
Citation: Sinha, A.; Nikhil, S.; Ajin,

R.S.; Danumah, J.H.; Saha, S.;

Costache, R.; Rajaneesh, A.;

Sajinkumar, K.S.; Amrutha, K.; Johny,

A.; et al. Wildfire Risk Zone Mapping

in Contrasting Climatic Conditions:

An Approach Employing AHP and

F-AHP Models. Fire 2023, 6, 44.

https://doi.org/10.3390/fire6020044

Academic Editors: Fangjun Li

and Xiaoyang Zhang

Received: 3 November 2022

Revised: 12 January 2023

Accepted: 19 January 2023

Published: 24 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fire

Article

Wildfire Risk Zone Mapping in Contrasting Climatic
Conditions: An Approach Employing AHP and F-AHP Models
Aishwarya Sinha 1 , Suresh Nikhil 2 , Rajendran Shobha Ajin 2,3,* , Jean Homian Danumah 4 , Sunil Saha 5 ,
Romulus Costache 6,7,8 , Ambujendran Rajaneesh 9 , Kochappi Sathyan Sajinkumar 9,10,* ,
Kolangad Amrutha 2 , Alfred Johny 2 , Fahad Marzook 2 , Pratheesh Chacko Mammen 2 ,
Kamal Abdelrahman 11 , Mohammed S. Fnais 11 and Mohamed Abioui 12,13,*

1 Symbiosis Institute of Geoinformatics, Pune 411016, India
2 Kerala State Emergency Operations Centre, Kerala State Disaster Management Authority,

Thiruvananthapuram 695033, India
3 Resilience Development Initiative (RDI), Bandung 40123, Indonesia
4 Centre Universitaire de Recherche et d’Application en Télédétection (CURAT), Université Félix Houphouët

Boigny, Abidjan 00225, Côte d’Ivoire
5 Department of Geography, University of Gour Banga, Malda 732101, India
6 National Institute of Hydrology and Water Management, 013686 Bucharest, Romania
7 Department of Civil Engineering, Transilvania University of Brasov, 500036 Brasov, Romania
8 Danube Delta National Institute for Research and Development, 820112 Tulcea, Romania
9 Department of Geology, University of Kerala, Thiruvananthapuram 695581, India
10 Department of Geological and Mining Engineering and Sciences, Michigan Technological University,

Houghton, MI 49931, USA
11 Department of Geology & Geophysics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
12 Department of Earth Sciences, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
13 MARE-Marine and Environmental Sciences Centre—Sedimentary Geology Group, Department of Earth

Sciences, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
* Correspondence: ajinares@ieee.org (R.S.A.); sajinks@keralauniversity.ac.in (K.S.S.); m.abioui@uiz.ac.ma (M.A.)

Abstract: Wildfires are one of the gravest and most momentous hazards affecting rich forest biomes
worldwide; India is one of the hotspots due to its diverse forest types and human-induced reasons.
This research aims to identify wildfire risk zones in two contrasting climate zones, the Wayanad
Wildlife Sanctuary in the Western Ghats and the Kedarnath Wildlife Sanctuary in the Himalayas,
using geospatial tools, analytical hierarchy process (AHP), and fuzzy-AHP models to assess the
impacts of various conditioning factors and compare the efficacy of the two models. Both of the
wildlife sanctuaries were severely battered by fires in the past, with more than 100 fire incidences
considered for this modeling. This analysis found that both natural and anthropogenic factors
are responsible for the fire occurrences in both of the two sanctuaries. The validation of the risk
maps, utilizing the receiver operating characteristic (ROC) method, proved that both models have
outstanding prediction accuracy for the training and validation datasets, with the F-AHP model
having a slight edge over the other model. The results of other statistical validation matrices such
as sensitivity, accuracy, and Kappa index also confirmed that F-AHP is better than the AHP model.
According to the F-AHP model, about 22.49% of Kedarnath and 17.12% of Wayanad fall within the
very-high risk zones. The created models will serve as a tool for implementing effective policies
intended to reduce the impact of fires, even in other protected areas with similar forest types, terrain,
and climatic conditions.

Keywords: anthropogenic factors; AHP; F-AHP; ROC; wildfires; wildlife sanctuaries

1. Introduction

Wildfires, blazes, and smoldering forest cover are among the most frequent natural
catastrophes, causing significant loss of natural resources in addition to human loss. Ac-
cording to the EM-DAT portal (https://public.emdat.be/ (accessed on 16 October 2022)),
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the 10 most impacted countries recorded 2851 total wildfire-related fatalities between 1900
and 2022. However, things are not different in other countries. According to the study by
Reddy et al. [1], India has the second-highest emerging forest fire hotspot areas among the
seven South Asian nations for both natural and human-caused reasons [2]. Lightning [2],
volcanic eruption [3,4], friction exerted by rolling stones, dry bamboo stalks rubbing against
one another [5], and, in the most extreme cases, a meteorite or asteroid impact [6] are all nat-
ural sources of wildfires. Changes in the climate and weather can make wildfires worse [7].
During the dry summer months, evaporation of soil moisture increases, which causes
an increase in flammable vegetation that might initiate wildfires [8]. Additionally, due
to climate change and the associated lengthened duration of high temperatures, the fire
season is getting extended. Since a few years ago, there has been a significant increase in
the worldwide surface wind speed, a facilitator for forest fires, and this change is caused
by ocean–atmosphere oscillations, such as El Niño events, which were also linked to cli-
mate change [9,10]. According to climate change projections, the temperature differential
between land and water will increase, which will enhance wind characteristics in tropical
and southern subtropical regions in the future [11]. Wildfires may receive more oxygen
from strong winds, which would accelerate their spread [8]. Future projections show that
as climate change gets worse the risk of wildfires will continue to rise in several parts of the
world [12–15]. Accidental and intentional reasons are among the causes of anthropogenic
wildfires [5].

According to Cieslik et al. [16], wildfires can cause the emission of greenhouse gases
and pollutants such as VOCs, NH3, CO, SOx, and NOx, and diminish organic carbon levels
in the soil. It can affect the physico-chemical and ecological states of water systems, alter
carbon storage and vegetation [17], and increase the local land surface temperature [18–20].
A map depicting wildfire risk zones is, therefore, necessary to pinpoint the critical areas
and put in place efficient mitigation strategies. The likelihood that a fire would initiate
is referred to as “fire risk” and is based on the existence and activity of the causative
factors [21].

The climate is an important parameter in the initiation of forest fires and a decisive
factor in prolonging forest fires. A comparative study is quintessential to understanding the
differences in different climatic zones. Hence, the foremost aim of this study is to carry out
a study in two extreme climatic conditions. India, a country with diverse physiographic,
geomorphic, and climatic zones, thus, became the clear choice. The best regions of study
are those where the interplay of natural and anthropogenic factors exists. Thus, both a
wildlife sanctuary resting in the subtropical humid climate (Cwg of Koppen’s classification),
i.e., the Kedarnath Wildlife Sanctuary (KWLS) in the foothills of the Himalayas, and one
in the tropical monsoonal climate (Amw of Koppen’s classification), i.e., the Wayanad
Wildlife Sanctuary (WWLS) in the Western Ghats, were selected for this study. However,
the question of which techniques to adopt is also a matter of concern. Researchers applied
models such as AHP [22], Fuzzy-AHP (F-AHP) [23], frequency ratio [24], fuzzy logic [25],
logistic regression [26], artificial neural network (ANN) [26], analytical network process [25],
support vector machine (SVM) [27], naïve Bayes [28], random forest [29], and decision
tree [27] for mapping wildfire risk zones. AHP sorts and compares variables based on
their entities and categorizes them into hierarchies or groups [30]. By simplifying, dividing,
and comparing many variables, the AHP reduces cognitive errors, and it can compare
both quantitative and qualitative indicators [30]. AHP can handle judgement situations
involving numerous decision-makers, subjective assessments, and the ability to provide
metrics of consistency of choice [31,32]. F-AHP is used to address AHP’s inability to
manage evaluation subjectivity and ambiguity [33]. In addition, AHP and F-AHP will also
perform better than machine learning techniques in situations where there is insufficient
data [34,35].

