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Abstract: It remains a challenge to prepare flame-retardant composites via the addition of a low
content of flame retardant. In this work, a novel DOPO-functionalized reduced graphene oxide
hybrid (DOPO-M-rGO) flame-retardant system was synthesized for epoxy resin (EP). The phosphorus-
nitrogen-reduced graphene oxide ternary synergistic effect provided DOPO-M-rGO with high flame-
resistance efficiency in EP; thus, the EP-based composite exhibited superior fire-resistant performance
at extremely low DOPO-M-rGO loading. The limiting oxygen index (LOI) of the EP-based composite
was increased from 25% to 32% with only 1.5 wt% DOPO-M-rGO addition, and the peak heat
release rate (pHRR), total heat release (THR), and total smoke production (TSP) were significantly
decreased by 55%, 30%, and 20%, respectively. In addition, as a halogen-free flame-retardant system,
DOPO-M-rGO presents great application potential as an eco-friendly additive for the flame-resistance
improvement of thermosetting polymer materials.
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1. Introduction

As a polymer material with excellent properties and low cost, epoxy resin (EP) is
widely used in various fields, such as adhesives, coatings, electronics, and aerospace
industries [1–8]. Nevertheless, the inherent flammability of EP might pose a serious threat
to the environment, people’s life and property, and severely limits its further application in
automobile, household, and aerospace fields. Therefore, the flame-resistance modification
for EP has attracted much attention [9–19].

Graphene oxide (GO) is one of the most promising materials as the flame retardant
for EP because it presents high thermal stability and an excellent barrier effect during
combustion [20–24]. In addition, taking advantage of the abundant functional groups,
GO is easily doped by metal ions or chemically reduced with other molecules, leading to
the formation of a variety of flame-retardant systems with further improved fire-resistant
performances, in which the reduced graphene oxide (rGO) component functions as the
multi-layered skeleton [25–30]. In Wang’s work, a flame retardant for EP was prepared by
functionalizing the rGO with a sheet-like metal-organic zinc N, N’-piperazine (bismethylene
phosphonate) [31]. The addition of 5 wt% of flame retardant promoted the EP-based
composite to reach UL-94 V-0 rating, and resulted in 38.7%, 30.5%, and 33.7% lowered peak
heat release rate (pHRR), total heat release (THR), and total smoke production (TSP) values,
respectively, than that of pure EP. Zhu synthesized an iron hexamethylenediaminetetrakis-
(methylenephosphonate) (Fe-HDTMP)-rGO hybrid, and used it in EP to improve the
fire resistance. Compared to the pure EP, the EP modified by 5 wt% (Fe-HDTMP)-rGO
exhibited 68.2% lower TSP, 54.5% lower peak CO production rate, 66.3% lower THR, and
47.7% reduced pHRR [32]. Through grafting silane coupling agent (KH550) as a bridge
to connect GO and Octa (propyl glycidyl ether) POSS, Qu synthesized an organosilane-
functionalized GO (FGO) as the flame retardant of EP, and the modification of EP-based
composite with only 0.7 wt% FGO could reduce pHRR, THR, and TSP values by 49.7%,
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34.3%, and 41.5%, respectively [33]. Xiao produced a flame retardant for EP by using
melamine and GO, which is called AGO@COF [34]. The limiting oxygen index (LOI)
value of the EP-based composite increased from 24% to 25.5% when 2 wt% AGO@COF
was added, and the pHRR value was reduced by 43.6%. However, the flame retardancy
performances of the graphene-based flame retardants, especially the UL-94 rating, need to
be further improved (see Table S1).

