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Abstract: In the face of fire in buildings, people need to quickly plan their escape routes. Intelligent
optimization algorithms can achieve this goal, including the sparrow search algorithm (SSA). Despite
the powerful search ability of the SSA, there are still some areas that need improvements. Aiming
at the problem that the sparrow search algorithm reduces population diversity and is easy to fall
into local optimum when solving the optimal solution of the objective function, a hybrid improved
sparrow search algorithm is proposed. First, logistic-tent mapping is used to initialize the population
and enhance diversity in the population. Also, an adaptive period factor is introduced into the
producer’s update position equation. Then, the Lévy flight is introduced to the position of the
participant to improve the optimization ability of the algorithm. Finally, the adaptive disturbance
strategy is adopted for excellent individuals to strengthen the ability of the algorithm to jump out of
the local optimum in the later stage. In order to prove the improvement of the optimization ability
of the improved algorithm, the improved sparrow algorithm is applied to five kinds of maps for
evacuation path planning and compared with the simulation results of other intelligent algorithms.
The ultimate simulation results show that the optimization algorithm proposed in this paper has
better performance in path length, path smoothness, and algorithm convergence, showing better
optimization performance.

Keywords: SSA; levy; chaotic mapping; adaptive perturbation; evacuation path planning

1. Introduction

With the rapid development of China’s economy, there are more and more modern
multifunctional buildings, such as super high-rise buildings, large commercial complexes,
and underground shopping centers. If there is a fire in such buildings, the quick escape
of pedestrians is important work for the safety management department [1]. Therefore,
the importance of proper evacuation path planning during fire emergencies cannot be
overstated [2]. It could save lives by providing clear directions, minimizing confusion,
and increasing overall preparedness. Having a well-organized and communicated plan in
place empowers individuals to react effectively, enhancing their safety and improving the
chances of a successful evacuation.

Smart optimization algorithms have been widely applied in the field of pedestrian evac-
uation path planning, enhancing the efficiency and safety of emergency evacuations [3–5].
These algorithms use advanced techniques to analyze complex data and deliver optimized
evacuation plans based on various factors, such as building layout, exit locations [6], occu-
pancy, and potential fire hazards. The smart optimization algorithms could be classified
into several categories based on their approach and methodology. The first category con-
sists of graph-based algorithms, which include Dijkstra’s algorithm [7] or the A* search
algorithm [8]. The second category involves swarm intelligence algorithms, such as ant
colony optimization [9] and particle swarm optimization [10]. The third category encom-
passes machine learning-based algorithms, including neural networks [11], support vector
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machines [12], or reinforcement learning techniques [13]. However, each type of intelligent
algorithm has its own disadvantages. The drawback of graph-based algorithms is their
susceptibility to computational complexity and scalability issues when dealing with large
and complex datasets. The limitations of machine learning-based algorithms include their
dependence on large amounts of high-quality data, so potential biases in data can lead to
biased outcomes and difficulty in interpreting and explaining the decision-making pro-
cess. On the other hand, swarm intelligence algorithms have the advantage of collective
intelligence, adaptability, and robustness in solving complex problems by simulating the
behaviors of social insect colonies. Therefore, swarm intelligence algorithms have been
rapidly developed and widely used in evacuation path planning.

In 2020, Xun et al. [14] proposed the sparrow optimization algorithm (SSA), inspired
by the foraging and anti-predatory behavior of sparrows in nature. The SSA is characterized
by its global search capability, efficient exploration of the search space, and ability to find
near-optimal solutions. It has been successfully utilized in numerous domains, such as
power load forecasting [15], image processing [16], robot path tracking [17], performance
optimization of wireless sensor networks (WSNs) [18], wireless location of WSNs [19], and
fault diagnosis [20]. Because the basic sparrow search algorithm has low convergence
accuracy in solving multi-drone collaborative trajectory planning problems and is prone
to falling into local optima, the scholars will more or less improve the sparrow algorithm
when they apply it. Zhang et al. [21] proposed a sparrow algorithm using logarithmic spiral
strategy and adaptive ladder strategy, which can plan coordinated flight trajectories with
approximately optimal cost and constraint conditions while satisfying time coordination
conditions. Jiang et al. [22] transformed the route planning problem into a multidimensional
function optimization problem by establishing a three-dimensional task space model and
a cost function for unmanned aerial vehicle route planning, simultaneously introducing
chaos strategy and adopting the convergence speed and exploration ability of the adaptive
inertia weight balancing algorithm. A trajectory planning method based on the chaotic
sparrow search algorithm was proposed by others [23] to solve the problems of high
computational complexity and difficult convergence in drone trajectory planning.