Though many researchers employed the AHP model for the demarcation of wildfire
risk zones [22,24,36–46], only a few researchers attempted the F-AHP model [23,47–51].
Tiwari et al. [52] applied the AHP, F-AHP, and frequency ratio models for modelling forest
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fire susceptibility in Pauri Garhwal (India). However, so far, the AHP and F-AHP models
have never been compared for wildfire risk modeling. The AHP and F-AHP models have
been compared only for assessing the efficacy of landslide susceptibility [53,54], flood
susceptibility [55,56], flood vulnerability [57], and forest fire susceptibility [52]. This is
the uniqueness of this study, as no researchers have assessed the prediction capability of
both the AHP and F-AHP models for the demarcation of wildfire risk zones and applied
different models for the comparison of two protected areas with different vegetation in any
part of the world. Furthermore, the influence of mass gathering sites such as major tourist
spots and pilgrim/religious centers has not yet been assessed in any of the published works.
Considering the presence of rich and unique flora and fauna in the sanctuaries, this study
has a crucial role to play in minimizing the threats posed by wildfires.

Thus, the purposes of this modelling are to: (a) demarcate the wildfire risk zones in
two contrasting climate zones, in this case the Kedarnath Wildlife Sanctuary and Wayanad
Wildlife Sanctuary, using the AHP and F-AHP models; (b) compare the influence of con-
ditioning factors (land cover types, slope, Land Surface Temperature, normalized dif-
ference water index, distance from the road, distance from the major tourist spot and
pilgrim/religious center, distance from the settlement, Water Ratio Index, and normalized
difference built-up index) on fire occurrence and spread in the two wildlife sanctuaries;
and (c) compare the prediction capability of the two models for both wildlife sanctuaries.

2. Materials and Methods
2.1. Study Area
2.1.1. Kedarnath Wildlife Sanctuary (KWLS)

The KWLS, in the Uttarakhand districts of Chamoli and Rudraprayag (i.e., the Garhwal
Himalayas), is one of the largest protected areas (975 km2) [58]. The Himalayan mountains,
such as Chaukhamba (7068 m), Kedarnath (6940 m), and Mandani (6193 m), surround the
sanctuary and are situated in the upper catchment area of the Alaknanda and Mandakini
Rivers, both of which are the main tributaries of the Ganges [59,60]. The sanctuary usually
remains covered in snow for almost three months during the winter [61]. Even in low-
altitude locations, there will be moderate to severe snowfall from December through
February [59]. The region experiences 3000 mm of annual rainfall, of which roughly
60% occurs between June and August during the monsoon season [59]. The mean maximum
temperature ranges from 4 ◦C to 33.5 ◦C [59].

The forests are mainly dominated by different tree species, viz., West Himalayan
fir (Abies pindrow), East Himalayan fir (Abies spectabilis), Deodar cedar (Cedrus deodara),
Himalayan or Bhutan cypress (Cupressus torulosa), English walnut (Juglans regia), Common
juniper (Juniperus communis), Himalayan bayberry (Myrica esculenta), Chir pine (Pinus
roxburghii), Bhutan pine (Pinus wallichiana), Banj oak (Quercus leucotrichophora), Japanese
blue oak (Quercus glauca), Green oak (Quercus floribunda), Brown oak (Quercus semecarpifolia),
Rhododendron (Rhododendron arboretum), Yellow-paint maple (Acer pictum), Indian or Hi-
malayan horse-chestnut (Aesculus indica), Himalayan birch (Betula utilis), Nepalese alder
(Alnus nepalensis), Common yew (Taxus Baccata), Indian tees (Aconitum heterophyllum), Fad-
ing Himalayan aster (Aster albescens), Himalayan cinquefoil (Potentilla fulgens), Drumstick
primula (Primula denticulate), English primrose (Primula stuartii), and Common dande-
lion (Taraxacum officinale) [62,63]. The Himalayan tahr (Hemitragus jemlahicus), Himalayan
musk deer (Moschus leucogaster), Himalayan goral (Naemorhedus goral), Serow (Capricornis
sumatraensis), Barking deer (Muntiacus muntjak), Sambar (Cervus unicolor), and Wild boar
(Sus scrofa) are the noteworthy fauna of this sanctuary [63].

2.1.2. Wayanad Wildlife Sanctuary (WWLS)

A major protected area of the Nilgiri Biosphere Reserve of the Western Ghats is the
WWLS. This sanctuary is bordered by the national parks of Bandipur and Nagarhole in
Karnataka, as well as Mudumalai in Tamil Nadu [64]. The WWLS covers a 344.44 km2

area and is divided into two distinct units measuring 77.67 km2 (the northern portion)
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and 266.77 km2 (the southern portion). This sanctuary comprises the Sulthan Bathery,
Muthanga, Tholpetty, and Kurichiat forest ranges. The Tholpetty range is located in
the northern segment, while the other three forest ranges are located in the southern
segment [65–67]. The major river traversing the sanctuary is the Kabani [64]. According to
Arjun et al. [65], the annual rainfall at the WWLS is between 3000 and 4000 mm, and the
average temperature is between 13 and 32 ◦C [67].

The WWLS is home to the largest remaining population of Asiatic elephants (Elephas
maximus) [65] and also to Tigers (Panthera tigris), Leopards (Panthera pardus), Gaurs (Bos
gaurus), Wild boars (Sus scrofa), Spotted deer (Axis axis), Barking deer (Muntiacus muntjak),
Sambars (Rusa unicolor), Sloth bears (Melursus ursinus), Bonnet macaques (Macaca radiata),
Nilgiri langurs (Semnopithecus johnii), Common otters (Lutra Lutra), and Malabar giant
squirrels (Ratufa indica) [67]. The major tree species include Teak (Tectona grandis), dam-
son (Terminalia spp.), Indian rosewood (Dalbergia latifolia), axle-wood (Anogeissus latifolia),
Dhaman (Grewia tiliaefolia), Haldu (Adina cordifolia), Cinnamon (Cinnamomum zeylanicum),
Indian kino (Pterocarpus marsupium), white dammar (Vateria indica), Cebuano (Lagerstroemia
lanceolata), Wild jack (Artocarpus hirsutus), and Chandada (Macaranga peltate) [67]. In this
study, only the southern portion of the WWLS is considered, as the northern portion is a
geographically isolated place (Figure 1).

2.2. Data Source and Major Steps

The following were the six major steps involved:

1. Data were gathered from a variety of sources; both primary and secondary (Table 1).
ArcGIS 10.8 (Esri, Inc., Redlands, CA, USA) and ERDAS Imagine 9.2 (Hexagon AB,
Stockholm, Sweden) were used to create the thematic layers for these different factors.

2. The layers of continuous factors such as the slope, Land Surface Temperature (LST),
Normalized Difference Water Index (NDWI), distance from the road, distance from
the major tourist spot and pilgrim/religious center, distance from the settlement,
Water Ratio Index (WRI), and Normalized Difference Built-up Index (NDBI) were
classified using the Natural breaks method [57,68].

3. The multicollinearity of factors was tested employing the Variance Inflation Factor
(VIF) and tolerance.

4. The risk zone maps were created employing the AHP and F-AHP models. MS Excel
and FisPro 3.8 (https://www.fispro.org/en/ (accessed on 11 August 2022)) [69,70]
were employed to derive the weights of the AHP and F-AHP models, respectively
(Figure 2).

5. The Fire Radiative Power [71,72] distribution of the fire events has been plotted to assess
the characteristics of wildfires. This data has been retrieved from the FIRMS portal.

