution
into consideration could therefore improve future results. The databases that were used
typically do not present full data for every year. However, spline interpolation could
be used to approximate the values for the unknown years. Finally, it is obvious that
other socioeconomic, environmental, or climatic variables are also relevant for the wildfire
patterns in the Galician mountains. Several findings in the present research point to this.
For instance, the fact that an autoregressive spatial error component is present in the
model for the frequency as well as the affected area can be interpreted as indication of
the incompleteness of the model. We therefore recommend extending the model with
additional socioeconomic characteristics, environmental features, or climate information.
Within the first category, the importance of different land management models and their
connection to economic interests seem crucial. Environmental features could include wind
patterns, soil moisture, terrain slope, existence of paths, and more detailed characteristics
of the vegetation. Finally, climate information could cover not only the peculiarities of the
Galician climate as such but also the local effects of global climate change.
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Appendix A. Correlation Matrix

The correlation matrix, plotted in Figure A1, shows a low relationship between the
independent variables in the econometric model. With respect to the dependent variables,
it indicates a rather strong relation between fire extension and suppression time, which
is expected but curious given that the spatial econometric model tests selected different
models (and in particular, an OLS for the suppression time).
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Figure A1. Correlation plot between all (dependent and independent) variables

Appendix B. Spatial Lags and Contiguity

Figure A2 plots the contiguity map considering only direct (lag 1) neighbours. The
green lines represent the connections, the numbers of which are summarized in the his-
togram on the right. The average number of neighbouring parishes is close to five, with a
skewness to the right.

Figure A2. Contiguity map and histogram of the number of neighbours at one spatial lag.
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