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Abstract: Fire regimes in Mediterranean countries have been shifting in recent decades, including
changes in wildfire size and frequency. We sought to describe changes in fire regimes across two
periods (1975-1995 and 1996-2018) in a fire-prone region of central Portugal, explore the relationships
between these regimes and territorial features, and check whether these associations persisted across
periods. Two independent indicators of fire regimes were determined at parish level: fire incidence
and burn concentration. Most parishes presented higher values of both indicators in the second period.
Higher values of fire incidence were associated with lower population densities, lower proportions
of farmland areas and higher proportions of natural vegetation. Higher levels of burn concentration
were associated with smaller areas of farmland and natural vegetation. These associations differed
across periods, reflecting contrasting climatic and socio-economic contexts. Keeping 40% of a parish
territory covered by farmland was effective to buffer the increased wildfire risks associated with
different management and climate contexts. The effectiveness of higher population densities in
keeping fire incidence low decreased in the last decades. The results can improve the knowledge
on the temporal evolution of fire regimes and their conditioning factors, providing contributions for
spatial planning and forest/wildfire management policies.

Keywords: wildfires; fire regimes; population features; land management; Mediterranean
Europe; Portugal

1. Introduction

Fire regimes can be understood as the average fire conditions (frequency, density,
intensity, severity, seasonality, etc.) in a particular area and over a long period [1-3].
Past and present fire regimes are crucial for understanding fire spatial and temporal
behavior and for estimating future changes [1,4—6]. This is particularly important in
Mediterranean Europe, one of the most fire-prone regions worldwide due to its climate and
vegetation characteristics [7,8].

Fire regimes are affected by land use/land cover (LULC), human activities, climate,
and topographical context (e.g., [6,7,9-18]). Understanding and modeling these factors,
in particular how they interact with each other to influence fire regimes, remains a key
challenge [6,19,20]. LULC has a crucial role on driving fire regimes, by regulating moisture
content and the availability, continuity and flammability of fuel loads [21,22]. In fact, several
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studies demonstrated that fires are selective regarding land cover (e.g., [22-24]), and in
the case of the Mediterranean region, scrublands, forest plantations (mainly maritime pine
(Pinus pinaster) and eucalyptus (Eucalyptus globulus)), grasslands and woodlands are the
most fire-prone, while built-up surfaces, farmland areas and agroforestry systems are less
likely to burn [22-26]. The continuity/contiguity of fuel load is also strongly dependent
on LULC patterns. A diverse and heterogeneous landscape is capable of modifying the
fuel characteristics and conditions in space, hampering wildfire propagation and reducing
the fire extent and its capacity to cause damage [13,24,27,28]. On the contrary, a more
homogeneous landscape is less fire-resistant and promotes a higher wildfire hazard [22].

Population is another major driver of fire regimes. Fire ignitions are often associated
with human presence, agricultural activity, and livestock grazing [7,9,16,20,22,29-34]. In-
tentional or negligent/accidental ignitions frequently result from using fire for agricultural
and grazing purposes, i.e., harvest waste removal and brushwood/abandoned land clear-
ance [20,30]. On the other hand, the abandonment of rural areas and consequent population
loss has caused the decline of traditional land uses (farmland, silviculture, and livestock),
enabling the growth of unmanaged forests and scrublands, promoting fuel accumulation
and resulting in more frequent and larger wildfires [7,12,30,35-39].

Finally, the temporal trends of wildfires and how they spread over landscapes are greatly
influenced by annual variations in temperature, rainfall and relative humidity, with wildfire
occurrence and severity being favored by long-term droughts and heat waves [5,9-11,15,40-44].

The effect of LULC and human population on fire regimes is therefore likely to vary
across periods in the magnitude of decades, due to temporal changes in climatic factors
and socioecological context [6,45]. For example, some authors state that the fire regimes
in the western Mediterranean have already shifted from fuel-limited to drought-driven,
which led to larger burned areas [7,12,46,47]. However, the temporal changes in fire
regime drivers and their relationship with fire incidence have been considered in few
studies [1,10,11,37,48], and are not yet fully understood.