6. The risk zone maps were validated utilizing the ROC curve method and other sta-
tistical validation matrices such as sensitivity, accuracy, and Kappa index, and the
R 4.2.1 (The R Foundation for Statistical Computing, Vienna, Austria) software was
employed for the validation of the maps.

https://www.fispro.org/en/
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Table 1. Data source.

Data Source Layers Derived (Factor) Scale Spatial Resolution

Landsat 8 OLI image https://earthexplorer.usgs.gov/
(accessed on 21 September 2022)

Land cover types
NDWI
WRI
NDBI

30 m

Landsat 7 ETM+ https://earthexplorer.usgs.gov/
(accessed on 21 September 2022) LST 60 m

Landsat 8 TIRS image https://earthexplorer.usgs.gov/
(accessed on 21 September 2022) LST 100 m

SRTM DEM https://earthexplorer.usgs.gov/
(accessed on 5 January 2020) Slope 30 m

Topographic map Survey of India

Distance from the road
Distance from the tourist spot,

pilgrim/religious center
Distance from the settlement

1: 50,000

Google Earth Pro https://earth.google.com/web/
(accessed on 5 October 2022)

Distance from the road (updated)
Distance from the tourist spot,

pilgrim/religious center (updated)
Distance from the settlement

(updated)

15 cm to 15 m

NASA FIRMS data
https://firms.modaps.eosdis.

nasa.gov/download/ (accessed
on 27 July 2022)

Fire incidence points 375 m (VIIRS) and1
km (MODIS)
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2.3. Creation of Wildfire Inventory

The fire incidence data for the period of 1 November 2000–26 July 2022 has been
collected from NASA’s Fire Information for Resource Management System (FIRMS) por-

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earth.google.com/web/
https://firms.modaps.eosdis.nasa.gov/download/
https://firms.modaps.eosdis.nasa.gov/download/
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tal (https://www.earthdata.nasa.gov/learn/find-data/near-real-time/firms (accessed on
27 July 2022)). Two satellite-derived fire incidence datasets are available within this portal,
i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared
Imaging Radiometer Suite (VIIRS). This study utilized both MODIS and VIIRS data. As per
the portal, a total of 124 wildfire incidences have been reported in the KWLS during this
period, whereas the total incidence in the WWLS was 192.

2.4. Derivation of Conditioning Factors

The land cover types were extracted from the Landsat 8 images using the ERDAS
Imagine software, and the maximum likelihood classification approach [73–75] was em-
ployed for this. The slope was determined from the DEM using the ArcGIS surface (spatial
analyst) tool. The road networks, tourist spots, pilgrim/religious centers, and settlements
were derived from the topographic maps and Google Earth Pro images employing ArcGIS
tools. The distance from the road, the distance from the tourist spot and pilgrim/religious
center, and the distance from the settlement layers were computed using the ArcGIS spatial
analyst (Euclidean distance) tool.

Landsat 8 Thermal Infrared Sensor (TIRS) and Landsat 7 ETM+ images were utilized
to derive the LST of the sanctuaries. The steps involved with the extraction of the LST are
listed below:

i. Transformation of the Digital Number (DN) to Spectral Radiance (Lλ)

Spectral radiance (Lλ) was computed employing Equation (1) [76].

Lλ = LMINλ +

[
(LMAXλ − LMINλ)

QCALMAX−QCALMIN
×QCAL

]
(1)

where QCAL = DN of pixels; QCALMAX = 255; QCALMIN = 0; LMINλ= spectral radiance
at DN = 0; LMAXλ= spectral radiance at DN = 255 [77].

ii. Transformation of Spectral Radiance to At-Satellite Brightness Temperatures

Based on the type of land cover, the emissivity (e) for radiant temperatures has been
rectified. Vegetation areas were given a score of 0.95, while unwooded areas were given a
score of 0.92 [78]. As mentioned in Artis and Carnahan [79], the emissivity-corrected LST
was identified (Equation (2)).

TB =
K2

ln
(

K1
Lλ

)
+ 1

(2)

where Lλ is Spectral Radiance in W.m−2.sr−1.µm−1, and K1 and K2 are two constants [77].

iii. LST Estimation

The spectral emissivity (ε) needs correction since the black body is denoted by the
temperature values obtained from the above analyses. Rectification can be performed by
rendering the land cover type or by computing the corresponding NDVI emissivity values
for the respective pixels [80]. The rectified emissivity of the LST was determined using
Equation (3) [79].

LST =
TB[

1 +
{(

λ×TB
ρ

)
× ln ∈

}] (3)

where the LST = LST in kelvin, TB = At-sensor brightness temperature, λ = TOA reflectance,
and Inε = Emissivity [77].

Land surface emissivity was computed employing Equation (4).

Land sur f ace emissivity (∈) = 0.004× pv + 0.986 (4)

https://www.earthdata.nasa.gov/learn/find-data/near-real-time/firms
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where pv is the vegetation proportion, which was calculated using Equation (5) [77].

pv =

( NDVIjr − NDVImin

NDVImax − NDVImin

)2

(5)

iv. Conversion of Kelvin to Degree Celsius

The measurement unit of the predicted LSTs was transformed to a kelvin scale using
the calculation 0 ◦C = 273.15 K to simplify the conceptualizing.

The NDWI was extracted from the Landsat images using the ArcGIS map algebra tool
and Equation (6) [81]. The WRI was computed from the satellite images using the ArcGIS
map algebra tool and Equation (7) [82]. The ArcGIS map algebra tool and Equation (8) [83]
were utilized to derive the NDBI values.

NDWI =
(Green− NIR)
(Green + NIR)

(6)

WRI =
(Green + Red)
(NIR + SWIR)

(7)

NDBI =
(SWIR− NIR)
(SWIR + NIR)

(8)

where Green, Red, NIR, and SWIR denote spectral reflectance measurements in the Green,
Red, Near infrared, and Short-wave infrared bands, respectively.

2.5. Multi-Collinearity Test

Anytime an independent factor in a multivariate regression equation has a high correla-
tion with one or more additional independent factors, multicollinearity exists [84,85]. The
standard error will be relatively substantial for an independent factor with a high correla-
tion to one or more other independent factors [84]. The Variance Inflation Factor (VIF) and
tolerance are the most widely employed measures of the degree of multi-collinearity [86].
The VIF shows how strongly a variable’s linear relationship to the other explanatory factors
is [87]. According to Ferré [88], a VIF larger than 10 indicates that the correlation (collinear-
ity) between the factors is so high that the standard error of the regression coefficient
is excessively increased. The reciprocal of the VIF is known as the tolerance, and if the
tolerance is lower than 0.1 to 0.2, multicollinearity exists [89]. The VIF was computed
employing Equation (9) [87].

VIFj =
1

1− R2
j

(9)

where R2
j is the R2 from the regression of the jth explanatory factor on the remaining

explanatory factors.

2.6. AHP Modeling

Saaty’s AHP [90] is a well-known and frequently applied multi-criteria decision-
making technique [91,92]. The AHP method’s blending of qualitative and quantitative
analysis is one of its hallmarks [93]. The important relationship between each factor is
quantitatively stated by combining expert judgment with objective assessment, and a matrix
of the various conditioning factors will be created [93]. The capacity to gauge consistency is
another benefit of the AHP model [33]. The critical stages in the AHP modelling process are
the creation of the matrix for pair-wise comparisons, the determination of the Eigenvector,
the weighting coefficient (Table 2), and the consistency ratio (Table 3) [53,57].
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Table 2. Pairwise comparison matrix.

LCT Slp LST NDWI DR DTSPRC DS WRI NDBI Vp Cp

LCT 1 2 3 4 5 6 7 8 9 4.147 0.308
Slp 1/2 1 2 3 4 5 6 7 8 3.008 0.223
LST 1/3 1/2 1 2 3 4 5 6 7 2.113 0.157

NDWI 1/4 1/3 1/2 1 2 3 4 5 6 1.459 0.108
DR 1/5 1/4 1/3 1/2 1 2 3 4 5 1.000 0.074

DTSPRC 1/6 1/5 1/4 1/3 1/2 1 2 3 4 0.685 0.051
DS 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 0.473 0.035

WRI 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 0.332 0.025
NDBI 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 0.241 0.018

∑ 2.83 4.72 7.59 11.45 16.28 22.08 28.83 36.50 45.00 13.46 1.00

Where LCT = Land cover types, Slp = Slope, DR = Distance from the road, DTSPRC = Distance from the tourist
spot and pilgrim/religious center, and DS = Distance from the settlement.

