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Abstract: Fire smoke decontamination equipment, such as fire-fighting robots and smoke exhaust
robots, is mainly used in long and narrow spaces such as underground garages. In several recent
decades, the study of fire smoke spread in narrow spaces and fire smoke decontamination equipment
stimulated the interests of many researchers. However, present equipment cannot eliminate insoluble
toxic gases such as CO and may decrease the height of the smoke layer, causing great difficulty to
rescue. In this study, a novel mobile fire smoke decontamination process and system are proposed.
The experimental study and theoretical prediction of the system are conducted. The results show
that the developed equipment is able to eliminate fire smoke particles and CO, cool the space, and
improve the visibility of the fire site. The developed equipment can reduce the space temperature to
below 60 ◦C, reduce the CO concentration to below 145 ppm, and enhance the visibility to more than
50 m in the rectangular tunnel after operating for 30 min under 4 MW fire condition.

Keywords: fire-fighting robot; smoke exhaust robot; fire smoke decontamination; long and nar-
row space

1. Introduction

With the development of urbanization, traffic tunnels, underground buildings, and
other key urban infrastructures have become more and more complex. Such places belong
to long and narrow urban spaces [1–3]. In these places, fire risk is exceptionally high and can
easily cause huge casualties and property losses [4,5]. The difficulty of fire smoke control
in these narrow and long urban spaces is mainly reflected in the high smoke concentration,
high space temperature, and great difficulty in evacuation and rescue.

There has been much research concerned with fire smoke control difficulty in long
and narrow spaces in the past several decades. Common smoke control methods include
longitudinal ventilation [6,7], semitransverse ventilation [8], natural smoke exhaust in
shafts [9], lateral smoke exhaust [10], centralized smoke exhaust [11], and a combination of
multiple smoke exhausts [12]. The longitudinal ventilation system is widely used in tunnel
ventilation systems due to its simple structure and low cost. However, past research on fire
smoke control in narrow and long spaces is based on the fixed firefighting system [13,14],
and there is a lack of movable smoke decontamination methods for smoke control in the
fire site. Compared with the fixed firefighting system, the mobile firefighting system can
reach the fire site and start working, which can quickly control the fire in the early stage.
Therefore, a mobile smoke disposal robot (firefighting robot) has attracted researchers’
attention.

Firefighting robots are mainly used to spray a large amount of water or water mist on
the fire smoke to achieve the effect of cooling and smoke purification. Dinh [15] proposed a
flying robot using waterpower and a novel weight-shifting mechanism. Yu [16] discusses
the control system of a fire rescue robot for a high-rise building design. A study [17]
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proposed an indoor firefighting robot that has the capability to climb stairs and negotiate
several types of floor materials inside buildings. Lindawani [18] designed and made a
robot control system hardware for firefighting-legged robots, aimed to make the robot have
a better obstacle-surmounting ability in the fire site. Furthermore, there are many studies
that concentrate on the fire and smoke suppression mechanism for firefighting robots.

In long and narrow spaces, especially underground spaces, fixed smoke exhaust
equipment usually cannot effectively decontaminate a large amount of fire smoke. The
application of firefighting robots will greatly improve the ability to extinguish the fire and
implement an effective fire rescue, especially in very dangerous situations or when the fire
site is inaccessible to firefighters. However, present tunnel firefighting robots still face many
technical difficulties [19], especially since they cannot eliminate insoluble toxic gases such
as CO and may destroy the smoke layer structure and decrease its height, thus causing
great difficulty to rescue.

In this study, a novel mobile fire smoke decontamination process and system are
proposed which can actively inhale smoke and conduct decontamination inside. The
proposed system is able to eliminate fire smoke particles and CO, cool the space, and
improve visibility in long and narrow spaces without destroying the smoke layer structure.
The experimental study and theoretical prediction of the system are conducted.

2. Fire Smoke Decontamination Process and System
2.1. Fire Smoke Decontamination Process

The function of the mobile fire smoke decontamination system (FSDS) in this study is
set to decontaminate fire smoke in confined spaces such as highway tunnels and under-
ground garages. The FSDS is mounted on a mobile platform that can transport the FSDS
to the ignition point or personnel evacuation exit automatically. The FSDS then starts fire
smoke decontamination to eliminate toxic substances in space, reduce space temperature,
and improve visibility. In this study, the FSDS is designed to eliminate fire smoke particles
and CO/soluble toxic substances and cool the space. The design parameters of the FSDS
working fire environment are listed in Table 1.