Due to the wide use of the sparrow search algorithm in trajectory planning for un-
manned aerial vehicles (UAVs), we aim to implement this algorithm in planning evacuation
paths for people. In this manuscript, the improved sparrow search algorithm was applied
to solve pedestrian evacuation path planning. The improvements include the integration
of logistic-tent chaotic mapping, nonlinear factors, the Lévy flight strategy, and the adap-
tive perturbation strategy. Consequently, a hybrid optimized sparrow search algorithm is
proposed. These enhancements further contribute to the algorithm’s capability to handle
real-world complexities and optimize evacuation plans in dynamic environments.

2. Introduction of the Basic Sparrow Algorithm

The main idea of the SSA algorithm is to conduct local and global searches by imitating
sparrows’ foraging and anti-predation behavior, and the sparrow foraging process is the
algorithm optimization process. The SSA consists of three types of sparrows: producers,
scroungers, and scouts. The producers usually have high fitness values and are responsible
for providing foraging areas and directions for the scroungers. In order to obtain better
food, the scroungers will always follow the producers, while constantly monitoring the
producers and competing for food to ensure their predation rate. When scouts discover
predators, they will immediately send an alarm signal, and the overall sparrow will engage
in anti-predation behavior. During each iteration, the places of the producers are updated
according to Equation (1).

Xt+1
i,j =

{
Xi,j· exp(− i

α·itermax
) R2 > ST

Xi,j + Q·L R2 < ST
(1)
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where t indicates the current iteration number. Xi,j represents the position information of
the i-th sparrow in the j-th dimension of the population. α is the random number in [0, 1].
itermax is a constant with the maximum iterations. Q is a random number subject to normal
distribution. L shows a matrix of 1 * d for which each element is 1. R2 belongs to [0, 1],
representing the early warning value of the sparrow population position. ST belongs to
[0.5, 1], representing the safety value of the sparrow population position. When R2 < ST, it
indicates that the warning value is less than the safety value, and there are no predators
in the foraging environment. The producers could perform extensive search operations.
When R2 > ST, it means that some sparrows in the population have discovered predators
and issued warnings to other sparrows in the population. In the case, all sparrows need to
fly to a safe area for foraging.

During the foraging process, some scroungers will constantly monitor the producers.
When the producers find better food, the scroungers will compete with them. If the
competition is successful, they will immediately obtain the producers’ food. Otherwise, the
scroungers will continue to update their position according to Equation (2).

Xt+1
i,j =

 Q· exp(
Xworst−Xt

i,j

i2
) i > n/2

Xt+1
p +

∣∣∣Xi,j − Xt
i,j

∣∣∣·A+·L otherwise
(2)

In Equation (2), Xp represents the optimal location discovered by the current producer.
Xworst indicates the current global worst case position. A is a 1 × d matrix whose elements
are randomly assigned 1 or −1. L is still a 1 * d matrix for which all elements are 1. When i
> n/2, this indicates that the i-th joiner has not received food and is in a state of hunger. At
this point, they need to fly to other places for foraging to obtain more energy.

In the sparrow population, the number of sparrows aware of danger, i.e., the scouts,
accounts for 10% to 20% of the total. The positions of these sparrows are randomly
generated and continuously updated according to Equation (3).

Xt+1
i,j =


Xt

best + β
∣∣∣Xt

i,j − Xt
best

∣∣∣ fi > fg

Xt
i,j+K·

( ∣∣∣Xt
i,j−Xt

worst

∣∣∣
(fi−fw)+ε

)
fi = fg

(3)

In Equation (3), Xbest represents the current global optimal position. K, used as the
step control parameter, is a random number subject to standard normal distribution. β
is a random number belonging to [−1, 1]. fi is the fitness value of the current sparrow
individual. fg represents the global best fitness value. fw shows the global worst-case fitness
value. ε is a constant that avoids having a denominator of 0. When fi > fg, it indicates that
the sparrows are at the edge of the population and highly vulnerable to predators. When
fi = fg, it represents that the sparrows in the middle of the population are also at risk, and
they need to approach other sparrows to reduce the risk of predation.