Equations (10) and (11) were employed to determine the Eigenvector (Vp) and weight-
ing coefficient (Cp) [22,53,94]:

Vp =
k√W1× . . . Wk (10)

where k = no. of factors, and W = ratings,

Cp =
Vp

Vp1 + . . . Vpk
(11)

As explained by Danumah et al. [95], the normalized matrix, priority vector [C],
overall priority [D], and rational priority [E] were computed. Equations (12)–(14) were
employed to calculate the eigenvalue (λmax), consistency index (CI), and consistency ratio
(CR) [22,53,94].

λmax =
[E]
k

(12)

CI =
(λmax− k)
(k− 1)

(13)

CR =
CI
RI

(14)

where (RI) random index = 1.49 [90].
Saaty [90] recommends a consistency ratio (CR) of less than 0.1. The analysis has to be

repeated if the CR is larger than 0.1. The AHP modelling in this study yields an acceptable
CR of 0.035. As a result, the results can be relied upon.

The AHP weights are depicted in Equation (15).

FRZ = (0.308× LCT) + (0.223× Slp) + (0.157× LST) + (0.108× NDWI) + (0.074× DR)
+(0.051× DTSPRC) + (0.035× DS) + (0.025×WRI) + (0.018× NDBI)

(15)
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Table 3. Normalized matrix.

LCT Slp LST NDWI DR DTSPRC DS WRI NDBI ∑rank [C] [D] = [A]*[C] [E] = [D]/[C] λmax CI CR

LCT 0.35 0.42 0.40 0.35 0.31 0.27 0.24 0.22 0.20 2.76 0.307 2.981 9.711

9.408 0.051
0.035

(3.52%)

Slp 0.18 0.21 0.26 0.26 0.25 0.23 0.21 0.19 0.18 1.96 0.218 2.134 9.782
LST 0.12 0.11 0.13 0.17 0.18 0.18 0.17 0.16 0.16 1.39 0.154 1.499 9.715
NDWI 0.09 0.07 0.07 0.09 0.12 0.14 0.14 0.14 0.13 0.98 0.109 1.040 9.548
DR 0.07 0.05 0.04 0.04 0.06 0.09 0.10 0.11 0.11 0.69 0.076 0.714 9.345
DTSPRC 0.06 0.04 0.03 0.03 0.03 0.05 0.07 0.08 0.09 0.48 0.053 0.489 9.168
DS 0.05 0.04 0.03 0.02 0.02 0.02 0.03 0.05 0.07 0.33 0.037 0.336 9.077
WRI 0.04 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.23 0.026 0.236 9.104
NDBI 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.17 0.019 0.174 9.222
∑ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 9.00 1.000 84.672
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2.7. F-AHP Modelling

F-AHP [96], an AHP method developed by utilizing fuzzy logic theory [97], was
established to solve the scenario wherein experts struggle to render an accurate comparative
assessment [98]. Typically, a set of triangular fuzzy numbers (TFN) are used to develop the
F-AHP [98]. The F-AHP is the best choice for resolving the issue of null weights for factors
and scores for alternatives without compromising the consistency of the outcomes [99]. The
ease of computing implementation and the improved capability to discern the significance
of the factors when the weights are close are additional advantages of this method [99].
Discrepancies can occur during the development of pairwise comparisons in the AHP
model [100]. However, this can be solved by employing the F-AHP approach [101]. For
comparing the fuzzy ratios, Buckley’s [102] method was utilized. The crucial stages include
creating a pair-wise comparison matrix (Table 4), computing geometric means (Table 5),
estimating relative fuzzy weights (Table 6), and calculating averaged and normalized
relative weights (Table 7) [53,57]. The following were the crucial steps in the F-AHP
modelling process:

Step 1: The factors were compared.
The fuzzy triangular scale (1/4, 1/3, 1/2) will be utilized when factor 1 (P1) is of lower

priority than factor 2 (P2). For the comparison matrix, the fuzzy triangular scale will be
(1/4, 1/3, 1/2) [103].

Equation (16) depicts the matrix:

Ãk =


d̃k

11 d̃k
12 . . . d̃k

1n
d̃k

21
. . .

. . .

. . .
. . . d̃k

2n
. . . . . .

d̃k
n1 d̃k

n2 . . . d̃k
mn

 (16)

where d̃
k
ij reflects the kth decision maker’s preference for the ith factor over the jth fac-

tor [103].
Step 2: d̃ij was computed using Equation (17) [57]:

d̃ij =
∑K

k=1 d̃k
ij

K
(17)

Step 3: Equation (18) was applied to transform the matrix [57]:

Ã =

d̃11 · · · d̃1n
...

. . .
...

d̃n1 · · · d̃nn

 (18)

Step 4: Equation (19) [102] was employed to determine the geometric average:

r̃i =

(
n

∏
j=1

d̃ij

) 1
n

, i = 1, 2, . . . , n (19)

where r̃i= triangular values.
Step 5: From the following sub-steps (5a, 5b, and 5c), the fuzzy weights were computed.
Step 5a: Summation vector of each r̃i was determined.
Step 5b: After computing the summation vector’s (−1) power, the fuzzy triangular

number was replaced to transform it into ascending order.
Step 5c: The fuzzy weight was determined by multiplying r̃i with the reverse vector

as represented in Equations (20) and (21) [57]:

w̃i = r̃i × (r̃1 + r̃2 + . . . + r̃n)
−1 (20)
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w̃i = (lwi, mwi, uwi) (21)

Step 6: The fuzzy weights were de-fuzzified as in Equation (22) [104]:

Mi =
lwi, mwi, uwi

3
(22)

Step 7: Equation (23) was employed for the standardization of Mi [57]:

Ni =
Mi

∑n
i=1 Mi

(23)

Equation (24) depicts the F-AHP weights:

FRZ = (0.299× LCT) + (0.223× Slp) + (0.159× LST) + (0.111× NDWI) + (0.076× DR)
+(0.052× DTSPRC) + (0.036× DS) + (0.025×WRI) + (0.018× NDBI)

(24)

2.8. Validation of the Maps
2.8.1. ROC Curve

The ROC method [36,53,68,94] was adopted to validate the created risk zone maps to
assess the prediction capability. The ROC curve is a two-dimensional graph frequently used
to determine the effectiveness of classifiers [105]. According to Hanley and McNeil [106],
AUC is a single scalar metric that depicts a classifier’s overall efficacy. The least AUC
value (0.5) denotes a random performance; whereas the highest score (1.0) denotes a perfect
classifier [105]. The ROC curves were plotted, and the AUC values were computed using
the R 4.2.1 software. The fire incidence data was employed to validate the results. This
fire incidence data was divided into two datasets: training (70%) and validation (30%). In
the case of the WWLS, the training dataset contained 133 fire incidence locations and the
validation dataset contained 59 incidence locations, whereas the training dataset contained
87 locations, and the validation dataset contained 37 incidence locations for the KWLS.
According to Li and He [107], an AUC value ranging between 0.50 and 0.60, 0.60 and 0.70,
0.70 and 0.80, 0.80 and 0.90, and 0.90 and 1.00 represents failure, poor, fair, good, and
excellent performance.

2.8.2. Sensitivity and Accuracy

The sensitivity is the percentage of wildfires that were correctly identified by the
test [108]. The degree to which a set of observations corresponds to their actual value
is known as accuracy [109]. Sensitivity and specificity reflect the model’s robustness,
while accuracy demonstrates the model’s predictivity [110]. Sensitivity and accuracy were
computed using Equations (25) and (26) [111,112].