9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) is an H-phosphinate
compound with active hydrogen, which is also widely used as the flame retardant for EP
in previous studies (see Table S2) [35–41]. However, the DOPO-based flame retardants
face the challenge of low flame-retardant efficiency, which can be solved by developing
the hybrid flame-retardant systems of DOPO and rGO (see Table S3) [42–47]. Through the
reaction between the active P-H from DOPO and the epoxy groups on GO, DOPO can be
directly grafted onto the surface of GO to develop a DOPO-functionalized rGO, which
plays an effective role in improving the flame resistance of the EP-based composites [42,43].
Zhi synthesized a functionalized GO grafted by DOPO and vinyltriethoxysilane (VTMS),
which obviously increased the thermal stability and flame-retardant properties of EP [44].
In Ji’s work, a functionalized rGO decorated with bi-DOPO groups (f-GO) was fabricated
by using a covalent modification method, which endows EP with superior fire-resistant
performances [45]. The extremely low loading (1 wt%) of the f-GO increased the LOI value
of the composite from 19.9% to 30.8%, and the THR and the pHRR values were decreased by
44.0% and 55.5%, respectively. Furthermore, strategies have been developed to fabricate the
DOPO-functionalized rGO hybrids through grafting DOPO onto the rGO skeleton by using
other components as the bridge. Feng used glycidyl methacrylate as the bridge to synthesize
a DOPO-functionalized rGO hybrid (GP-DOPO), and used it as the flame retardant for
EP [46]. The addition of 2 wt% GO-DOPO decreased the pHRR value of the EP-based
composite by 27%, the THR value is decreased by 32%, and the TSP value is decreased
by 31%. In Qian’s work, DOPO was firstly reacted with VTMS to form an intermediate,
which was then grafted onto rGO by using (3-isocyanatopropyl) triethoxysilane as the
bridge, and obtained a product which is highly effective in reducing the fire hazards of
EP [47]. Although the DOPO-functionalized rGO flame retardants present higher flame-
retardant efficiency, the vertical combustion grades of most DOPO-functionalized rGO
flame retardants are required to be improved to achieve V-0.

As a nitrogen-containing compound, melamine is widely used as a typical eco-friendly
flame retardant for EP, and its flame-resistance effect can be further improved when used
cooperatively with other phosphorus-based flame retardants [48–52]. In this work, a
novel DOPO-functionalized rGO hybrid (DOPO-M-rGO) was synthesized by using the
synthesized methyl vinyl dichlorosilane/melamine polymeric intermediate as the bridge,
which was used as a graphene-based phosphorus/nitrogen-containing flame retardant for
EP. This study provides a facile approach for creating an extraordinarily effective flame
retardant for EP, and aims to investigate the synergistic flame-resistance effect of DOPO,
melamine, and the rGO skeleton components of DOPO-M-rGO.

2. Experimental Section
2.1. Materials

GO was prepared according to Hummer's method [53]. Melamine, methyl vinyl
dichlorosilane, 1-ethyl-3-(3-dimethylaminopropyl) carbonized diimine hydrochloride (EDCI),
and 4-dimethylaminopyridine (DMAP) were provided by Shanghai Maclin Biochemical
Technology Co., Ltd. (Shanghai, China). DOPO, azo-diisobutyronitrile (AIBN), EP pre-
cursor (E51), and polyamide agent (650) were provided by Shanghai Aladdin Reagent
Co., Ltd. (Shanghai, China). Tetrahydrofuran (THF) was provided by Beijing Tongguang
Fine Chemical Co., Ltd. (Beijing, China).
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2.2. Synthesis of DOPO-M-rGO

DOPO-M-rGO was synthesized by a two-step method, and the corresponding syn-
thetic route is illustrated in Figure 1. First, melamine and methyl vinyl dichlorosilane (with
the mass ratio of 1:1) was reacted in the THF suspension under mild stirring for 4 h to
form a polymeric intermediate bearing -NH2 groups and C=C bonds (see Figure 1a). Then,
DOPO was added into the obtained system, and AIBN was used as the catalyst. The mass
ratio of the melamine/methyl vinyl dichlorosilane polymeric intermediate, DOPO, and
AIBN was controlled at 1:1:0.005. After reaction at 70 ◦C for 20 h, the white solid precipitate
in the system was collected, washed, and dried, which is named DOPO-M in the following
text (Figure 1b). Afterward, the obtained DOPO-M sample was added into THF along
with GO to make a suspension, in which the mass ratio of DOPO-M and GO was 2:5. A
total of 10 wt% EDCI and 1 wt% DMAP were added into the suspension as the catalyst.
After 10 h reaction at 70 ◦C in the N2 atmosphere, the ultimate suspension was filtered to
remove the impurities, and the obtained black solid was abbreviated as DOPO-M-rGO in
the following text (Figure 1b), which was used as the flame retardant of EP. The schematic
for the preparation of DOPO-M and DOPO-M-rGO is shown in Figure 2a.

Fire 2023, 6, x FOR PEER REVIEW 3 of 15 
 

 

Aladdin Reagent Co., Ltd. (Shanghai, China). Tetrahydrofuran (THF) was provided by 

Beijing Tongguang Fine Chemical Co., Ltd. (Beijing, China). 