Here, we examine how spatial patterns of LULC and population density are associated
with local fire regimes in a wildfire-prone region of central Portugal, and how different
periods influence these relationships. Portugal stands out among the European coun-
tries, recording the highest wildfire density and percentage of burned areas in the last
decades [16,29,47,49-52]. We expected that the effects of LULC changes, rural abandon-
ment, and lack of land management in this region affect the severity of the fire regime
across time. To address this, we compared LULC and population density associations to fire
regimes across two periods with similar durations (1975-1995 and 1996-2018), ensuring a
representative number of years in each period. Environmental and socioeconomic changes
are progressive along time, so we expected that this simple division would contrast the
average values and trends of features in these two periods. Specifically, we aimed: (1) to
characterize and describe changes in fire regimes and their associated territorial features
(LULC and population) across periods; and (2) to model how LULC and population were
associated with local fire regimes, and to what extent the impacts of these drivers changed
between the two periods. The obtained results provide insights on the temporal evolution
of fire regimes and their conditioning factors, with implications for spatial planning and
forest/wildfire management policies.

2. Materials and Methods
2.1. Study Area

The study area (Figure 1) is located in central Portugal, a highly wildfire-prone region,
and covers 15,242 km? and 568 civil parishes, our unit of analysis that corresponds to
the smallest administrative units in the country. The average area of these parishes is
27 km? (range = 2-172 km?). The climate is Mediterranean (Koppen classes Csa and Csb),
with dry and hot/warm summers. Rainfall is mainly concentrated in the autumn and
winter months (around 70% of the annual values), although the spring months represent
on average 20-25% of the annual values. Elevation ranges between 1993 m a.m.s.l. in the



Fire 2023, 6, 60

30f18

central section of the region and 23 m a.m.s.l. in the south. In 2015, more than 3/4 of the
landscape was occupied by forests, in which maritime pine (Pinus pinaster), scrublands and
eucalyptus (Eucalyptus globulus) stand out, representing 28%, 20% and 14% of the study
area, respectively. Built-up areas are mostly scattered and interspersed with wildland,
corresponding only to 3% of the study area. In 2011, ca. 730,000 people lived in the
region (48.1 inhabitants/km?), but the population has been declining and aging over recent
decades, along with progressive rural abandonment. During the 1975-2018 period, the
total burned area reached 2,113,528 ha (1.39 times the study area’s surface).
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Figure 1. Study area in central Portugal, civil parish boundaries and land use/land cover (LULC) of
2015 in the region. LULC source: Portuguese Directorate-General for Territory.

2.2. Fire Regime Characterization

Fire regimes were characterized from a set of seven variables expressing how fire
affected each of the parishes across time and space during each of the two considered
periods: 1975-1995 and 1996-2018 (Table 1). These were estimated based on maps of yearly
burned area, obtained in vector format from the National Forests Service (Portuguese
Institute for the Conservation of Nature and Forests—ICNF) (Lisbon, Portugal). ArcMap
10.7.1 (ESRI Inc.) (Redlands, CA, USA) software was used for all spatial analysis operations.

The total burned percentage describes the accumulated burned area during each
period, expressed as percentage of the parish area. It was used as an indicator of the
extensiveness of wildfires. The proportions of years in which a parish burned 25%, 50%
and 75% of its area were likewise used as complementary indicators of fire extent.

Mean and maximum times burned were used as indicators of the frequency of burning.
They were obtained by dividing each parish into 25 m pixels and calculating the mean
and the maximum number of times that the pixels within each parish burned during
each period.

Finally, we used a variable to describe the temporal distribution of wildfire damage
within the fire regime. This was the Gini concentration index (Gini), applied to the yearly
burned areas of each parish over each period. This index quantifies (between 0 and 100) the
temporal concentration of the total burned area for each parish, allowing the differentiation
of parishes where most of the burned area is concentrated in a small number of years
(higher values) from those where the burned area is more regularly distributed over time
(lower values). It was originally developed in the field of economics [53] and it has been
used to measure the concentration of wildfire damage over wildfire events [54] or as the
basis for concentration indices with the same purpose [55-57].
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Table 1. Median, mean, and range (min-max) for the fire regime variables estimated for each parish,
in each of the two periods.