Sensitivity =
TP

TP + FN
(25)

Accuracy =
TP + TN

TP + FP + FN + TN
(26)

where TP, TN, FP, and FN are true positives, true negatives, false positives, and false
negatives, respectively.
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Table 4. Pairwise comparison of factors.

LCT Slp LST NDWI DR DTSPRC DS WRI NDBI

LCT (1, 1, 1) (1, 2, 3) (2, 3, 4) (3, 4, 5) (4, 5, 6) (5, 6, 7) (6, 7, 8) (7, 8, 9) (9, 9, 9)
Slp (1/3, 1/2, 1) (1, 1, 1) (1, 2, 3) (2, 3, 4) (3, 4, 5) (4, 5, 6) (5, 6, 7) (6, 7, 8) (7, 8, 9)
LST (1/4, 1/3, 1/2) (1/3, 1/2, 1) (1, 1, 1) (1, 2, 3) (2, 3, 4) (3, 4, 5) (4, 5, 6) (5, 6, 7) (6, 7, 8)
NDWI (1/5, 1/4, 1/3) (1/4, 1/3, 1/2) (1/3, 1/2, 1) (1, 1, 1) (1, 2, 3) (2, 3, 4) (3, 4, 5) (4, 5, 6) (5, 6, 7)
DR (1/6, 1/5, 1/4) (1/5, 1/4, 1/3) (1/4, 1/3, 1/2) (1/3, 1/2, 1) (1, 1, 1) (1, 2, 3) (2, 3, 4) (3, 4, 5) (4, 5, 6)
DTSPRC (1/7, 1/6, 1/5) (1/6, 1/5, 1/4) (1/5, 1/4, 1/3) (1/4, 1/3, 1/2) (1/3, 1/2, 1) (1, 1, 1) (1, 2, 3) (2, 3, 4) (3, 4, 5)
DS (1/8, 1/7, 1/6) (1/7, 1/6, 1/5) (1/6, 1/5, 1/4) (1/5, 1/4, 1/3) (1/4, 1/3, 1/2) (1/3, 1/2, 1) (1, 1, 1) (1, 2, 3) (2, 3, 4)
WRI (1/9, 1/8, 1/7) (1/8, 1/7, 1/6) (1/7, 1/6, 1/5) (1/6, 1/5, 1/4) (1/5, 1/4, 1/3) (1/4, 1/3, 1/2) (1/3, 1/2, 1) (1, 1, 1) (1, 2, 3)
NDBI (1/9, 1/9, 1/9) (1/9, 1/8, 1/7) (1/8, 1/7, 1/6) (1/7, 1/6, 1/5) (1/6, 1/5, 1/4) (1/5, 1/4, 1/3) (1/4, 1/3, 1/2) (1/3, 1/2, 1) (1, 1, 1)
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Table 5. Geometric mean.

Fuzzy Geometric Mean (
~
ri)

LCT 3.292 4.147 4.902
Slp 2.282 3.008 3.840
LST 1.576 2.113 2.785
NDWI 1.080 1.459 1.956
DR 0.740 1.000 1.351
DTSPRC 0.511 0.685 0.926
DS 0.359 0.473 0.634
WRI 0.260 0.332 0.438
NDBI 0.204 0.241 0.304
∑ r̃i 10.305 13.460 17.136
(∑ r̃i)

−1 0.058 0.074 0.097

Table 6. Relative fuzzy weights.

Fuzzy Weight [
~
wiW]

LCT 0.192 0.308 0.476
Slp 0.133 0.223 0.373
LST 0.092 0.157 0.270
NDWI 0.063 0.108 0.190
DR 0.043 0.074 0.131
DTSPRC 0.030 0.051 0.090
DS 0.021 0.035 0.062
WRI 0.015 0.025 0.043
NDBI 0.012 0.018 0.029

Table 7. Normalized weights.

Weight (MiMi) Normalized Weight (NiNi)

LCT 0.325 0.299
Slp 0.243 0.223
LST 0.173 0.159
NDWI 0.120 0.111
DR 0.083 0.076
DTSPRC 0.057 0.052
DS 0.039 0.036
WRI 0.027 0.025
NDBI 0.020 0.018
∑ 1.09 1.00

2.8.3. Kappa Index

Cohen’s Kappa index [113] measures the degree of agreement between a pair of fac-
tors [114] and is used to estimate interrater reliability [115,116]. The value ranges between
−1 and 1, with 1 representing complete agreement, 0 representing no agreement, and a neg-
ative score representing worse agreement [114]. Kappa scores equal to or less than 0 indicate
no agreement; 0.01–0.20 indicate slight to no agreement; 0.21–0.40 indicate fair; 0.41–0.60 in-
dicate moderate; 0.61–0.80 indicate substantial agreement; and 0.81–1.00 indicate nearly
perfect agreement [115]. The Kappa index was estimated using Equation (27) [117].

k =
Pobs − Pexp

1− Pexp
(27)

where Pobs and Pexp are observed and expected agreements, respectively.
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3. Results
3.1. Fire Radiative Power (FRP) Distribution

The FRP, which is employed to quantify burned biomass [72,118], of the KWLS ranged
from 5.50 to 102.40 MW, while the FRP of the WWLS ranged from 4.80 to 464.50 MW. The
FRP distribution of fire events is depicted in Figure 3.

3.2. Multi-Collinearity Analysis

The multi-collinearity analysis confirmed that all factors were relevant, with tolerance
values above 0.1 and VIF values below 5 (Table 8). For the KWLS, the slope had the highest
tolerance value (0.890), followed by the LCT, whereas for the WWLS the distance from the
tourist spot or pilgrim/religious center had the highest tolerance value of 0.881, followed
by the slope (0.849). The VIF of the KWLS ranged from 1.124 to 4.782, whereas the VIF of
the WWLS ranged between 1.135 and 1.988.

3.3. Conditioning Factors

The conditioning factors that are responsible for the initiation of fires were selected
based on the previous studies [22,24,36,119], and the concept of Chuvieco et al. [21], which
states fire risk as the likelihood that a fire would initiate.

Table 8. Multicollinearity analysis.

Factors
Collinearity Statistics of KWLS Collinearity Statistics of WWLS

Tolerance VIF Tolerance VIF

LST 0.209 4.782 0.503 1.988
LCT 0.707 1.415 0.668 1.497

Slope 0.890 1.124 0.849 1.177
WRI 0.230 4.354 0.600 1.666

NDWI 0.288 4.472 0.593 1.687
Distance from the road 0.235 4.255 0.726 1.378

Distance from the
tourist spot or

pilgrim/religious center
0.576 1.735 0.881 1.135

Distance from the
settlement 0.247 4.049 0.691 1.447

NDBI 0.278 3.597 0.772 1.295

3.3.1. LST

The LST was anticipated to have a crucial relationship with wildfires because the
temperature is a major determinant of the fuel moisture content that is linked to fire
ignition, spread, and behavior. The study by Manzo-Delgado et al. [120] found the LST as
an integral factor contributing to the vulnerability of vegetation and is a crucial factor to be
included in wildfire risk modeling. The LST of KWLS was classified into five classes and
ranges from 4.96 to 30.33 ◦C (Figure 4a). The lower LST was confined to the northern and
northeastern portions of the KWLS covered by snow cover. It was observed that a total of
90 fires (72.58%) occurred in areas with a higher LST (11.72–30.33 ◦C), followed by 22 fires
(17.74%) in areas with an LST value range of 9.25–11.72 ◦C. The LST of the WWLS ranged
from 19.30 to 30.69 ◦C (Figure 4b) and was categorized into five classes. It was observed that
a total of 8 fires (4.16%) occurred in areas with the highest LST (25.38–30.69 ◦C), followed
by 20 fires (10.41%) in areas with the lowest LST value range of 23.81–25.38 ◦C.