Table 1. The design parameters of the FSDS working fire environment.

Design Parameters Value

Fire location Highway tunnels/underground garages

Fire type Automobile fire

Fire power 0~6 MW

Smoke production 0~4000 m3/h

Space temperature 60~400 ◦C

CO concentration 500~2000 ppm

Figure 1 shows the fire smoke decontamination process of the FSDS. The fire smoke
is firstly induced into the inlet of the FSDS due to the negative pressure environment
produced by the centrifugal fan. Next, the fire smoke is transmitted to the CO filter through
a titanium alloy pipe with high temperature resistance which has no deformation under
a 1000 ◦C fire smoke atmosphere. After CO elimination, the fire smoke will experience
particulate filtration. In this process, most of the particles larger than 20 microns will
be filtered. During the process of smoke inducement, CO elimination, and particulate
filtration, the core module maintains a negative pressure state, which can prevent the fire
smoke from escaping. The centrifugal fan pressurizes the primary exhaust to a positive
pressure state. Then, the mixed cooling heat exchanger will cool down the fire smoke using
the latent heat cooling method and exhaust the clean smoke to space.
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Figure 1. Fire smoke decontamination process.

2.2. Fire Smoke Decontamination System

Figure 2 shows the design of the FSDS. The smoke inlet is designed to be a flaring
shape. The electric rotator is added at the end of the titanium alloy pipe in order to control
the smoke inlet position. The CO filter adopts a metal catalytic oxidation CO elimination
design, which can convert CO into carbon dioxide with 90% efficiency. The particulate filter
uses an alloy (iron chromium aluminum) fiber wire metal filter element to filter carbon
black particles and oil droplets in smoke. In total, 95% of particles larger than 20 µm will be
eliminated. The accumulated ash on the filter element will be cleared by the back-blowing
purification system according to the measured ∆P (inlet–outlet) of the particulate filter. The
mixed cooling heat exchanger adopts water spray (particle size: 250 µm) to cool down the
smoke flow from the centrifugal fan and filter the soluble toxic substances simultaneously.
During the smoke cooling, the water spray will be partially (70~80%) evaporated into water
vapor, which can absorb a lot of latent heat from the smoke. The design parameters of the
FSDS are listed in Table 2. Figure 3 shows the design drawing and physical drawing of the
FSDS with mobile devices.
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Table 2. The design parameters of the FSDS with mobile device.

Design Parameters Value

Fire smoke decontamination capacity 9000 m3/h (Cold operation)/5000 m3/h (normal operation)

CO filtration efficiency 90%

Particulate filtration size/efficiency 20 um/95%

Smoke cooling power 500 KW

Water spray flux/pressure 300 Lh−1/0.5 Mpa

Overall power 13 KW

Mobile speed >5.4 km/h

Climbing angle <15◦

Turning radius <3 m

Surmountable obstacle height 120 mm

3. Description of the Experiment
3.1. Experimental Set Up

In order to validate the overall effect of fire smoke decontamination of the FSDS, a
validation experiment set up was built. Figure 4 shows the design drawing and physical
drawing of the experiment setup. The oil pool fire and automobile tire combustion are
adopted to simulate the fire occurrence process (heat release rate: 1~1.5 MW). The experi-
mental site is selected to be in the large space fire test platform in Hefei, China. After the
oil pool device is ignited, the FSDS is started and kept 10 m away from the fire source until
the smoke is stably generated. During the waiting period, the cold operation (without
fire smoke) performance of the FSDS is tested. Then, the FSDS moves to the top of the
fire source to start smoke decontamination and normal operation data collection. The
decontamination test period lasts 10–20 min.
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3.2. Sensors Arrangement and Data Collection

Figure 4 also shows the data measuring points of the FSDS. The inlet temperature
is measured by the infrared temperature measuring device. The exhaust temperature is
measured by the Thermocouple (K type). The inlet/exhaust CO concentration is measured
by the handheld CO detector and Duct type CO sensor, respectively. The smoke flux is
transferred from the smoke flow velocity, which is measured by the pitot tube inserted
into the titanium alloy pipe. Table 3 shows the list of the main experimental measuring
apparatus and accuracies.