Variable Description First Period Second Period
P (1975-1995) (1996-2018)
Total accumulated
Total burned burned area 49.3/58.1 73.8/80.1
percentage expressed as % of the  (0.1-259.3) (0.3-329.5)
parish area.
the total burned area (58.8-95.2) (53.9-95.7)
Average number of
. years a pixel inside 0.49/0.58 0.74/0.80
Mean fimesbumed . o ich was (0.0-2.6) (0.0-3.3)
burned
Maximum number of
. years a pixel inside 3/3.5 3/3.6
Max times burned the parish was (1.0-8.0) (1.0-10.0)
burned
Proportion of years
Prop years 25% that a parish burned ?0/8'_%22 4) ?OO(;L—/OOZOS
over 25% of its area o -
Proportion of years
Prop years 50% that a parish burned ?0/8—% 14) ?0/8'_%21 3)
over 50% of its area o -
Proportion of years
o . 0/0.0 0/0.01
Prop years 75% that a parish burned (0.0-0.05) (0.0-0.09)

over 75% of its area

2.3. Territorial Features

Population density in each parish for each period was calculated from the average of
two national population censuses (1981 and 1991 for the first period; 2001 and 2011 for the
second period), produced by Statistics Portugal (Table 2).

Table 2. Median and range for territorial variables estimated for each parish in each of the two periods.

Variable Name First Period Second Period
(1975-1995) (1996-2018)

Population density

(inhabitants,/ km2) 45.1 (7.4-810.6) 35.3 (4.2-741.1)

Proportion of area covered by

farmland (%) 26.4 (1.8-79.3) 22.4 (0.7-75.3)

Proportion of area covered by

plantations (%) 41.5 (0-92.2) 39.1 (0-88.8)

Proportion of area covered by 24.8 (0.6-79.8) 28.9 (0.9-91.3)

natural vegetation (%)

LULC was estimated considering three main categories (Table 2): farmland (including
annual crops, permanent crops, and pastures), tree plantations (including pine and eucalypt
plantations), and natural vegetation (including scrublands and oak forests). For each parish,
the proportional cover by these three categories was estimated from detailed LULC maps
provided by the Portuguese Directorate-General for Territory in 1995 (used to characterize
the first period) and 2015 (used to characterize the second period). The date of the first
LULC map (1995) is the criterion for the division between periods in 1995/1996. The LULC
maps were created through the interpretation of digital orthorectified aerial photos, with a
minimum cartographic unit of 1 hectare.
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The Castelo Branco rain gauge, located in the southeast of central Portugal, was used
to determine the average annual values of temperature and rainfall for the study area. This
rain gauge belongs to the Portuguese Institute for Sea and Atmosphere (IPMA) and is the
only one whose temperature and rainfall data cover the entire studied period.

2.4. Data Analyses

All analyses were performed using R software [58]. We used principal component
analysis (PCA) [59] to summarize the main trends in fire regimes. Each parish was charac-
terized in both periods so that resulting parish coordinates in the PCA could be comparable
across time. Differences across periods were visualized using kernel density plots to show
the probability density function of coordinate distribution using the ggplot2 package [60].
The significance of the observed differences was tested using linear mixed models with
parish ID as a random effect. The package Ime4 [61] was used for fitting these models.

The PCA derived two main axes representing two indicators of fire regime. The rela-
tionship between these indicators (as response variable) and LULC variables, population
density (log-transformed) and period were analyzed using linear mixed models using
parish ID as a random effect. Before running the models, collinearity between explanatory
variables was assessed using correlation and variance inflation factors (VIF) using the usdm
package [62]. The proportion of natural vegetation and proportion of plantations were
highly correlated (r = —0.82); therefore we discarded the latter, after which no variable
showed collinearity problems, with all VIF smaller than 2 [63]. The two-way interaction
between period and each of the other variables was included in an initial full model that
was simplified by discarding nonsignificant variables (and interactions), using the step
function, until all remaining variables were significant. Predicted values were visualized
using the package jtools [64], controlling for the effects of other variables in the model (by
keeping them at their mean values or base level for categorical variables). A few parishes
(n =15) did not burn in any of the two periods and were discarded from the analyses.

3. Results
3.1. Fire Regimes

Yearly burned area in the region between 1975 and 2018 averaged 48,000 ha (41,739 ha
in the first period and 53,783 ha in the second period), ranging from a minimum of 1866 ha
(in 2018) to 383,000 ha (in 2017), one of the worst fire years in the country due to the
occurrence of two extreme events (June and October). The three worst fire years occurred in
the second period (Figure 2). The sum of the three years with the largest burned area (2003,
2005 and 2017) reached 677,263 ha, which means that almost a third of the total burned
area in 44 years was concentrated in just three years.