Since the temperature range is different for the two study areas, the influence of the
temperature on wildfire initiation was assessed by verifying the LST value of each fire
point. It is observed that the majority of fires (53 fires, or 42.74%) occurred in areas with
temperatures ranging from 12.0 ◦C to 16.0 ◦C for the KWLS. Similarly for the WWLS, it is
observed that the majority of fires (90 fires, or 72.58%) occurred in areas with temperatures
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ranging from 22.7 ◦C to 23.7 ◦C. This reiterates that the LST does not have a significant
influence on fire initiation in both the KWLS and the WWLS.
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3.3.2. Land Cover Types

Vegetation acts as a fuel for wildfires, whereas its type and structure (spacing) deter-
mine the spread and intensity of wildfires [22]. Areas with dry and thick vegetation are
more prone to fires, as fires can spread easily [121]. The plantation areas are also prone to
fires, as the areas are non-forested and are managed by people; hence, there is a chance of ac-
cidental fires. Fires are also set by the farmers to clear the dried and fallen leaves and barks
and to promote the growth of grass and fodder [5]. Gómez-González et al. [122] also found
that undermanaged forest plantations can pose a threat to human populations by causing
wildfires. The land cover types present in the KWLS include snow cover, Alpine scrub for-
est, dry deciduous forest, Himalayan moist temperate forest, plantations, and barren land
(Figure 4c). The north, northeast, and northwest parts of the sanctuary are covered by snow
and, hence, are devoid of fire. A total of 57 fires (45.96%) occurred in the Alpine scrub forest,
and 57 fires (45.96%) occurred in the Himalayan moist temperate forest. The land cover
types present in the WWLS include water bodies, grassland, forest/agricultural plantations,
evergreen forest, deciduous forest, and built-up areas (Figure 4d). There were 107 fires
(55.73%) in evergreen forests and 73 fires (38.02%) in forest/agricultural plantations.

3.3.3. Slope

The slope of the terrain accelerates the spread of fire [123]. The steeper the slope,
the faster a fire can move, as it preheats and pre-dries the terrain above it [124,125]. The
slope of the KWLS ranges between 0 and 75.66◦ (Figure 4e). A total of 11 fire incidences
(8.87%) were observed in areas with a slope ranging from 48.06◦ to 75.66◦. 51 fires (41.13%)
occurred in areas with a slope range of 37.97–48.06◦ and 38 fires (30.64%) occurred in areas
with a slope range of 28.48–37.97◦. This reiterates that slope has a considerable influence on
fire spread and initiation in the KWLS. However, the slope of the WWLS ranges between 0
and 39.26◦ (Figure 4f). A total of 4 fire incidences (2.08%) were observed in areas with a
slope ranging from 17.55 to 39.26 ◦; 13 fires (6.77%) occurred in areas with a slope range
of 11.54–17.55 ◦; and 38 fires (19.79%) occurred in areas with a slope range of 7.54–11.54◦.
The WWLS forms a part of the Wayanad Plateau, an extension of the Mysore plateau, and
is hence characterized by a low slope. Thus, the slope has less control over the spread of
forest fires.

3.3.4. WRI

AWRI score above one represents a water body [82], and, hence, the probability of fire
occurrence is higher in areas with lower WRI values. In the case of the KWLS, higher WRI
values were observed in the areas covered by snow. The WRI of the KWLS ranges between
0.42 and 2.31 (Figure 4g). A total of 102 fire incidences (82.25%) have been recorded in
areas with lower WRI values (0.42–0.69), reiterating the influence of soil moisture on fire
spread in the KWLS. The WRI of the WWLS ranges between 0.46 and 1.19 (Figure 4h). In
the case of the WWLS, a total of 16 fire incidences (8.33%) have been recorded in areas with
a WRI value range of 0.42–0.69, followed by 50 fires (26.04%) in areas with a WRI range of
0.58–0.61. This demonstrates that the WRI has only a considerable influence on fire spread
and initiation in the WWLS.
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3.3.5. NDWI

The NDWI is used to assess the moisture level in plants and the surrounding soil
and ranges between −1 and +1 [24]. The chance of fire is high in the areas with lower
NDWI values (moisture) [24]. The NDWI of the KWLS ranges from −0.24 to 0.72 and was
categorized into five classes (Figure 4i). Higher NDWI values are confined to the north
and northeast areas covered by snow cover in the KWLS. In this sanctuary, the areas with
lower–moderate NDWI values have a higher number of fire incidences: 63 fires (50.80%)
in areas with an NDWI value range of −0.03–0.08, followed by 57 fires (45.96%) in areas
with an NDWI value range of 0.08–0.25. Whereas the NDWI of the WWLS ranges from
−0.16 to 0.24 and was categorized into five classes (Figure 4j). In the WWLS, the areas
with lower–moderate NDWI values have a higher number of fire incidences. A total of
41 fires (21.35%) were reported in areas with an NDWI value range between −0.16 and
−0.03, followed by 81 fires (42.18%) in areas with an NDWI value range of −0.03–0.00,
and 44 fires (22.1%) were reported in areas with an NDWI value range of 0.00–0.04. This
underlines that the NDWI has a significant influence on fire spread in the KWLS but only a
considerable influence in the WWLS.

3.3.6. Distance from the Road

The KWLS and WWLS are popular tourist spots, and, hence, a lot of tourists visit
every year. The passage of tourists and pilgrims through these forest roads can cause
wildfires from fires set to clear forest paths, extinguish cigarettes, cook, create campfires,
and to construct and repair roads through coal tar burning [5,22,126]. The risk of wildfires
is, therefore, higher in places that are located near road networks. In the KWLS, the road
networks are confined to the south, southeast, southwest, and northwest parts of the
sanctuary. Based on the distance from the road, the sanctuary area has been categorized
into five zones: 0–3.04 km; 3.04–6.24 km; 6.24–9.76 km; 9.76–13.90 km; and 13.90–19.91 km
(Figure 5a). In total, 77 fires (62.09%) occurred in areas closer to the road (0–3.04 km). The
WWLS has a good road network. Based on the distance from the road, the sanctuary area
has been categorized into five zones (0–0.32 km; 0.32–0.72 km; 0.72–1.28 km; 1.28–2.03 km;
and 2.03–3.41 km) (Figure 5b). In total, 94 fires (48.95%) were recorded in areas closer to the
road (0–0.32 km). This shows that road networks have a significant influence on the KWLS
and WWLS.

3.3.7. Distance from the Tourist Spot, and Pilgrim/Religious Center

Tourist spots and pilgrim/religious centers are sites of mass gatherings. The number of
pilgrim/religious centers is higher in the KWLS compared to the WWLS. Both sanctuaries
are home to many famous tourist spots. Hence, the areas closer to tourist spots and
pilgrim/religious centers are more prone to wildfires, as the fires created for recreational
activities and religious rituals can escalate into wildfires due to carelessness [5]. There
are many tourist spots and pilgrim/religious centers in the KWLS, except in the north,
east, northeast, and southeast parts. Based on the distance from the tourist spot and
pilgrim/religious center, the KWLS is categorized into five zones: 0–3.06 km, 3.06–6.03 km,
6.03–9.60 km, 9.60–13.85 km, and 13.85–21.68 km (Figure 5c). A total of 92 fires (74.19%)
occurred in areas closer to tourist spots and pilgrim/religious centers (0–3.06 km). Similar
to the KWLS, the WWLS also has many tourist spots. Based on the distance from the tourist
spot and pilgrim/religious center, the WWLS is categorized into five zones: 0–1.55 km;
1.55–2.71 km; 2.71–3.91 km; 3.91–5.27 km; and 5.27–8.25 km (Figure 5d). A total of 53 fires
(27.60%) occurred in areas closer to tourist spots and pilgrim/religious centers (0–1.55 km).
This confirms its higher influence in the KWLS and its lesser influence in the WWLS.