2.2. Synthesis of DOPO-M-rGO 

DOPO-M-rGO was synthesized by a two-step method, and the corresponding 

synthetic route is illustrated in Figure 1. First, melamine and methyl vinyl dichlorosilane 

(with the mass ratio of 1:1) was reacted in the THF suspension under mild stirring for 4 h 

to form a polymeric intermediate bearing -NH2 groups and C=C bonds (see Figure 1a). 

Then, DOPO was added into the obtained system, and AIBN was used as the catalyst. The 

mass ratio of the melamine/methyl vinyl dichlorosilane polymeric intermediate, DOPO, 

and AIBN was controlled at 1:1:0.005. After reaction at 70 °C for 20 h, the white solid 

precipitate in the system was collected, washed, and dried, which is named DOPO-M in 

the following text (Figure 1b). Afterward, the obtained DOPO-M sample was added into 

THF along with GO to make a suspension, in which the mass ratio of DOPO-M and GO 

was 2:5. A total of 10 wt% EDCI and 1 wt% DMAP were added into the suspension as the 

catalyst. After 10 h reaction at 70 °C in the N2 atmosphere, the ultimate suspension was 

filtered to remove the impurities, and the obtained black solid was abbreviated as DOPO-

M-rGO in the following text (Figure 1b), which was used as the flame retardant of EP. The 

schematic for the preparation of DOPO-M and DOPO-M-rGO is shown in Figure 2a. 

 

Figure 1. Synthetic route of (a) DOPO-M and (b) DOPO-M-rGO. 

 

Figure 1. Synthetic route of (a) DOPO-M and (b) DOPO-M-rGO.

Fire 2023, 6, x FOR PEER REVIEW 3 of 15 
 

 

Aladdin Reagent Co., Ltd. (Shanghai, China). Tetrahydrofuran (THF) was provided by 

Beijing Tongguang Fine Chemical Co., Ltd. (Beijing, China). 

2.2. Synthesis of DOPO-M-rGO 

DOPO-M-rGO was synthesized by a two-step method, and the corresponding 

synthetic route is illustrated in Figure 1. First, melamine and methyl vinyl dichlorosilane 

(with the mass ratio of 1:1) was reacted in the THF suspension under mild stirring for 4 h 

to form a polymeric intermediate bearing -NH2 groups and C=C bonds (see Figure 1a). 

Then, DOPO was added into the obtained system, and AIBN was used as the catalyst. The 

mass ratio of the melamine/methyl vinyl dichlorosilane polymeric intermediate, DOPO, 

and AIBN was controlled at 1:1:0.005. After reaction at 70 °C for 20 h, the white solid 

precipitate in the system was collected, washed, and dried, which is named DOPO-M in 

the following text (Figure 1b). Afterward, the obtained DOPO-M sample was added into 

THF along with GO to make a suspension, in which the mass ratio of DOPO-M and GO 

was 2:5. A total of 10 wt% EDCI and 1 wt% DMAP were added into the suspension as the 

catalyst. After 10 h reaction at 70 °C in the N2 atmosphere, the ultimate suspension was 

filtered to remove the impurities, and the obtained black solid was abbreviated as DOPO-

M-rGO in the following text (Figure 1b), which was used as the flame retardant of EP. The 

schematic for the preparation of DOPO-M and DOPO-M-rGO is shown in Figure 2a. 

 

Figure 1. Synthetic route of (a) DOPO-M and (b) DOPO-M-rGO. 

 

Figure 2. (a) Schematic representation for the preparation of DOPO-M-rGO; (b) SEM images of
DOPO-M-rGO; (c) the FTIR spectra of GO, DOPO-M, and DOPO-M-rGO; (d) the XPS spectra for
DOPO-M-rGO; (e) the TGA curves of GO, DOPO-M, and DOPO-M-rGO.
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2.3. Preparation of DOPO-M-rGO/EP Composite

The prepared DOPO-M-rGO (0.5, 1, 1.5, 2, 3, and 5 wt%) was slowly added into the
EP precursor (E51) and tenderly stirred at 60 ◦C for 10 min, and the polyamide agent (650)
(45 wt%) was added into the system whilst continuously stirring as the curing agent of
EP. Then, the obtained uniform mixture was casted and cured at 80 ◦C for 2 h, and the
DOPO-M-rGO/EP composites with different DOPO-M-rGO contents were prepared.