The PCA yielded two principal components with eigenvalues > 1, which accounted for
81.3% of the total variance (Table 3). PC1 (hereafter designated “fire incidence”) represented
a gradient of increasing total burned area and fire frequency, with increasing parish PC
scores representing increased total accumulated burned area, higher average number of
years a pixel was burned, and a higher proportion of years when a parish was burned in at
least 25% or 50% of its total area. PC2 (hereafter designated “burn concentration”) expressed
mainly the Gini index, i.e., represented a gradient of increased temporal concentration of the
total burned area (regardless of its extent), as opposed to a more homogeneous distribution
of burned area throughout the period. It therefore expresses the likelihood that a parish
will be significantly affected in specific years, rather than being progressively burned at
regular intervals. Associated with this variable, parishes with higher PC2 coordinates also
had a higher proportion of years where they burned at least 75% of the total area.
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Figure 2. Variation in the total annual burned area (in thousand hectares) across the two studied
periods (first = 1975-1995; second = 1996-2018).

Table 3. Variable loadings for the two extracted principal components (PC) and explained variance.

Variable PC1 PC2
Total burned percentage 0.98 —0.05
Gini —0.29 0.88
Mean times burned 0.98 —0.06
Max times burned 0.64 —0.67
Prop years 25% 0.83 0.17
Prop years 50% 0.70 0.56
Prop years 75% 0.46 0.59
Explained variance (%) 53.9 27.4

A graphical representation of the values of both PCs for both periods (Figure 3) shows
that the range of PC2 values was wider for parishes with higher PC1 coordinates, regardless
of the period. This demonstrates that a higher variability in the temporal concentration of
total burned area is associated with parishes with higher fire incidence. At the same time,
the figure shows that the second period is marked by increased variability in the values of
both PCs. It is worth highlighting the upper right quadrant of the Figure 3, which reveals
the most severe situation, where the parishes with higher scores of fire incidence and burn
concentration are represented. It should also be noted that the second period dominates
this quadrant.

This contrast between both periods can also be seen when considering the distributions
of the PC score values in each period (Figure 4) with coordinates in both PC1 and PC2 less
concentrated and shifted towards the right in the second period, showing an increasing
trend in both fire incidence and burn concentration. In the case of PC2, the second period is
also marked by the increased number of parishes with relatively high burn concentration
(peak at PC2 scores higher than 2).
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Figure 3. Plot of the values of the two extracted principal components (PC) by parish for the two
studied periods (first = 1975-1995; second = 1996-2018).
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Figure 4. Kernel density estimates of PC1 (a) and PC2 (b) scores in the two periods (first = 1975-1995;
second = 1996-2018). Vertical lines represent median values for each period.

The spatial distribution of fire regime indicators is shown in Figure 5. The increase
in fire incidence across periods was widespread in the whole area, although particularly
concentrated in the center and southern sectors. The increase in burn concentration was
mostly found in the western and southern sectors of the study area, with a reduced

expression in its eastern limit.
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Figure 5. Spatial patterns of parish coordinates in the PCA axes, across periods. Above, PC1
(fire incidence), below, PC2 (burn concentration). Color codes represent the quartiles of the PC
scores values.

3.2. Territorial Features Associated with Study Periods

Basic statistics on landscape features across periods are shown in Table 2 and Figure 6.
Population density was quite variable within the region, but with a significant declining
trend (ca. 10 inhabitants/km?) when comparing the two periods (Figure 6a). The main
land cover (on average, ca. 40% of parish area) was pine and eucalypt plantations, which
suffered a small (although significant) 3% decline across time (Figure 6b). Both farmland
and native vegetation (oak forests and scrublands) covered ca. 25% of the parishes, with
significant but inverse trends across time: a 4% decrease in the former (Figure 6¢) and a
similar increase in the latter (Figure 6d).