3. The Proposed Sparrow Optimization Algorithm

The basic sparrow algorithm adopts a random strategy during population initializa-
tion, which results in low initial population quality. Thus, logistic-tent chaotic mapping
was used in the proposed algorithm to initialize the population and enhance population
diversity. On the other hand, in order to prevent the proposed algorithm from falling into
the local optima, there are two methods to enhance the search range to overcome such a
situation. One was that an adaptive convergence factor was introduced at the producer
update location, and the other is that the Lévy flight mechanism was also introduced in
the update equation of the scroungers. Finally, adaptive perturbation was used in the
proposed algorithm to enhance the local search ability of the later algorithm and maintain
the diversity of solutions.
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3.1. Optimization of Initial Sparrow Population Diversity—Logistic-Tent Chaos Mapping

The initial population of the sparrow algorithm is randomly generated, resulting in
uneven distribution of the sparrow population and susceptibility to falling into local optima.
Chaotic mapping has the characteristics of randomness, convenience, and regularity, and
could be used in population initialization. The distributions of commonly used mapping
algorithms, such as tent mapping [24] and logistic mapping [25], are shown in Figure 1.

Fire 2023, 6, x FOR PEER REVIEW 4 of 13 
 

 

update location, and the other is that the Lévy flight mechanism was also introduced in 
the update equation of the scroungers. Finally, adaptive perturbation was used in the pro-
posed algorithm to enhance the local search ability of the later algorithm and maintain the 
diversity of solutions. 

3.1. Optimization of Initial Sparrow Population Diversity—Logistic-Tent Chaos Mapping 
The initial population of the sparrow algorithm is randomly generated, resulting in 

uneven distribution of the sparrow population and susceptibility to falling into local op-
tima. Chaotic mapping has the characteristics of randomness, convenience, and regular-
ity, and could be used in population initialization. The distributions of commonly used 
mapping algorithms, such as tent mapping [24] and logistic mapping [25], are shown in 
Figure 1. 

   
(a) (b) (c) 

Figure 1. The distribution histogram of different mapping. (a) Logistic mapping; (b) Tent mapping; 
(c) Logistic-tent mapping. 

Comparing the types of mappings in Figure 1, it can be found that the distribution of 
tent mapping is more uniform, while logistics mapping is more distributed at the bound-
ary position and evenly distributed in the middle position. It seems that tent mapping is 
more suitable for population initialization than logistics mapping. However, Shan et al. 
[26], found that although the distribution of tent mapping was uniform, there were small 
and unstable periods in tent mapping. Thus, both tent mapping and logistic mapping 
need to improve. From Figure 1c, it can be seen that the distribution of logistic-tent chaotic 
mapping is very uniform between [0,1], and the mapping effect is very good, which could 
be used to initialize the sparrow population and increase population diversity. 

3.2. Optimization of the Producers’ Location—The Adaptive Convergence Factor 
In Equation (1) of the producers’ location update, the parameter α is a random value 

between [0,1], which has greater randomness, likely affecting the rate of convergence and 
accuracy of the algorithm. When the current value of α is larger, the producers’ search 
scope is relatively wider. However, with a decrease in α, the producers perform local 
searches to improve algorithm accuracy. Therefore, a periodic nonlinear adaptive α is pro-
posed, and the update method of α is shown in Equation (4). 

3ia sin( 1 )
2 T
（ ）
π= −  (4)

In Equation (4), i  is the number of iterations, and T is the maximum number of it-
erations. The value range of α is still [0,1], while the improved α would decrease periodi-
cally and monotonously as the number of iterations increases, which greatly improves the 
rate of convergence and accuracy of the algorithm. 
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Comparing the types of mappings in Figure 1, it can be found that the distribution of
tent mapping is more uniform, while logistics mapping is more distributed at the boundary
position and evenly distributed in the middle position. It seems that tent mapping is more
suitable for population initialization than logistics mapping. However, Shan et al. [26],
found that although the distribution of tent mapping was uniform, there were small and
unstable periods in tent mapping. Thus, both tent mapping and logistic mapping need
to improve. From Figure 1c, it can be seen that the distribution of logistic-tent chaotic
mapping is very uniform between [0, 1], and the mapping effect is very good, which could
be used to initialize the sparrow population and increase population diversity.

