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Abstract: Fire accident is one of the significant threats to the urban utility tunnel (UUT) during
operation, and the emergency response is challenging due to the compact tunnel structure and
potential hazard sources involved. Traditional fire detection techniques are reviewed in this study,
and it has been determined that their performance cannot satisfy the requirements for early fire
incident detection. Integrating advanced sensing technologies and data-driven anomaly detection
has recently been regarded as a feasible solution for intelligent safety system implementation. This
article proposed an approach that utilized a fiber-optic distributed temperature sensing (FO-DTS)
system and deep anomaly detection models to monitor the fire exotherm during the early stages of
accidents. The variable fire exotherm is simulated with an embedded-system controlled electrical
heating platform. Moreover, autoencoder (AE) based and convolutional neural network (CNN) based
methods have been designed for anomaly detection. The temperature data collected from the FO-DTS
in the experiment was employed as the training set for the data-driven models. Furthermore, the
anomaly detection models were tested, and the results showed that the proposed CNN model can
achieve a higher accuracy rate in detecting the simulated fire exotherm.

Keywords: intelligent fire detection; anomaly detection; CNN; urban utility tunnel

1. Introduction

The urban utility tunnel (UUT) is a critical facility of the urban infrastructure which
carries several lifelines, such as the gas pipeline, water supply, sewer system, and electrical
and communication cables for modern cities. The encouragement of underground UUT is
an environmentally friendly development option, which avoids occupying limited land
resources during urbanization. However, some UUT corridors are generally identified as
high-risk sources, since they contain gas and high-voltage electrical pipelines. According
to the previous studies on temperature distribution, exotherm release rate, and smoke
propagation, the fire behavior in UUT is rapid, violent, and difficult to control due to its
compact structure and complex environment [1,2]. Moreover, fire incidents are challenging
to the emergency response system and likely cause coupling and secondary disasters [3,4].
Therefore, the deployment of reliable fire detection systems is significant during UUT
operation and maintenance.

Flame fire detectors, fiber Bragg grating (FBG) detectors, video cameras, thermal
cameras, and fiber-optic distributed sensing systems (FO-DTS) are the most common UUT
fire detection solutions [5–7]. Wang et al. [8] proposed a densely spaced FBG array for
small fire recognition and location. The FBG sensors were applied to prevent fire disasters
by monitoring the power cable joint temperature in underground UUT [9]. A computer
vision based method is presented to capture the features of camera images for fire and
flame detection [10]. Han and Lee [11] designed a robust image processing algorithm for
automatic real-time flame and smoke detection in tunnels. The performance of FO-DTS
in underground mine environment monitoring is studied for safety control purpose [12].
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Saxena et al. [13] developed a Raman optical fiber distributed temperature sensor system
to monitor the progress of unforeseen fire events of a power supply cable in the tunnel.
Besides the above techniques, there are studies employing hybrid methods for detecting
fire incidents. Murillo et al. [14] demonstrated a system that combines infrared and visual
image processing for fire detection in open areas. Sharma et al. [15] presented an integrated
fire detection system using wireless sensor networks, UAVs, and cloud computing for
smart cities.

For sensor data analysis in fire detection, machine learning has been accepted as the
mainstream method in past decades. Fang et al. [16] presented a machine learning model
to identify residential room fire development stages with fireground temperatures. A
Faster R-CNN vision-based network was integrated with the indoor fire safety system
to detect fire accidents in buildings [17]. Wu et al. [18] designed a CNN object detection
model to prevent potential fire accidents in petroleum and chemical factories. A detection
transformer based object detection model is constructed for fire and smoke detection [19].
Currently, machine learning implementations in fire detection mainly focus on image
processing [20]. Meanwhile, several studies also consider data-driven models with other
types of sensor data for fire detection. For instance, Martinsson et al. [21] proposed a
machine learning approach to detect fire incidents in a laboratory scale test with acoustic
sensor signals. Gao et al. [22] introduced a YOLOv5 based computer vision model to
recognize coal fires with ground-penetrating radar. Wu et al. [23] established an LSTM
model to predict the fire source information in a small-scale tunnel with the training data
gathered from a numerical database.

Integrating emerging sensing technologies and data-driven algorithms is significant
for constructing reliable and intelligent fire detection systems. As an intrinsically safe
sensing technology, FO-DTS measures up to tens of kilometers through the reasonable
arrangement of the optical fibers and collects dense spatial temperature distribution data
to support the anomaly detection model development. The FO-DTS is considered as a
proper instrument for fire detection in UUT, based on these metrics. However, the current
FO-DTS fire detection systems mainly rely on a preset temperature threshold or rise rate
criteria, which need to be improved to support accurate detection and decision making
for emergency response. Therefore, this study proposed a CNN based deep anomaly
detection network to process the sensing data and enhance the performance in monitoring
the anomaly temperature variance caused by exothermic reactions in the early stages of
UUT fire incidents.

The structure of this paper begins with describing the methodology, architecture,
and main components of the proposed anomaly detection system in Section 2. Section 3
introduces the experimental setup and the test scheme used to evaluate the performance of
the system. Section 4 provides detailed experimental results and discussions. Finally, the
conclusions and suggestions for future work are given in the last section.