3.3.8. Distance from the Settlement

The local populace residing in the sanctuaries can light fires as a part of their traditions
and religious customs, to burn agricultural wastes, drive away wild animals, clear paths,
collect forest products, extract wine, make charcoal, for resin tapping, setting campfires,



Fire 2023, 6, 44 20 of 33

cooking, and by throwing unextinguished cigarettes [5]. Furthermore, poachers or smug-
glers can create wildfires by the fires set to hide illicit felling of trees, encroach on forest
land, or as a result of personal rivalries [5]. Thus, wildfires are more likely to break out
in areas of human settlement [24]. In the KWLS, the human settlements are confined to
the west, northwest, and southwest parts. Based on the distance from the settlement, the
Kedarnath Wildlife Sanctuary was categorized into five zones: 0–5.92 km, 5.92–12.26 km,
12.26–18.74 km, 18.74–25.37 km, and 25.37–35.94 km (Figure 5e). A total of 77 fire incidences
(62.09%) have been observed in areas closer to human settlements (0–5.92 km). On the other
hand, the WWLS has a large number of human settlements, especially in the western and
southeastern parts of the sanctuary. Based on the distance from the settlement, the WWLS
was categorized into five zones: 0–1.47 km; 1.47–3.03 km; 3.03–4.58 km; 4.58–6.34 km; and
6.34–10.16 km (Figure 5f). A total of 51 fire incidences (26.56%) have been observed in
areas closer to human settlements (0–1.47 km). The above observations confirm that human
settlements have a higher influence in the KWLS than in the WWLS.

3.3.9. NDBI

The NDBI was employed to extract built-up areas, and the value ranged between −1
and +1 [83]. The negative NDBI values represent a water body or areas with higher soil
moisture content; the higher positive NDBI values represent built-up areas, and the lower
positive NDBI values represent vegetation. Consequently, the probability of fire will be
high in regions with lower positive NDBI values. The NDBI of the KWLS ranges from
−0.72 to 0.24 (Figure 5g) and was categorized into five classes. A total of 72 fires (58.06%)
were recorded in areas with the NDBI values ranging from −0.09 to 0.02. The NDBI of the
WWLS ranges from −0.24 to 0.16 (Figure 5h) and was categorized into five classes. A total
of 82 fires (42.70%) were recorded in areas with the NDBI values ranging from 0.00 to 0.03.
This confirmed that the NDBI has a significant influence on fire spread in both the KWLS
and the WWLS.

3.4. Wildfire Risk Zones

This study established beyond doubt that land cover types, WRI, distance from the
tourist spot and pilgrim/religious center, distance from the road, distance from the set-
tlement, NDBI, and slope all have a significant impact on fire spread in the KWLS. This
reiterates the fact that fire occurrence in this sanctuary is due to natural as well as human-
induced (anthropogenic) factors. Similarly, this study also confirmed that distance from
the road, land cover types, NDWI, WRI, distance from the settlement, and distance from
tourist spots and pilgrim/religious centers all have a significant impact on fire initiation
and spread in the WWLS. However, the slope and the LST do not have a substantial impact
on fire spread in the WWLS. Anthropogenic factors are predominant in the occurrence and
spread of fire in the WWLS. Figure 6a,b depict the wildfire risk zones in the KWLS and the
WWLS employing the AHP models, and Figure 6c,d depict the wildfire risk zones in the
KWLS and the WWLS employing the F-AHP models, respectively. The percentage of each
risk zone is shown in Table 9.
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(c) Distance from the tourist spot and pilgrim/religious center—KWLS. (d) Distance from the tourist
spot and pilgrim/religious center—WWLS. (e) Distance from the settlement—KWLS. (f) Distance
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Table 9. Percentage of fire risk zones in KWLS and WWLS.

Risk Zones
Percentage of Risk Zones in KWLS Percentage of Risk Zones in WWLS

AHP Model F-AHP Model AHP Model F-AHP Model

Very low 16.59 16.59 8.43 8.45
Low 16.70 16.54 17.92 17.70

Moderate 16.92 17.50 27.62 27.75
High 26.61 26.88 29.08 28.98

Very high 23.18 22.49 16.95 17.12
Total 100 100 100 100

3.5. Validation of the Risk Zone Maps

For the KWLS, the ROC curve analysis of the training dataset provided good AUC
values of 0.860 (86.0%) and 0.880 (88.0%) for the AHP and F-AHP models, respectively
(Figure 7), and the validation dataset provided excellent AUC values of 0.902 (90.2%) and
0.922 (92.2%), respectively (Figure 8). For the WWLS, the ROC curve analysis of the training
dataset provided good AUC values of 0.838 (83.8%) and 0.876 (87.6%) for the AHP and
F-AHP models, respectively (Figure 9), and the validation dataset provided good AUC
values of 0.875 (87.5%) and 0.892 (89.2%), respectively (Figure 10). Thus, it was proven
beyond doubt that both models are very effective in mapping wildfire risk zones, with the
F-AHP model having slightly better accuracy than the AHP model.

For the validation dataset of the KWLS, the matrices such as sensitivity, accuracy, and
Kappa index confirmed higher scores of 0.714, 0.737, and 0.870 for the AHP model and
0.810, 0.842, and 0.884 for the F-AHP model, respectively (Table 10). For the validation
dataset of the WWLS, the matrices such as sensitivity, accuracy, and Kappa index confirmed
higher scores of 0.846, 0.875, and 0.850 for the AHP model and 0.905, 0.926, and 0.875 for



Fire 2023, 6, 44 23 of 33

the F-AHP model, respectively (Table 11). The Kappa scores of the classification indicate
perfect agreement for both models.
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Table 10. Validation matrices—KWLS.

Matrices
Training Dataset Validation Dataset

AHP F-AHP AHP F-AHP

Sensitivity 0.714 0.771 0.714 0.810
Accuracy 0.742 0.806 0.737 0.842

Kappa index 0.840 0.850 0.870 0.884

Table 11. Validation matrices—WWLS.

Matrices
Training Dataset Validation Dataset

AHP F-AHP AHP F-AHP

Sensitivity 0.800 0.840 0.846 0.905
Accuracy 0.813 0.845 0.875 0.926

Kappa index 0.762 0.829 0.850 0.875

4. Discussion

The two wildlife sanctuaries, the KWLS and the WWLS, experiencing different cli-
matic conditions, were selected for wildfire mapping to showcase how the influencing
factors differ, with a special focus on the distinction between natural and anthropogenic
factors. Furthermore, this study also attempted to show how the wildfire zones differ in
such contrasting climatic conditions. While a sub-tropical humid climate with hot and
humid summers and cool winters is characteristic of the KWLS, the WWLS experiences a
tropical monsoon climate. With the dawn of climate change and subsequent increases in
temperature, one of the most pronounced catastrophes is forest fires. A literature review
of different natural hazards reveals that one of the least studied hazards is forest fires,
but it is the one that causes severe destruction to natural resources as well as deteriorates
the atmosphere with the emission of smoke for several days. Thus, it is quintessential to
study and prioritize the factors that facilitate forest fires. Furthermore, the boom in the
tourism industry and the expansion of agriculture into the forest regions also warrant a
study of the interplay of anthropogenic factors and natural factors. Moreover, both areas of
study require the identification of factors that are responsible for forest fires, as these two
areas have several unique features. The KWLS forms one of the major pilgrimages in the
Indian subcontinent. Hindu temples such as Rudranath, Tungnath, Madhyamaheshwar,
and Triyuginarayan are within this sanctuary. The famous Kedarnath temple is located just
outside its northern border. However, the entire Gaurikund-Kedarnath route is within this
sanctuary. Many pilgrims visit these temples every year. Apart from several national parks
within its vicinity, such as Nagarhole, Bandipur, and Mudumalai, a large number of tribal
populations live within the WWLS.