3.2. Optimization of the Producers’ Location—The Adaptive Convergence Factor

In Equation (1) of the producers’ location update, the parameter α is a random value
between [0, 1], which has greater randomness, likely affecting the rate of convergence and
accuracy of the algorithm. When the current value of α is larger, the producers’ search
scope is relatively wider. However, with a decrease in α, the producers perform local
searches to improve algorithm accuracy. Therefore, a periodic nonlinear adaptive α is
proposed, and the update method of α is shown in Equation (4).

a = sin (
π

2
(1− i

T
))

3
(4)

In Equation (4), i is the number of iterations, and T is the maximum number of itera-
tions. The value range of α is still [0, 1], while the improved α would decrease periodically
and monotonously as the number of iterations increases, which greatly improves the rate
of convergence and accuracy of the algorithm.

3.3. Optimization of the Scroungers’ Location—The Lévy Flight Mechanism

According to Equation (2), it is not difficult to find that the scroungers will be more
inclined towards the better food locations during the search process, leading to a reduction
in the diversity and search range of the population. Therefore, the Lévy flight mechanism
was introduced in the location update of the scroungers. The Lévy flight mechanism is able
to generate random step sizes, and introducing step sizes s to the update of the scroungers’
positions could effectively enhance the diversity of the population and avoid falling into
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the local optima. The random step size s is generated as shown in Equation (5) [27]. Here µ
and ν are random numbers subject to the normal distribution.

s =
µ

|ν|1/β ,β = 3/2 (5)

The equation for updating the position of the scroungers after improving the random
step size is shown in Equation (6).

Xt+1
i,j =

 Q· exp(
Xworst−Xt

i,j

i2
) i > n/2

Xt+1
p + s·

∣∣∣Xi,j − Xt
i,j

∣∣∣·A+·L otherwise
(6)

3.4. Jumping out of the Local Optima—The Mutation Factor

In the optimization process, the algorithm needs to have good global exploration
ability and diversity in the initial stage, while in the middle and later stages, it needs to
strengthen local search and the ability to jump out of the local optima solutions. Obviously,
different evolutionary stages have different requirements for the algorithm’s search ability,
and a single mutation operator is difficult to meet two requirements in different stages. In
this manuscript, Gaussian–Cauchy perturbation was introduced in the proposed algorithm.
Because the probability density distribution characteristics of Gaussian chaos and Cauchy
chaos are different, their impacts on the algorithm’s optimization ability are also different.
The specific probability density function formulas of Gauss and Cauchy distribution are
shown in Equations (7) and (8). Figure 2 shows Cauchy distribution with α = 1 and Gauss
distribution N (0, 1).

f(x) =
1√
2πσ

exp(− (x− µ)2

2σ2 ) (7)

fα(x) =
1
π

α

α2 + x2 (8)
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Figure 2. The probability density curves of Cauchy distribution and Gaussian distribution.

It can be seen from Figure 2 that the peak value of Cauchy distribution at the origin is
smaller than that of Gaussian distribution, and the speed of the long flat shape at both ends
approaching zero is slower than that of Gaussian distribution. Therefore, using the Cauchy
mutation that obeys the Cauchy distribution random number can produce a larger mutation
step size, which is conducive to the algorithm guiding individuals to jump out of the local
optimal solution and ensuring the global exploration ability of the algorithm. However,
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Gaussian mutation has better local search ability than Cauchy mutation. Therefore, Cauchy
perturbation is suitable for use in the first half of the loop iteration (T/2), and Gaussian
perturbation is suitable for use in the second half of the loop iteration (T/2).

3.5. The Process of the Optimization Sparrow Algorithm

According to the above improvement measures, the hybrid optimization sparrow
algorithm is proposed to improve its algorithmic efficiency. The sparrow optimization
algorithm steps are as follows. First, the sparrow population is initialized using logistic-tent
chaotic mapping, and then fitness values are calculated for all sparrow individuals. Pro-
ducers and scroungers are assigned based on the fitness values. Afterwards, the producers,
scroungers, and scouts are iteratively updated, and the corresponding perturbation method
is selected based on the number of iterations of the algorithm to perturb the optimal spar-
row individual position. Finally, an iteration cycle is carried out until the optimal value is
output. The specific step flowchart is shown in Figure 3.
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4. Simulation Experiments and Analysis
4.1. Path Planning Simulation Using the Hybrid Optimization Sparrow Algorithm