The rGO/EP composite with 1.5 wt% rGO and the DOPO-M/EP composite with
1.5 wt% DOPO-M were also prepared for comparative study.

2.4. Characterization

Fourier transform infrared spectrometry (FTIR) was conducted by a Nicolet 6700 FTIR
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) over the range of 400–4000 cm−1.
The X-ray photoelectron spectroscopy (XPS) was performed on an X-ray photoelectron
spectrometer (AXIS, Kratos Analytical Ltd., Stretford, UK); the emission current and voltage
were controlled at 5 mA and 10 kV, respectively. Raman spectroscopy was conducted by
a SPEX-1403 laser Raman spectrometer (Renishaw in Via, London, UK) at an excitation
wavelength of 532 nm. The morphologies of the samples were observed by using a scanning
electron microscope (JSM-7500F, JEOL, Tokyo, Japan). The mechanical performances were
measured by using an Instron universal material strength tester (4302, Instron Corporation,
High Wycombe, UK) at a speed of 10 mm·min−1 according to the ASTM D638 standard.
The width of the specimen was 6.0 ± 0.1 mm and the thickness was 2.0 ± 0.1 mm. All the
samples were tested five times and the average values were selected as the final results.

Thermogravimetric analysis (TGA) was used to characterize the thermal behavior of
the samples. The TGA was conducted by using a TG/DTA 6300 (Seiko, Japan), and the
samples were heated from 30 ◦C to 700 ◦C at a rate of 10 ◦C min−1. The flame-retardant
properties of the pure EP and the EP-based composite were investigated by using LOI,
vertical burning testing (UL-94), and cone calorimeter test (CCT). The LOI tests were
conducted on a Dynisco LOI test instrument according to ASTMD 2863-97 standard. The
size of the specimen was 80 mm × 6.5 mm × 3 mm. The UL-94 tests were carried out
on a vertical burning instrument (CFZ-2, Jiangning Analytical Instrument Factory Co.,
Ltd., Nanjing, China) according to ASTM D3801 standard. The size of the specimen was
130 mm × 13 mm × 3 mm. CCT was conducted by using a calorimeter (iCone, Fire Testing
Technology Co., Ltd., East Grinstead, UK) according to the ISO 5660-1 standard under a heat
flux of 35 kW·m−2, and the sample with the dimensions of 100 mm × 100 mm × 3 mm
was wrapped with aluminum foil.

3. Results and Discussion
3.1. Fabrication of DOPO-M-rGO

The fabrication process of DOPO-M-rGO is shown in Figure 2a. The chemical reaction
between methyl vinyl dichlorosilane and melamine was firstly executed to synthesize a
polymeric intermediate (see Figure 1a), which was then reacted with DOPO via addition
reaction to form the DOPO-M. Afterward, the flame retardant DOPO-M-rGO was synthe-
sized via the amidation reaction between the obtained DOPO-M and GO, accompanied
by the reduction of GO (see Figure 1b). Therefore, by using the synthesized methyl vinyl
dichlorosilane/melamine polymeric intermediate as the bridge, a DOPO-functionalized
rGO hybrid flame retardant was successfully prepared, which was used as the flame re-
tardant of EP. Figure 2b shows the SEM image of DOPO-M-rGO, in which a multilayered
structure is exhibited thanks to the rGO component functioning as the skeleton. In addition,
abundant clusters are attached on the rGO layers, which are formed by the grafting of DOPO-M.