3.3. Influence of Period and Territorial Features on Fire Regime Indicators

The intersection between the cumulative burned areas and LULC classes in both
periods is shown in Table 4. Plantations and scrubland together represented ca. 80% of
the total burned areas in both periods, while oak forests and farmland accounted for 11%
and 8%, respectively. Burned areas increased in the second period for all LULC classes, but
their proportions of total burned areas remained practically unchanged between periods.
The second period also recorded higher values in the ratio between burned areas and the
LULC class area, with emphasis on scrubland (157%; 37% more than in the first period) and
plantations (80%; 26% more when compared to the first period). Oak forests recorded the
smallest difference between periods (3% higher in the second period). These results confirm
the higher propensity to burn of scrubland and plantations, and the lower propensity to
burn of farmland and oak forests.
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Figure 6. Kernel density estimates of territorial features in the two periods (first = 1975-1995; second
=1996-2018). (a) Population density (log-transformed); (b) proportion of farmland (%); (c) proportion
of plantations (%); and (d) proportion of natural vegetation (%). Vertical lines represent median
values for each period.
Table 4. Burned areas per LULC class in each of the two periods.
First Period (1975-1995) Second Period (1996-2018)
LULC Area Burned Areas LULC Area Burned Areas
LULC Classes % of % of % of % of
ha % ha ? LULC ha % ha ? LULC
Total Total
Area Area
Farmland 368,570 24.2 70,940 8.1 19.2 308,420 20.2 98,370 8.0 319
Plantations 675,590 443 363,190 414 53.8 650,840 427 520,480 421 80.0
Natural g)?lefsts 148,650 9.8 92,410 10.5 62.2 202,060 13.3 130,780 10.6 64.7
vegetation
Scrubland 281,860 18.5 338,950 38.7 120.3 298,250 19.6 468,680 37.9 157.1
Total (study area) 1,524,190 100 876,510 100 57.5 1,524,190 100 1,237,020 100 81.2

Fire incidence at parish level was related to four variables (Figure 7; Table 5): period,
population density, and the proportion of farmland and natural vegetation.
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Figure 7. Predicted value (and 95% confidence intervals) of significant variables associated with PC1
parish coordinates, expressing fire incidence. For each variable, all the others are set to their mean (or
base level) values. (a) Population density (log-transformed); (b) proportion of farmland (%); and (c)
proportion of natural vegetation (%). See model detail in Table 5.

Table 5. Significance of variables and interactions included in final mixed model to predict PC1.
Model fit information: AIC = 4306.89, BIC = 4352.06. Pseudo-R? (fixed effects) = 0.27. Pseudo-R?
(total) = 0.49. See model predicted values in Figure 7.

Variable F-Value Significance
prop_naturalveg 174.2 <0.0001
log_pop_dens:period 7.00 0.0083
period:prop_farmland 7.48 0.0064

Parishes with higher population density were associated with lower fire incidence,
but only during the first period, as the trend was no longer visible in the second period.
Except for parishes with a very low population density, for any given value of density,
fire incidence was always higher in the second period. Increasing proportional cover by
farmland was associated with decreased fire incidence, although the effect was stronger in
the second period. Above a threshold of ca. 40% cover by farmland, there was no difference
in fire incidence across periods, but under this threshold fire incidence was higher in the
second period. Parishes with higher fire incidence were also associated with a higher
proportional cover by natural vegetation, regardless of the period.
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PC2

Burn temporal concentration at parish level was related to three variables (Figure 8;
Table 6): proportional cover by farmland, proportional cover by natural vegetation,
and period.
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Figure 8. Predicted value (and 95% confidence intervals) of significant variables associated with PC2
parish coordinates, expressing burn concentration over time. For each variable, all the others are set
to their mean (or base level) values. (a) Proportion of farmland (%) and (b) proportion of natural
vegetation (%). See model detail in Table 6.

Table 6. Significance of variables and interactions included in final mixed model to predict PC2.
Model fit information: AIC = 3528.18, BIC = 3568.33. Pseudo-R? (fixed effects) = 0.28. Pseudo-R?
(total) = 0.52. See model predicted values in Figure 8.

Variable F-Value Significance
period:prop_naturalveg 13.1 0.0003
period:prop_farmland 21.6 <0.0001

The strong interaction between period and proportional cover by farmland was re-
flected in the fact that the latter variable was strongly associated with a decline in burn
concentration, but only in the second period, this effect being negligible in the first period
(Figure 8a). Consequently, above a threshold of ca. 50-60% cover by farmland, the period
variable did not have a strong effect on this indicator. At smaller values, however, burn
concentration was much higher in the second period.