This study identified both natural and anthropogenic factors responsible for forest
fires. The natural factors in both the study areas include factors such as the natural land
cover as well as derivatives such as the WRI and the NDWI, whereas the anthropogenic
factors include distance from the pilgrim and tourist centers, distance from the road, and
distance from the settlement, as well as derivatives such as the NDBI. In the KWLS, the
majority of fires occurred in the Alpine scrub forest and Himalayan moist temperate
forest, whereas in the WWLS, most fire occurrences were recorded in the evergreen forest,
followed by the plantation areas. Though the biodiversity of temperate forests is much
lower than that of tropical forests, they host the largest and oldest species [127]. The
moderate weather, fertile soils, and lush vegetation of temperate forests have made them
ideal for human settlement, agricultural development, and the direct use of trees for fuel
and timber [127,128]. The anthropogenic activities such as widespread crop cultivation,
livestock grazing, the gathering of mulch, and alteration of natural water drainage [128]
in these types of forests make them more vulnerable to fires. The Alpine scrub forest
comprises shrubs, grasses, and short trees such as junipers, pines, and birches, and extends
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up to areas just below the snowline. These types of vegetation are also prone to wildfires.
Nikhil et al. [22] reported higher fire incidences in evergreen forests. Moisture-related
factors such as the NDWI and the WRI show significant influence in the KWLS and only
considerable influence in the WWLS. The lower influence of moisture-related factors in the
WWLS maybe since the correlation depends on land cover heterogeneity and soil type [129].
The study by Nikhil et al. [22] also ascertained the fact that moisture has a significant
influence on fire spread as it determines the ignition probability and behaviour of fire [130].
However, the LST does not show a significant influence on fire spread in the KWLS and the
WWLS. However, according to Parajuli et al. [131], one of the reasons for fire propagation
in two major landscapes in Nepal is due to the higher LST (temperature between 30 and
35 ◦C). Though the slope has a considerable influence in the KWLS but not in the WWLS,
this could be due to the plateau-like topography seen in the WWLS.

While considering the anthropogenic factors, apart from the land cover, which was
described earlier, the NDBI has a significant influence on the KWLS and a considerable
impact on the WWLS. The probability of fire is low in areas with negative as well as
higher positive NDBI values, as these are zones with little or no vegetation (fuel). Other
anthropogenic factors such as distance from the tourist spots, pilgrim/religious center,
roads, and settlements show significant influence in the KWLS, whereas, in the case of
the WWLS, only the road shows a significant influence. The WWLS has a large number
of road networks, and 94 fires (48.95%) occurred in the vicinity of roads. Anthropogenic
factors such as proximity to roads and settlements were employed by Ajin et al. [132,133]
and Nikhil et al. [22]; they found higher fire incidences in areas closer to roads and human
settlements. Such anthropogenic activities have created a higher number of fire incidences
even in the evergreen forest. Similarly, the higher influence of anthropogenic factors in the
WWLS manifested as the reason for higher fire incidences in the areas of lower LST.

The efficacy of the wildfire risk zone map created employing the AHP model has been
proven by researchers such as Amrutha et al. [36], Nikhil et al. [22], and Pradeep et al. [24]
with an AUC value above 0.70, which depicts fair prediction capability. While comparing
AHP and frequency ratio (FR) models, Pradeep et al. [24] found AHP as the ideal model for
wildfire risk zone mapping of Eravikulam National Park in South India, with an AUC value
of 0.767, in comparison to the FR model with a failure AUC value of 0.567. While comparing
the AHP and F-AHP models, researchers such as Abdi et al. [54], Akshaya et al. [53],
Bouamrane et al. [55], and Vilasan and Kapse [56] found that F-AHP has better prediction
capability than the AHP model. The research by Tiwari et al. [52] also found that the F-AHP
(0.83) model has better prediction accuracy than the AHP (AUC: 0.81) and FR (AUC: 0.77)
models when comparing these three models for demarcating forest fire susceptible areas in
Pauri Garhwal in North India. This justified the selection of the AHP and F-AHP models
for this research.

An integral part of risk or susceptibility modelling is the validation of created maps [45].
An ROC curve is an efficient method for assessing the accuracy of maps [119,134]. For
the training dataset, the AUC value of the F-AHP model confirmed a 2.00% increase over
the AHP model for the KWLS and a 3.80% increase for the WWLS. For the validation
dataset, the AUC value of the F-AHP model confirmed a 2.00% increase over the AHP
model for the KWLS. Whereas for the WWLS, the AUC value of the F-AHP model con-
firmed a 1.70% increase over the AHP model. For the validation dataset of the KWLS,
the sensitivity, accuracy, and Kappa index values of the F-AHP models confirmed a slight
increase of 0.096 (from 0.714 to 0.810), 0.105 (from 0.737 to 0.842), and 0.014 (from 0.870
to 0.884) over the AHP model, whereas for the WWLS (validation dataset), the sensitivity,
accuracy, and Kappa index values of the F-AHP model again confirmed a slight increase of
0.059 (from 0.846 to 0.905), 0.051 (from 0.875 to 0.926), and 0.025 (from 0.850 to 0.875)over
the AHP model. The perfect agreement in Kappa scores and higher AUC, sensitivity, and
accuracy values confirmed F-AHP as the better model than the AHP model. The validation
matrices such as sensitivity, accuracy, and the Kappa index have been employed by many
researchers [135,136] for assessing the performance of maps.
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The result of this modelling can be improved by integrating factors such as wind
speed and relative humidity. Though the wind speed data can be acquired from the Global
Wind Atlas data portal (https://globalwindatlas.info/ (accessed on 20 July 2022)), the
coarse spatial resolution of 250 m and its downscaled nature prevented us from using it in
this analysis. The relative humidity data can be acquired from the NCEP reanalysis grid
(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html (accessed on 20 July 2022)),
but the spatial resolution was very poor (25◦ or ~250 km), making it not suitable for
smaller areas. However, Achu et al. [137] combined climatic data for modelling the wildfire
susceptibility of the Wayanad district, which entirely covered the WWLS, covering an
area of 2130 km2, where a downscaled 250 m resolution dataset would be ideal. However,
the present study demonstrated a better AUC value than the study of Achu et al. [137].
Additionally, the study by Tiwari et al. [52] conducted in a district in the Uttarakhand state
of India, with similar climatic conditions to those of the KWLS, has a lower performance
(AUC value: 0.83) than that of this study. The better validation scores of the results of this
study ascertained the fact that the factors and models selected are highly relevant.

5. Conclusions

Wildfires are one of the most common and frequently occurring catastrophes that pose
threats to protected areas, such as wildlife sanctuaries in India, and have resulted in an
enormous loss of rich flora and fauna. These protected areas are home to many rare and
endangered species. Consequently, the implementation of appropriate mitigation measures
is very necessary. This study demarcated the wildfire risk zones in two protected areas
in India using satellite data and geospatial techniques. This study established beyond a
hint of doubt that factors including the land cover types, WRI, distance from tourist spots
and pilgrim/religious centers, distance from the road, distance from the settlement, NDBI,
and slope have a substantial impact on fire spread in the KWLS. Similarly, this modelling
proved that factors including the distance from the road, land cover types, NDWI, WRI,
distance from the settlement, and distance from tourist spots and pilgrim/religious centers
have a substantial impact on fire spread in the WWLS. The influence of anthropogenic
factors was high in both the WWLS and the KWLS. This was due to the high number of
roads in the WWLS and the presence of many pilgrim centers (temples) in the KWLS. Thus,
this study also reiterates the greater influence of anthropogenic factors. The AUC values
for the AHP and F-AHP models proved that both models are effective (with good and
excellent values) in demarcating wildfire risk zones. However, the F-AHP was found to be
more efficient than the AHP model. The validation matrices such as sensitivity, accuracy,
and Kappa index also confirmed better scores for the F-AHP model. As a result, the F-AHP
model was chosen as the ideal model, and 22.49% of the KWLS and 17.12% of the WWLS
fall within the very-high-risk zones according to the F-AHP model. The created maps
will aid officials working with forest and disaster management departments in selecting
appropriate measures to mitigate wildfires in critical areas.
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