The FTIR spectra of the melamine, DOPO, and GO monomers, as well as the synthe-
sized DOPO-M and DOPO-M-rGO products are shown in Figures 2c and S1. It can be seen
from the spectra of DOPO, melamine, and DOPO-M (as shown in Figure S1) that the peak
at 835 cm−1 assigned to the Si-N bond shows up in the spectrum of DOPO-M, but not in
the spectrum of DOPO or melamine, indicating the successful chemical reaction between
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methyl vinyl dichlorosilane and melamine and the formation of the Si-N bond in the methyl
vinyl dichlorosilane/melamine polymeric intermediate. In addition, the absorption peak at
2440 cm−1 attributed to the P-H bond of DOPO disappears in the spectrum of DOPO-M,
indicating the subsequent reaction between the methyl vinyl dichlorosilane/melamine
intermediate oligomer and DOPO. Therefore, DOPO-M is successfully synthesized in our
study. The peaks at 1640 cm−1 and 1210 cm−1 assigned to the amide bond show up in
the spectrum of DOPO-M-rGO, indicating that the successful amidation reaction between
DOPO-M and GO, and the successful synthesis of DOPO-M-rGO. In the XPS spectrum of
synthesized DOPO-M-rGO (Figures 2d and S2), the peaks at 155.2 eV, 284.5 eV, 365.7 eV,
and 490.1 eV are associated with the P atoms, C atoms, N atoms, and O atoms, respectively.
In the high-resolution XPS spectrum for C 1s (Figure S2a), the main peaks centered at
284.3 eV and 286.5 eV are attributed to the C-C and C-O-C/C-O-P, whereas the additional
component centered at 288.2 eV and 285.7 eV are assigned to C=O and C-N, respectively.
The peaks in the XPS spectrum for N 1s (Figure S2b) are attributed to N-Si (398.5 eV),
C-N-C (397.9 eV), and N-H (395.7 eV), respectively. In addition, the XPS spectrum for Si 2p
(Figure S2c) is deconvoluted into two peaks at 101.9 eV and 101.3 eV, which correspond to
Si-C and Si-N, respectively. The XPS results indicate the formation of the Si-N bonds and
the amide bonds in DOPO-M-rGO, which is inconsistent with the FTIR results.

The thermal degradation behaviors of the GO, DOPO-M, and DOPO-M-rGO are
shown by their TGA curves (see Figure 2e), in which the temperature of the maximum
weight loss rate can be obtained. It can be observed that the thermal degradation of
DOPO-M-rGO mainly happens at a wide temperature range, which combines the thermal
degradation temperature ranges of GO and DOPO-M, further indicating the simultaneous
existing of GO and DOPO-M segments in DOPO-M-rGO. In addition, the residual weight
of DOPO-M-rGO is much higher than DOPO-M, indicating the promotion effect of rGO in
DOPO-M-rGO on the char formation during thermal degradation.

3.2. Fabrication of DOPO-M-rGO/EP Composite

The synthesized DOPO-M-rGO was used as flame retardant in EP, and the fabrication
process of the DOPO-M-rGO/EP composite is shown in Figure 3a. The DOPO-M-rGO/EP
composites were fabricated through the crosslinking of the EP monomer in a DOPO-
M-rGO/EP suspension. In order to study the effect of DOPO-M-rGO content on the
performances of the EP-based composite and then optimize the amount of DOPO-M-rGO
as the flame retardant, different amounts of DOPO-M-rGO (0.5 wt%, 1.0 wt%, 1.5 wt%,
2.0 wt%, 3.0 wt%, 5.0 wt%) were added to form the DOPO-M-rGO/EP composites for the
subsequent characterization. Figure 3b shows the stress–strain curves of the pure EP and
the DOPO-M-rGO/EP composites with different DOPO-M-rGO contents, demonstrating
the improvement effect of DOPO-M-rGO content on the mechanical performances of EP
composites. It can be seen that the addition of DOPO-M-rGO/EP improves the tensile
strength and modulus of EP when the DOPO-M-rGO content is below 2 wt%, which is
mainly attributed to the good dispersion of a small content of DOPO-M-rGO and the
integrity of the internal structure of the composite (see Figures 3c and S4a–d). When
the amount of the added DOPO-M-rGO is above 3 wt%, the DOPO-M-rGO shows poor
dispersion and a great deal of agglomeration in the composites (see Figure S4e,f), leading
to the significantly deteriorated mechanical performance of the composites. Therefore,
the DOPO-M-rGO content should be controlled at below 2 wt% to satisfy the practical
application requirements of the composite. In addition, the DOPO-M-rGO/EP composite
shows a higher modulus compared with the DOPO-M/EP composite (see Figure S3), which
is mainly caused by the supporting effect of the rGO skeleton in DOPO-M-rGO.
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3.3. Flame-Resistant Effect of DOPO-M-rGO on EP

The flame-retardant properties of the pure EP and the EP-based composites were
investigated by using LOI, UL-94, and CCT.