Table 3. List of the main experimental measuring apparatus.

Apparatus Measuring Parameter Accuracy

Thermocouple (K type) Temperature (FSDS exhaust) ±0.5 ◦C

Duct type CO sensor CO concentration (FSDS exhaust) FS ± 1%

Pitot tube (AFP-8A) Smoke flow velocity (FSDS titanium alloy pipe) FS 0.02%

Infrared temperature measuring device (FLUKE-MT4) Temperature (FSDS inlet) FS ± 2%

Handheld CO detector (FZ-BX) CO concentration (FSDS inlet) FS ± 3%

Data logger (LR8431-30) / /

3.3. Evaluation of the Operating Performance of the FSDS

In the experiment, four performance parameters are adopted to evaluate the overall
operating performance of the FSDS, which are the overall smoke decontamination volume
flux Fn, the cold operation decontamination flux Fc, the CO filtration efficiency ηCO, and
the smoke cooling heat exchange power Pc. The mathematical expressions for the four
parameters are as follows:

Fn = VnStap × kt

Fc = VcStap × ktηCO =
Cco−inlet − Cco−outlet

Cco−inlet
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Pc = ρsFn(Tinlet − Toutlet)

where Stap is the cross-section area of the titanium alloy pipe, kt is the conversion factor
between standard volume (under 0 ◦C, 0.1 Mpa) and measuring volume [20], Cco−inlet and
Cco−outlet are CO concentrations tested in the inlet and outlet, respectively, and ρs represents
the density of the fire smoke in the titanium alloy pipe.

4. Tunnel Fire Simulation

In this work, the fire simulation software FDS is used for the calculation of the FSDS
operation process and semitransverse ventilation process in the rectangular tunnel. FDS
is developed by the NIST Building Fire Laboratory of the United States. The software
adopts the field simulation method to discretize and iterate the control equations related to
smoke spread, fire combustion, heat, and mass transfer in the calculation area. Nonuniform
mesh, gradually sparse from the wall to the interior area, is used for mesh division in the
theoretical model. The average grid size of the cross-section area of the tunnel is 20 mm,
and the average grid size of the longitudinal direction of the tunnel is 100 mm. The grid
sensitivity test is conducted through choosing a typical simulation condition. The results
are show in Table 4. It can be seen that the selected mesh in the model is able to draw the
simulation results with high accuracy.

Table 4. The results of grid sensitivity test.

Size of the Grid Simulation Result of the Average Smoke
Layer Height

20 mm (cross-section); 100 mm (longitudinal) 4.51 m

10 mm (cross-section); 500 mm (longitudinal) 4.35 m

15 mm (cross-section); 150 mm (longitudinal) 4.54 m

4.1. Simulation for the FSDS Operation Process

To evaluate the FSDS operation performance in real confined spaces (fire environment),
a simulation model for the FSDS operation process in the rectangular tunnel is present in
this part. The simulation model includes fire smoke spread, solution of temperature/CO
concentration distribution, visibility calculation, and FSDS smoke decontamination process.
The simulation model is based on the following major assumption:

The operating performance of the FSDS, including Fn, Fc, ηCO, and Pc, remains constant
during the smoke decontamination.

Figure 5 shows the sketch of the simulation model for the FSDS operation process in
the rectangular tunnel. The size of the rectangular tunnel is as follows: length 200 m, width
10 m, and height 7 m (14,000 m3). The boundary conditions at both ends of the tunnel are
set as “Open” type. The fire source (4 MW) is located in the center of the tunnel (fire power
of single car). The smoke outlet of the FSDS is located directly above the fire source, with a
height difference of 1 m from the fire source. The FSDS operation parameters are listed in
Table 5.

Table 5. List of the measured fire environment parameters.