Higher cover by natural vegetation was associated with lower levels of burn concen-
tration, i.e., a more equal distribution of the total burned area across years (Figure 8b). The
second period usually registered higher burn concentration, and the difference between
periods was higher for parishes with lower cover by natural forests and scrublands. Overall,
for the same amount of cover by natural vegetation, burn concentration was higher in the
second period.
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4. Discussion
4.1. Changes in Fire Regime and Territorial Features

The PCA summarized the used fire regime variables for the 1975-2018 period into two
major independent indicators that we designated fire incidence and burn concentration.
Fire incidence indicated the overall amount of area burned over a certain period, separat-
ing parishes with high and low fire prevalence (expressed in total area burned and fire
frequency). Burn concentration expressed how the total burned area accumulated over
the period (regardless of being high or low) was distributed over time, i.e., whether it was
concentrated in a few years versus dispersed over the whole period. This use of the Gini
coefficient provided a relevant view of an important aspect of fire regime, as parishes with
total burned area concentrated in fewer years tended to have a higher proportion of years
in which their total surface was more than 75% affected by wildfires, which may be an
indication of higher severity [55,65] and higher socioecological damage [11,66-68]. Parishes
with higher wildfire hazard are expected to be the ones with both higher fire incidence
and higher burn concentration, which in our case are more prevalent in the western and
southern sectors of the region (Figure 5), regardless of the period. For the second period,
this could be explained by the large wildfires of 2017, which affected mainly these sectors.

There was a trend for both fire incidence and burn frequency at parish level to in-
crease across time. This is concordant with most studies in the Mediterranean region
describing changes in fire regimes across time, and is likely linked to differences in climate
and territorial features [2,6,7,12-15,46]. For climate, a series of studies report trends of
rising temperature and decreasing rainfall in the Iberian Peninsula and Mediterranean
basin [7,69,70]. This is also registered for central Portugal [71,72]. In the Castelo Branco
rain gauge, both the average annual temperature and the average annual rainfall increased
in the second period: from 15.8 °C to 16.2 °C and from 724 mm to 789 mm, respectively.
However, 2017 is simultaneously the year with the highest average annual temperature
(17.5 °C) and the lowest average annual rainfall (418 mm) during the 1975-2018 period
in this rain gauge, and that year also showed the largest burned areas (383,000 ha) in the
study area. Thus, more detailed data would be necessary to identify significant changes
in climate between the two studied periods and to draw definitive conclusions about its
possible effects on fire regimes.

The two periods also differed in some key territorial features, whose effects on fire
regimes cannot be clearly separated from climate effects. Population density declined, a
trend also occurring at the country level [36,47,73]. Farmland areas also decreased, a likely
consequence of the loss of population involved in the primary sector and the low economic
profitability of marginal agricultural areas, leading to land abandonment [22,30,36-39,51].
The area covered by pine and eucalypt plantations, the dominant land cover in the region,
also declined in the second period, likely due to the impact of wildfires on these plantations
and their replacement by secondary succession vegetation, mainly scrubland or regenera-
tion plantations with scrubland-like physiognomy. This could explain the increase in the
surface occupied by oak and scrubland found for the second period (Table 4).

4.2. Changes in Territorial Features—Fire Regime Associations across Period

Three territorial features were correlated with the two fire regime indicators: popula-
tion density, proportion of parish area covered by farmland, and proportion of parish area
covered by natural vegetation. However, the way these were associated with fire regimes
differed between periods.

Parishes with higher population density usually had lower fire incidence, but this
association was only visible in the first period. Higher population density has traditionally
been considered an important indicator of the intensity of landscape management (in-
cluding in existing farmland or forests) that may lead to decreased fuel accumulation and
fire hazard [9,13,16,46,74,75]. Additionally, it is also an indicator of the likelihood of early
detection and more effective suppression of wildfires, in spite of the higher human-caused
ignition probability [10,26,36,42,48]. However, this association was no longer visible in the
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second period. At first sight, this could suggest that the impact of human management
on fire incidence in the territory has decreased. However, it is more likely that the lack of
association could be due to changes in the population itself, such as aging (impairing its
ability to intervene in the territory) or a reduced level of engagement with farmland and
forest management, as suggested by prior studies [47]. In fact, the decrease in importance
of farmland and forest for the employment and income of the rural population between
the first and second periods has been largely documented [76-78], impacting that engage-
ment for the same population density. Therefore, and except for parishes with a very low
population density, fire incidence was always higher in the second period. Studies [10,79]
stated that human factors are losing importance in driving fire regimes when compared to
climate/weather factors and fuel moisture. Adverse weather and moisture conditions also
favor the occurrence of extreme fire events [9,80-83], whose size and magnitude exceed
the human capacity to suppress them [84,85]. In this sense, and according to the obtained
results, population density at a parish level revealed: (1) a nonsignificant relationship with
burn concentration (PC2) in both periods, confirming that this variable does not have a
relevant association with expected fire severity; and (2) a negligible association with fire
incidence (PC1) during the second period, when the fire regime was characterized by a
few major events that contributed to an increase in overall burned area. However, the year
2017, which was marked by the occurrence of two extreme fire events (in June and October),
but also the events of 2003 and 2005, certainly prevented a stronger relationship between
population density and fire incidence in the second period.