For the pure EP, the LOI value is 25%, and it could not pass any grade in the UL-94 test.
The addition of DOPO-M-rGO endows the EP-based composite with a significant improved
LOI value (see Figure 4). When 1.5 wt% DOPO-M-rGO is added into the EP, the LOI value
is increased from 25% to 32%, while 1.5 wt% rGO or 1.5 wt% DOPO-M has no effect on the
LOI value of the EP-based composite, indicating that DOPO-M and rGO components in
DOPO-M-rGO provide a synergistic flame-resistance effect on EP. In addition, when the
addition of DOPO-M-rGO is increased to 1.5 wt%, the DOPO-M-rGO/EP composite reaches
V-0 rating in the UL-94 test (see Table S4). Figure 5 shows the digital photographs of the
pure EP, rGO/EP composite, DOPO-M/EP composite, and DOPO-M-rGO/EP composite.
It can be observed that pure EP, rGO/EP composite, and DOPO-M/EP composite is easily
ignited with fast flame propagation, and then fiercely burn up to the clamp within just
50 s. Actually, although the incorporation of rGO or DOPO-M into EP matrix displays no
rating in the UL-94 tests, both the rGO/EP composite and DOPO-M/EP composite show a
lengthened combustion time compared with the pure EP. These results demonstrate that
rGO and DOPO-M can reduce the combustion speed of the EP composites, and thus endow
the composites with better flame retardancy. The addition of 1.5% DOPO-M-rGO makes
the EP composite reach V-0 level in the UL-94 test. The flame extinguishes itself within 5 s,
which reflects the high flame retardancy of DOPO-M-rGO in EP.

CCT is widely used to evaluate the combustion performances of polymers under a
forced-flaming fire scenario. In this study, we used CCT to record the thermal parameters
(including HRR, THR, TSP values, and char residue) of the EP-based composite samples to
assess their fire and smoke risk, and the detailed data are shown in Table 1 and Figure 6. The
DOPO-M-rGO/EP composite shows the optimized flame-retardant and smoke-suppression
performances when 1.5 wt% DOPO-M-rGO is added (see Figure S5 and Table S5). When the
addition of DOPO-M-rGO is further increased to 2 wt%, the pHRR value, THR value, and
TSP value are all significantly enhanced, which should be attributed to the incombustible
gas-inhibiting effect of the hyperdense char residue formed by the DOPO-M-rGO/EP
composite with high flame-retardant content [41]. In addition, the LOI value reached the
highest with the addition of 1.5% DOPO-M-rGO, and the UL-94 rating reached V-0 as well.
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Therefore, the DOPO-M-rGO/EP composite material with 1.5% DOPO-M-rGO was taken
as the example to illustrate the flame-retardant effect of DOPO-M-rGO.
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Table 1. Cone calorimeter data of the neat EP and the EP-based composites.

Sample Pure EP 1.5% rGO/EP 1.5% DOPO-M/EP 1.5% DOPO-M-rGO/EP

pHRR (kW/m2) 1593 991 839 719
Time to pHRR (s) 156 167 162 141

THR (MJ/m2) 125 130 99 88
TSP (m2/kg) 65 45 74 52

The HRR curve and THR curve of the DOPO-M-rGO/EP composite with 1.5% DOPO-
M-rGO are shown in Figure 6a,b, respectively, which are compared with those of pure EP,
rGO/EP composite, and DOPO-M/EP composite with the same additives content. It can
be seen that the pure EP burns at 100 s, showing a single pHRR of 1593 kW/m2 at 156 s,
and the THR is up to 125 MJ/m2. The pHRR for the composite containing 1.5 wt% rGO
is reduced by 38% to 991 kW/m2, while the THR shows no significant change compared
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with the pure EP. When 1.5 wt% DOPO-M is added into the EP, not only is the pHRR
decreased to 839 kW/m2, but also the THR is significantly reduced by 21% to 99 MJ/m2

compared with that of pure EP. The incorporation of DOPO-M-rGO results in the further
decreased pHRR and THR values of the EP-based composite (as shown in Table 1 and
Figure 6). The 1.5 wt% DOPO-M-rGO addition decreases the pHRR value to 719 kW/m2,
and the THR value is decreased to 88 MJ/m2. Therefore, as the synthesis product of GO
and DOPO-M, DOPO-M-rGO simultaneously endows the EP-based composite with slower
HRR and significantly reduced THR, presenting the best flame-retardant effect on EP.
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mass fractions of additive in the composites are all 1.5%) under an external heat flux of 35 kW/m2.