Parameters Value

Average environment temperature 11.3 ◦C

Average FSDS inlet temperature 230.0 ◦C

Average FSDS inlet CO 1610 ppm
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4.2. Simulation for the Semitransverse Ventilation Operation Process

To conduct the comparison study between the FSDS operation performance and semi-
transverse ventilation operation performance, a simulation model for the semitransverse
ventilation operation process in the same rectangular tunnel is present in this part. Figure 7
shows the sketch of the simulation model for the semitransverse ventilation operation
process in the rectangular tunnel. The fire source is located in the center of the tunnel. There
are six mechanical smoke vents on the top of the tunnel, and the size of the smoke vents is
2 m × 2 m, the spacing is 30 m, and the total smoke exhaust volume is 190,000 m3/h.
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5. Results and Discussions

In this section, the results of the FSDS fire smoke decontamination experiment are
presented and analyzed. Performance parameters of the FSDS are calculated according to
the experimental results. Based on the tested FSDS performance parameters, the simulation
for the FSDS operation process in the rectangular tunnel is conducted. Longitudinal airflow
in the tunnel, the height of the smoke layer, temperature/CO/visibility distribution at
1.8 m height, and inlet/exhaust temperature of the FSDS are calculated. the comparison
study between the FSDS operation performance and semitransverse ventilation operation
performance is conducted.

5.1. Experimental Results

The working state of the FSDS during the test is shown in Figure 8. It can be seen
that most of the smoke generated by the fire source is inhaled by the smoke inlet of FSDS.
The black degree at the smoke inlet is much higher than the outlet due to the fact that the
exhaust includes decontaminated smoke water vapor and water particles.
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Table 5 lists the measured fire environment parameters. Figure 9 shows the exhaust
volume flux variation of the FSDS. The exhaust volume flux keeps at around 8500 Nm3/h
before 80 s. This is because the FSDS keeps at a cold operation state before 80 s. The volume
flux rises to around 8000 Nm3/h at 300 s (start fire smoke decontamination). Then, the
value continuously decreases to around 3000 Nm3/h. This is due to the fact that the higher
temperature inlet smoke has a higher specific volume, which leads to the lower operating
performance of the centrifugal fan. The calculated Fc and Fn are listed in Table 6.

Table 6. List of the calculated FSDS operating performance parameters.

Parameters Value

Fc 8629.01 Nm3/h

Fn 5472.37 Nm3/h

Pc 417.7 KW

ηCO 78%
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Figure 9. The exhaust volume flux variation of the FSDS.

Figure 10 shows the exhaust temperature variation of the FSDS. The exhaust tem-
perature keeps at 12 ◦C before 300 s. This is because the FSDS keeps at a cold operation
state before 80 s. After that, the exhaust temperature rises to 20 ◦C in the next 400 s. In
terms of the measured average FSDS inlet temperature, the calculated Pc is listed in Table 5.
Figure 11 shows the exhaust CO concentration variation of the FSDS. It can be seen that
the value begins to rise after the 300 s and decreases at the 600 s. The reason is that the CO
filtration efficiency depends largely on the inlet temperature. The higher inlet temperature
leads to a higher CO filtering efficiency within a certain range.
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5.2. Performance Prediction of the FSDS in Rectangular Tunnel

In this section, longitudinal airflow in the tunnel, the height of the smoke layer,
temperature/CO/visibility distribution at 1.8 m height, and inlet/exhaust temperature of
FSDS are calculated to predict the contribution of FSDS to the fire rescue in the rectangular
tunnel.
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5.2.1. Longitudinal Airflow in Tunnel

The FSDS exhaust forms the induced longitudinal airflow along the length of the
tunnel, as shown in Figure 12. Figure 13 shows the volume flow on the tunnel cross-section.
The volume flow of the inducted airflow on the tunnel cross-section is about 20,000 m3/h.
It can be seen from Figure 13 that the volume flow in the tunnel increases rapidly and tends
to be stable after about 155 s.
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5.2.2. Height of Smoke Layer

Figure 14 shows the height of the smoke layer in the tunnel. The height of the smoke
layer near the fire source is about 5.2 m. The value in other areas is reduced due to the
disturbance of the longitudinal airflow. It can also be seen from Figure 14 that the spray
water volume of the FSDS has little influence on the smoke layer height. This indicates that
the FSDS spray water will not destroy the structure of the smoke layer in the tunnel.
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Figure 14. Height of smoke layer in tunnel.