In order to test the path planning ability of the hybrid optimization sparrow algorithm
(HSSA for short), four other algorithms were introduced for comparison, including the
basic sparrow algorithm (SSA for short), the sparrow algorithm based on tent mapping and
Lévy flight optimization (TSSA for short), the whale algorithm (WOA for short), and the
grey wolf algorithm (GWO for short). Five different maps with the size of 20 × 20 were
generated using grid method modeling. The parameters of the three different sparrow
algorithms (SSA, TSSA, and HSSA) are exactly the same, with an initial sparrow population
of 50 and 200 iterations. The proportion of producers is 20%, while the rest are scroungers
and scouts. Among them, the SSA has a random initial population, and TSSA maps the
initial population using tent mapping. The maps of the optimal path are shown in Figure 4.
The iteration times of the GWO algorithm and the WOA algorithm are consistent with those
of the SSA algorithm. Except for the population and the iterations, the other parameters of
the WOA and the GWO can be seen in references [28,29].
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4.2. Qualitative Analysis of Path Planning

The SSA algorithm, the TSSA algorithm, the HSSA algorithm, the GWO algorithm,
and the WOA algorithm are respectively used for path planning on the five grid maps.
Here, the optimal paths planning by different algorithms on map 1 and map 5 are displayed.
The optimal paths are shown in Figures 5 and 6.



Fire 2023, 6, 380 8 of 14Fire 2023, 6, x FOR PEER REVIEW 8 of 13 
 

 

   
(a) (b) (c) 

  
(d) (e) 

Figure 5. The optimal paths are planned by different algorithms for map 1. (a) The optimal path 
planned by SSA; (b) The optimal path planned by TSSA; (c) The optimal path planned by HSSA; (d) 
The optimal path planned by GWO; (e) The optimal path planned by WOA. 

   
(a) (b) (c) 

  
(d) (e) 

Figure 6. The optimal paths are planned by different algorithms for map 5. (a) The optimal path 
planned by SSA; (b) The optimal path planned by TSSA; (c) The optimal path planned by HSSA; (d) 
The optimal path planned by GWO; (e) The optimal path planned by WOA. 

According to Figures 5 and 6, intuitively, the paths planned by the proposed algo-
rithm (HSSA) on map 1 and map 5 approach a straight line, having better smoothness than 
the other algorithms. In the meantime, it is easy to find that the two paths planned by the 

Figure 5. The optimal paths are planned by different algorithms for map 1. (a) The optimal path
planned by SSA; (b) The optimal path planned by TSSA; (c) The optimal path planned by HSSA;
(d) The optimal path planned by GWO; (e) The optimal path planned by WOA.

Fire 2023, 6, x FOR PEER REVIEW 8 of 13 
 

 

   
(a) (b) (c) 

  
(d) (e) 

Figure 5. The optimal paths are planned by different algorithms for map 1. (a) The optimal path 
planned by SSA; (b) The optimal path planned by TSSA; (c) The optimal path planned by HSSA; (d) 
The optimal path planned by GWO; (e) The optimal path planned by WOA. 

   
(a) (b) (c) 

  
(d) (e) 

Figure 6. The optimal paths are planned by different algorithms for map 5. (a) The optimal path 
planned by SSA; (b) The optimal path planned by TSSA; (c) The optimal path planned by HSSA; (d) 
The optimal path planned by GWO; (e) The optimal path planned by WOA. 

According to Figures 5 and 6, intuitively, the paths planned by the proposed algo-
rithm (HSSA) on map 1 and map 5 approach a straight line, having better smoothness than 
the other algorithms. In the meantime, it is easy to find that the two paths planned by the 

Figure 6. The optimal paths are planned by different algorithms for map 5. (a) The optimal path
planned by SSA; (b) The optimal path planned by TSSA; (c) The optimal path planned by HSSA;
(d) The optimal path planned by GWO; (e) The optimal path planned by WOA.



Fire 2023, 6, 380 9 of 14

According to Figures 5 and 6, intuitively, the paths planned by the proposed algorithm
(HSSA) on map 1 and map 5 approach a straight line, having better smoothness than
the other algorithms. In the meantime, it is easy to find that the two paths planned by
the proposed algorithm (HSSA) have few infection points and thus reduced unnecessary
collisions with obstacles. Ultimately, it also has a positive impact on decreasing the lengths
of the planned paths.

4.3. Quantitative Analysis of Path Planning Results

The qualitative analysis of the optimal paths given by the different algorithms mainly
relies on the intuition and experience of the researchers. The quantitative analysis of the
optimal path given by the different algorithms is based on the statistical data, which can
more scientifically verify the advantages and disadvantages of each algorithm. This section
exhibited the detailed results about path planning. In order to reduce the impact of random
factors, each algorithm was tested 10 times on five different maps.