The smoke production of materials is regarded as one of the major factors leading to
death, and the lower TSP denotes lower smoke risk and longer escaping time in fire disaster.
The TSP of the pure EP and the EP-based composites are shown in Figure 6c, and the
detailed data are listed in Tables 1 and S5. It can be seen that the pure EP releases 65 m2/kg
of TSP during the combustion, and the composite with only DOPO-M as the additive
exhibits an even higher TSP value of above 70 m2/kg. In contrast, the addition of 1.5 wt%
rGO or 1.5 wt% DOPO-M-rGO significantly decreases the TSP values of the EP-based
composites to 50 m2/kg and 52 m2/kg, respectively, indicating that the rGO component is
the key to the smoke suppression of DOPO-M-rGO, which should be attributed to its smoke
absorbing effect during the combustion [54–57]. From the char residue values of the pure EP
and the EP-based composites (see Figure 6d), it can be seen that the DOPO-M/EP composite
and the DOPO-M-rGO/EP composite left more char residue after the combustion than the
pure EP, which should be attributed to the char layer formation promotion effect of the
DOPO component in DOPO-M.

Therefore, compared with rGO and DOPO-M, the addition of 1.5 wt% DOPO-M-
rGO can provide the EP-based composite with the optimal fire-resistant performances:
the V-0 grade in the UL-94 test, the highest LOI value of 32%, the lowest pHRR, THR,
and TSP values, indicating the excellent flame-resistant effect and smoke-suppression
effect of small quantities of DOPO-M-rGO on EP. Therefore, our synthesized DOPO-



Fire 2023, 6, 14 9 of 14

M-rGO considerably progressed in improving the flame-resistance efficiency in the EP-
based composite compared with other DOPO-functionalized rGO flame-retardant systems
reported previously (see Table S3).

3.4. Mechanism for the Flame-Resistant Effect of DOPO-M-rGO

In order to study the mechanism of the flame resistance of DOPO-M-rGO on EP,
the properties and structure of char residue after CCT of the pure EP and the EP-based
composites were analyzed, and the digital photos and SEM images are shown in Figure 7.
It can be seen from Figure 7a,e that the pure EP almost forms no char residue, leading to
the weak barrier effect. The rGO/EP composite also forms a few char fragments after the
combustion (see Figure 7b,f), indicating its inferior barrier effect similar to the pure EP. Thus,
the rGO/EP composite presents no obvious difference in the THR value compared with
the pure EP. However, the addition of rGO can achieve a smoke-suppression effect during
combustion due to its smoke absorbing ability [44–47], and thus the rGO/EP composite
presents an obvious decreased TSP value (as shown in Figure 7c). The DOPO-M/EP
composite forms an integrated char layer after the combustion (see Figure 7c,g), which is
mainly caused by the dehydration and carbonization effect of the P-O-C and N-Si bonds in
DOPO-M [58,59]. The formed thermal stabilized char layer functions as an intact shield,
which effectively suppresses the transfer of heat during combustion. In addition, the
incombustible gas (including N2 and NOx) is generated from the disintegrated melamine
component during combustion, which further suppresses the spreading of flame. Therefore,
the DOPO-M/EP composite exhibits a significantly declined THR value compared with EP
and the rGO/EP composite. Due to the synergistic effect of the therein rGO and DOPO-M
components, the DOPO-M-rGO/EP composite also forms a relative integrated char (see
Figures 7d,h and S6), and the heat release and smoke release are simultaneously decreased
during combustion.
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Figure 7. Digital images of char residues for (a) pure EP; (b) rGO/EP composite; (c) DOPO-M/EP
composite; (d) DOPO-M-rGO/EP composite and SEM images of char residues for (e) pure EP;
(f) rGO/EP composite; (g) DOPO-M/EP composite; (h) DOPO-M-rGO/EP composite after cone
calorimeter test (the mass fractions of additive in the composites are all 1.5%).