The increased proportion of farmland in the parish area was strongly and negatively
associated with both fire incidence and burn concentration. With regard to fire incidence,
this result is in accordance with the low fire selectivity for farmland already observed by
several authors [24,86-89]. Regarding burn concentration, the effect of farmland can be
interpreted in two complementary ways. On the one hand, farmland areas are likely to have
an increased human presence in comparison to forest or scrubland, which will promote
early detection and response to ignitions, promoting smaller fires over time and leading to
the temporal dispersion of area burned. On the other hand, it is likely that the increased
percentage of farmland has caused a greater fragmentation in the second period for non-
farmland LULC classes within a parish, such as scrubland and forest, constraining fire
propagation and the occurrence of large fires that would lead to higher burn concentration.
These associations were stronger in the second period, mainly for burn concentration.
The difference across periods was also more obvious for parishes with less farmland: the
differences between periods became negligible above a threshold of ca. 40-50% of farmland.
As previously, the interaction effect between period and farmland proportion may be
explained by a mixture of climate differences (e.g., causing higher flammability to the
same farmland land use) and management differences (e.g., increased flammability or
human presence associated with transitions between crop types, or to transitions between
more intensively managed annual crops and less intensively managed grasslands). Future
studies should address these hypotheses, as well as a more detailed analysis of the impacts
of landscape configuration (rather than simply composition) on fire regimes.

Regardless of the period, higher fire incidence was associated with parishes with higher
proportions of natural vegetation (and therefore less pine and eucalypt plantations). Possible
contributors to this pattern include: (a) an effect of wildfires on land cover—high fire incidence
will promote fewer forests and a higher transition from forests to scrublands [22]. As the
land cover information relates to a relatively late time frame in each period (the last year
of the first period and 3 years before the end of the second period), it might express the
land cover effects of fire regimes; (b) the elevated fire-proneness and high rate of postfire
regeneration of scrubland [25,86,90,91], which will promote both extensive and frequent
fires, even though this LULC class was aggregated in this study with the less fire-prone
oak forests. The interpretation of the negative relationship between natural vegetation and
burn concentration is not straightforward, as this LULC class includes both oak forest and
scrubland. However, considering that areas with lower cover by this LULC have higher
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cover by tree plantations (these LULC classes are highly negatively correlated at a parish
level), this pattern may show that areas with more plantations will have a higher burn
concentration. Again, for the same cover by plantations, burn concentration will be higher
in the second period (and the difference increases the higher the cover by plantations).

5. Conclusions

We described the temporal change in fire regime in a fire-prone region and regis-
tered a trend for increased fire incidence and burn concentration. Three main findings
seem relevant for the implementation of wildfire management policies in this highly
fire-prone region.

Firstly, the key role of farmland—in a context of farmland abandonment, keeping
farmland in the territory is a big challenge, but it is the key tool to decrease fire incidence
and burn concentration. Our results show that a minimum of 40-50% of a parish territory
covered by farmland was highly effective to buffer the increased risks associated with
different management and climate contexts of the considered periods.

Secondly, the challenge of keeping population active in the primary sector—the effec-
tiveness of a higher population density on keeping fire incidence low—was much decreased
in the latter period. We hypothesized that this was due to persisting population being
less engaged in farmland and forest management. If this assumption is correct, policies to
keep or increase population in these marginal territories may not by themselves solve the
problem. Attracting people to these areas will not necessarily be reflected in a decreased fire
hazard if these “new rurals” will only stay in larger urban centers with access to services
(internet, schools, health care) and not devoted to activities in the primary sector. Therefore,
fostering the socioeconomic viability of farmland in this region will require coordinated
policies across different sectors [92].

Finally, the negative impact of large areas with tree plantations, which cause an
increase in burn concentration, make a higher level of socioecological damage more likely.
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