4.3.1. The Length of Optimal

The lengths of the optimal path solved by the different algorithms on different maps
are shown in Figure 7, including the minimum values and average values of the optimal
path length. In addition, the standard deviations of the lengths of the optimal paths are
chosen to prove the stability of the algorithms, and the results are shown in Figure 8.
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Figure 7. The lengths of the optimal paths solved by the different algorithms with 10 simulations.
(a) The minimum values of the optimal path lengths. (b) The average values of the optimal path lengths.
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As can be seen from Figures 7 and 8, the HSSA algorithm has great advantages over
the SSA algorithm, TSSA algorithm, GWO algorithm, and WOA algorithm in finding the
optimal path. The analysis of searching for the optimal paths for five maps is as follows.

(1) In Figure 7a, compared with the lengths of the optimal paths planned by the SSA
algorithm for five different maps, the lengths of the optimal paths planned with
the HSSA algorithm are shortened by 22.52%, 18.26%, 20.43%, 10.97%, and 22.02%,
respectively. In Figure 7b, the lengths of the average paths planned by the HSSA are
decreased by 29.24%, 19.50%, 27.14%, 19.16%, and 26.34%, respectively, compared
with the SSA algorithm. Meanwhile, the standard deviations of the optimal path
lengths are also significantly smaller than those of the SSA algorithm.

(2) In Figure 7a, compared with the lengths of the optimal paths planned by the TSSA
algorithm for five different maps, the lengths of the optimal paths planned with
the HSSA algorithm are shortened by 3.53%, 10.58%, 7.89%, 5.28%, and 10.05%,
respectively. In Figure 7b, the lengths of the average paths planned by the HSSA are
decreased by 15.81%, 13.62%, 13.11%, 10.70%, and 15.02%, respectively, compared
with the TSSA algorithm. The corresponding standard deviation of the optimal
path lengths planned by the HSSA algorithm is also smaller than that of the TSSA
algorithm, indicating that the performance of the HSSA algorithm is stronger than the
performances of the SSA and TSSA algorithms.

(3) In Figure 7a, compared with the lengths of the optimal paths planned by the GWO
algorithm for five different maps, the lengths of the optimal paths planned with the
HSSA algorithm are shortened by 5.58%, 7.62%, 6.80%, 5.28%, and 7.38%, respectively.
In Figure 7b, the average lengths of the optimal paths planned by the HSSA algorithm
are decreased by 7.55%, 8.74%, 11.63%, 8.69%, and 14.90%, respectively, compared
with the GWO algorithm. As shown in Figure 8, the standard deviations of the optimal
path lengths planned by the HSSA algorithm are decreased by 20.40%, 30.36%, 68.20%,
44.99%, and 70.74%. The minimums of the optimal path lengths, the averages of the
optimal path lengths, and the standard deviations of the optimal path lengths could
prove that the stability and searching ability of the HSSA algorithm is much stronger
than that of the GWO algorithm on the five maps.

(4) Comparing with the WOA algorithm, the lengths of the optimal paths planned by
the HSSA algorithm are shortened by 15.22%, 9.49%, 18.42%, 1.77%, and 17.81%,
respectively, and the average lengths of the optimal paths are decreased by 17.68%,
13.33%, 27.47%, 13.39%, and 25.08%, separately. Meanwhile, with regard to the
path planning in map 4, although the length of the optimal path planned by the
HSSA algorithm is just a little smaller than that of the WOA algorithm, the average
lengths and the standard deviations of the optimal paths also could prove the stronger
stability and searching ability of the HSSA algorithm than that of the WOA algorithm
on this map.

By analyzing the above results, it indicates that compared to other comparative algo-
rithms, the HSSA algorithm proposed in this article has stronger search ability and better
stability, which is especially suitable for path planning in complex situations.

4.3.2. The Time Cost of the Optimal Path

The comparison of optimal path time cost for each algorithm on different maps is
shown in Table 1, including the minimum time costs of the optimal path, the average time
costs of the optimal path, and the standard deviations of the optimal path time costs.

In order to easily compare the time cost results of the optimal path planned by the
different algorithms, the best results of the minimum of the optimal path time cost are in
bold and italic font with underlining; then, the best results of the average of the optimal
path time cost are in bold font, and the best results of the standard deviation of the optimal
path time cost are in bold and italic font, as shown in Table 1.
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Table 1. The computing time of the optimal path solved using different algorithms with 10 simulations.