In order to further clarify the flame-retardant mechanism of DOPO-M-rGO on EP,
Raman spectroscopy of the char residues after CCT were conducted (see Figure 8). The
graphitization degree of char residue can be reflected by the ID and IG ratio. The lower ID/IG
value indicates the higher graphitization degree and the higher thermal stability of the
formed char residue [60]. It can be seen from Figure 8a,b that the ID/IG value of the rGO/EP
composite is 1.05, which is obviously lower than that of pure EP (1.33). This is mainly
because rGO is a carbonaceous material; thus, showing an excellent graphitization effect.
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For the DOPO-M/EP composites, the ID/IG value is 1.19 (see Figure 8c), indicating that
DOPO-M enhances the graphitization degree and promotes the dense structure formation
of the char layer, which is well inconsistent with the SEM images in Figure 7. Under the
synergistic effect of the rGO component and the DOPO-M component in DOPO-M-rGO,
the DOPO-M-rGO/EP composite exhibits the lowest ID/IG value of 1.01 (see Figure 8d).
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Furthermore, the chemical structure of char residues of the DOPO-M-rGO/EP com-
posite was demonstrated by XPS (see Figure 9). As displayed in Figure 9a, C 1s of the char
residue has peaks at 285.3 eV (C-O-C/C-O-P) and 284.4 eV (C-C). For the O 1s spectra
(Figure 9b), two peaks are observed, which are attributed to the C=O/P=O (531.7 eV)
or/and C-O-C (533.5 eV) groups. The P 2p peak in Figure 9c, which appears around
132.1 eV, is attributed to the P-O-C/PO3 structure, which is derived from DOPO decompo-
sition [11]. The peaks spectrum for N 1s (Figure 9d) are attributed to C-N (397.0 eV), C=N
(397.8 eV), N-Si (398.5 eV), and oxidized N compounds (399.6 eV), respectively [11,61]. The
result shows that P-O-C/PO3 and N-Si formed through the decomposition of DOPO-M-rGO
during the combustion process of DOPO-M-rGO/EP composite, simultaneously forming
the char layer with high thermal stability, providing the DOPO-M-rGO/EP composite with
efficient flame retardance [11].

Based on the above results, the flame-retardant mechanism for DOPO-M-rGO on EP
is proposed, which is shown in Figure 10. The rGO component in DOPO-M-rGO functions
as a skeleton, on which DOPO/melamine (DOPO-M) are grafted. During the combustion
of the DOPO-M-rGO/EP composite, the incombustible gases, such as N2 and NOx, are
firstly generated from the disintegrated melamine component in DOPO-M-rGO, which
diluted the surrounded oxygen concentration; thus, significantly decreasing the pHRR
value of the composite. With the further combustion of the composite, the decomposed
DOPO-M component in DOPO-M-rGO enhances the graphitization degree and promotes
the formation of a dense phosphorus-containing char layer, which presents a barrier effect
and effectively suppresses the release of the heat. In addition, the rGO component in
DOPO-M-rGO adsorbs the generated smoke during the combustion process to achieve the
smoke-suppression effect. Therefore, rGO and DOPO-M components both play important
roles in the high fire-resistant performances of the DOPO-M-rGO/EP composite. Due to its
well dispersion in the EP matrix as the additive, DOPO-M-rGO in the composite presents
high flame-resistance efficiency. In other words, only a small content (1.5 wt%) of DOPO-
M-rGO can endow the EP-based composite with high flame-resistance performances.
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Figure 10. Schematic illustration of flame-retardant mechanism of DOPO-M-rGO in EP.

4. Conclusions

This study demonstrates a green and facile synthesis method for a novel flame re-
tardant via a reduction of GO by the synthetic product of DOPO and melamine, which
is thus regarded as a DOPO-functionalized rGO hybrid (DOPO-M-rGO). The EP-based
composite with the addition of DOPO-M-rGO exhibited superior fire-resistant performance
with extremely low loading of the flame retardant, which is attributed to the high disper-
sive and flame-resistance efficiency of DOPO-M-rGO. The DOPO-M-rGO/EP composite
exhibits greatly reduced pHRR (decreased by 55%) and THR (decreased by 30%) values
with only 1.5 wt% DOPO-M-rGO addition, and the LOI value is increased from 25% to
32%. In addition, the smoke production is also significantly decreased, and the TSP value is
declined by 20%. The outstanding flame-retardant effect of DOPO-M-rGO in the EP-based
composite is provided by the synergistic effect of the melamine, DOPO, and GO compo-
nents, which promote the generation of the incombustible gases and the formation of a
dense phosphorus-containing char layer during combustion. The char layer presents a
barrier effect, effectively suppressing the heat release and absorbing the smoke.
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