5.2.3. Temperature/CO/Visibility Distribution at 1.8 m Height

Figure 15 shows the temperature distribution at 1.8 m height (average of 200–300 s
in the stable section). It can be seen from Figure 15 that the temperature in the rest of the
tunnel area is lower than 60 ◦C, except that the temperature near the fire source is higher.
Figure 16 shows CO distribution at 1.8 m height. The CO concentration near the fire source
is about 145 ppm. The value at 15 m away from the fire source is close to 0 ppm. Figure 17
shows the visibility distribution at 1.8 m height. It can be seen from the figure that the
visibility at the fire source is the lowest, and the visibility in other areas is greater than 50 m.
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5.2.4. Inlet/Exhaust Temperature of the FSDS

Figure 18 shows the inlet/exhaust temperature of the FSDS under different water
spray fluxes. It can be seen that the temperature difference between the inlet and exhaust
of the FSDS changes slightly with the change in the water spray flux. This indicates that
150 L/h is an ideal setting for the FSDS water spray flux.
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5.3. Semitransverse Ventilation Operation Performance
5.3.1. Temperature Distribution at 1.8 m Height

Figure 19 shows the temperature distribution at 1.8 m height. It can be seen from
the figure that the temperature at 1.8 m height decreases under the action of mechanical
smoke exhaust. In contrast with the temperature distribution shown in Figure 15, the
FSDS has the similar space cooling ability with semitransverse ventilation with the exhaust
volume of 190,000 m3/h. Both systems can maintain the space temperature below 60 ◦C
in most of the tunnel, except for the place near the longitudinal smoke vents. The space
cooling performance of semitransverse ventilation is higher than it is for the FSDS near the
smoke vents.
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5.3.2. Height of Smoke Layer

Figure 20 shows the height of the smoke layer in the tunnel. Compared with the
working condition without smoke exhaust, the smoke layer height under the mechanical
smoke exhaust condition is larger. This is due to the fact that smoke ventilation reduces the
thickness of the smoke layer and increases the height of the smoke layer. Compared with
Figure 14, it can be calculated that the average smoke layer height of the FSDS is 4.53 m,
while the value for semitransverse ventilation system is 4.31 m. In consideration of the
larger exhaust volume of the semitransverse ventilation system, it can be drawn that the
FSDS has less damage to the smoke layer structure than the semitransverse ventilation
system.
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6. Conclusions

In this paper, the development of a novel mobile fire smoke decontamination process
and system are introduced. The experimental study and theoretical prediction of the system
are conducted. The goal is to evaluate the FSDS working performance and its contribution
to the fire rescue in the tunnel. The results show that:

(1) The developed FSDS is able to eliminate fire smoke particles and CO, cool the space,
and improve the visibility of the fire site.

(2) The real fire experiment demonstrates that the FSDS operating performance parame-
ters are as follows: Fc = 8629.01 Nm3/h, Fn = 5472.37 Nm3/h, Pc = 417.7 KW, and
ηCO = 78%.

(3) The fire simulation in the rectangular tunnel shows that:

The FSDS exhaust forms the induced longitudinal airflow (20,000 m3/h) along the
length of the tunnel. In the FSDS operation process in the rectangular tunnel, the height of
the smoke layer near the fire source is about 5.2 m, and the spray water will not destroy the
structure of the smoke layer in the tunnel. In the FSDS operation process in the rectangular
tunnel, the temperature in most of the tunnel area is lower than 60 ◦C. The CO concentration
near the fire source is about 145 ppm. The visibility at the fire source is the lowest, and the
value in other areas is greater than 50 m. The FSDS has a similar space cooling ability as
the semitransverse ventilation, with the exhaust volume of 190,000 m3/h. The FSDS has
less damage to smoke layer structure than the semitransverse ventilation system.

The novel mobile fire smoke decontamination process and system still has several
drawbacks, such as the lack of temperature control in the CO filtration process and small
smoke decontamination capacity. Further promotion will be conducted in future study.
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