Algorithm
Map

1 2 3 4 5

SSA
Minimum (s) 0.2154 0.2326 0.2182 0.2004 0.2304
Average (s) 0.3144 0.3696 0.3966 0.3532 0.4045

Standard deviation 0.0954 0.1052 0.1174 0.1374 0.1882

TSSA
Minimum (s) 0.6281 0.4056 0.9589 0.2528 0.5586
Average (s) 0.9297 0.8297 1.2329 0.7021 0.9218

Standard deviation 0.2382 0.2441 0.2578 0.2499 0.2976

HSSA
Minimum (s) 0.3581 0.2331 0.2920 0.2818 0.3266
Average (s) 0.5547 0.4323 0.4534 0.4035 0.5202

Standard deviation 0.0974 0.1215 0.1158 0.0795 0.1160

GWO
Minimum (s) 0.2453 0.2413 0.2729 0.2845 0.2587
Average (s) 0.4747 0.4585 0.4078 0.4552 0.4419

Standard deviation 0.1711 0.1862 0.0789 0.1496 0.0852

WOA
Minimum (s) 0.3827 0.3432 0.3397 0.2689 0.3402
Average (s) 0.5937 0.4830 0.4712 0.4044 0.4089

Standard deviation 0.1575 0.1342 0.1092 0.1167 0.0614

From Table 1, the SSA algorithm seems to be the best one in the time cost. Although the
HSSA algorithm has no significant advantage in the time cost of path planning, the lengths
of the optimal path planned by the HSSA algorithm are better than the SSA algorithm and
TSSA algorithm. It is that the SSA algorithm did not find global optimal results and might
search local optimal results, which proves that it is necessary to improve the original SSA
algorithm. The above results indicate that the HSSA algorithm still has room for further
improvement, which is also the direction of future efforts.

4.3.3. The Convergence of Different Algorithms

Convergence refers to whether the output of an algorithm approaches the true result
when solving numerical problems. If an algorithm has good convergence, it can approach
the real results by gradually increasing the accuracy of the calculation. On the contrary, if
the rate of convergence of the algorithm is slow or does not converge, it is necessary to
consider improving the algorithm or selecting other algorithms. Therefore, studying the
convergence of algorithms could help us determine the effectiveness and feasibility of an
algorithm in solving problems. The convergence curves of each algorithm in different maps
are shown below.

As can be seen from Figure 9, in maps 1, 2, 3, and 4, the lengths of the initial path
planned by the HSSA algorithm are the smallest compared to the other algorithms. In
map 5, the lengths of the initial path planned by the HSSA algorithm are two grids larger
than that of the TSSA algorithm. On the whole, in the initial stage of path planning, the
HSSA algorithm has good optimization ability. In addition, except for map 4 and map
5, the numbers of iterations to reach the global optimal path by the HSSA algorithm are
obviously smaller than the other algorithms. And, the numbers of iterations to reach the
global optimal path by the HSSA algorithm are a little larger than those of the SSA. This
shows that the HSSA has an extremely fast rate of convergence. Finally, it is not hard to
find that the lengths of the global optimal path planned by the HSSA are the shortest. The
above research indicates that the HSSA has good performance and is suitable for planning
personnel evacuation paths.
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5. Conclusions

In response to the problem of the sparrow algorithm being prone to falling into
local optimal, this paper proposes a hybrid improved sparrow search algorithm (HSSA),
including four improvements. First, during the initialization phase, the population was
initialized through logistic-tent mapping to improve the quality and diversity of the sparrow
population. Then, an adaptive period factor was introduced into the producers update
position equation, and a Lévy flight mechanism was considered into the scroungers update
equation to enhance the global search range. Finally, adaptive perturbation was used to
strengthen the local search ability in the later period of optimization iterative, preventing
the algorithm from falling into local optima in the later convergence stage.

Afterward, the HSSA algorithm and four other algorithms, including the SSA, TSSA,
GWO, and WOA algorithms, were tested in five different grid maps to plan paths. Com-
pared with the other algorithms, the HSSA algorithm had significant advantages in path
planning length and algorithm convergence. These results verified the performance of
the HSSA algorithm and indicated that the algorithm had better path planning ability in
complex situations, which is expected to be used in more practical applications.
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