2. Methodology
2.1. System Architecture

A system is proposed to monitor the anomaly temperature variance in high-risk utility
corridors to prevent potential fire accidents. The FO-DTS, sensing data collection, and
deep anomaly detection models are the main components of the system, as demonstrated
in Figure 1. The sensing optical fibers are installed in corridors with hazard sources to
monitor the abnormal changes in ambient temperature. The sensing data will be converted
and transmitted to the database server through the gateway. The deep learning models
continuously fetch data from the database and check if the returned signals represent an
anomaly.

2.2. Fiber-Optic Distributed Temperature Sensing

The optical time domain reflectometry (OTDR) and the Raman scattering effect are the
theoretical foundation for developing an optical fiber distributed sensing system [24,25].
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The temperature distribution along an optical fiber can be detected by measuring the
Raman backscattering of the stokes and anti-stokes lights [26].

1
T

=
1
T0
− kB

kB∆ν
ln

ΦAS(T)ΦS(T)
ΦAS(T0)ΦS(T0)

(1)

where T0 is the reference temperature, kB is Boltzmann constant, the phonon frequency
∆ν = 1.32× 1013 Hz, and ΦS, ΦAS is the luminous power of the Raman backscattering of
the stokes and anti-stokes lights, respectively.
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Figure 1. The architecture of the proposed intelligent fire detection system.

The temperature distribution at each point in the space where the optical fibers are
located modulates the intensity of the Raman backscattering in the fiber, and the Raman
backscattering signal with sensed temperature is collected through a wavelength division
multiplexer and a photodetector. After demodulation, the temperature is extracted from the
noise in real-time. In the time domain, according to the propagation speed of the light wave
in the optical fiber and the interval of the backlight returning to the initial laser emitter, the
OTDR based approach is used to locate the returned temperature point in the optical fiber.

2.3. Protocol Conversion and Data Storage

Traditional fire detection systems generally provide the function of alarm and linkage
triggering, according to the preset threshold. In most cases, the daily monitoring data
under normal conditions will not be recorded, since they are considered as a burden on
the database server. However, for data-driven anomaly detection methods, a tremendous
amount of sensing data containing normal and abnormal status information is the basis
for establishing robust and reliable detection models. Therefore, a protocol conversion
program is designed to collect field data returned from FO-DTS and forward them to a
MySQL database. The flowchart of the protocol conversion and data storage program is
shown in Figure 2. Through this process, the system will have the ability to store a sufficient
amount of data from the fire detection system, and the proposed deep learning models can
learn the characteristics of various states from the dataset.
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For infrastructure such as UUTs, fire detection and localization are both essential
functions that must be available in the safety system, and the continuous temperature data
collected by the FO-DTS needs to be mapped to real locations for emergency response,
especially for high-risk areas. A location marker algorithm is designed to correlate the
sensing data with the spatial position, and it will run when installing the optical fibers. The
program is carried out as follows:

(1) Fully touch the optical fibers placed at the locations that need to be mapped with
sensing data to a heating source (10 ◦C above the highest ambient temperature) and
hold for 30 s.

(2) Start the location marker program to fetch data from the FO-DTS and obtain unpro-
cessed continuous temperature data frames.

(3) Search for the data point with the maximum temperature value and identify its
corresponding data sequence number; associate this sequence number with the actual
spatial location in the program. Complete the location marker process for all critical
points of the deployed UUT optical fibers.

(4) The data processing module in the gateway will reorganize the measurement data
according to the association rules generated previously.

Therefore, the sensing data stored in the database will possess the actual position
markers to map each focus area’s starting and ending positions. The fire detection system
can accurately predict and locate hazards after detecting fire incidents.

2.4. Deep Anomaly Detection Models

The combustion reaction exotherm in fire incidents will cause abnormal changes in
the ambient temperature. Therefore, UUT fire detection can be carried out by identifying
irregular temperature data returned by DTS. The rules-based, statistical, or traditional
machine-learning anomaly detection models are currently prevailing in anomaly detec-
tion applications [27,28]. A specific preset alarm temperature or temperature rise rate is
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commonly used to determine whether collected sensor data is anomalous for fire detection
systems. However, the ambient temperature is dynamic and could be affected by certain
regular and random factors in UUT. It is challenging for the current anomaly detection
models to accurately distinguish the irregular temperature variance from normal data.
Therefore, two deep anomaly detection models based on neural networks are presented in
this study to perform automatic feature generation and detection.

2.4.1. Autoencoder Based Anomaly Detection Model

A typical autoencoder (AE) learns the input dataset’s features and reconstructs them
sequentially through an input layer, a hidden layer, and an output layer. An autoencoder’s
structure can be divided into two parts: encoder fØ and decoder gθ [29]. For dataset x(i) ∈
RD (1 ≤ i ≤ N), the encoder fØ will map the input vector x(i) to a latent representation
h(i) ∈ RM (1 ≤ i ≤ N), and the AE decoder gθ maps the h(i) back to the original input
space as reconstruction x̂(i) ∈ RD (1 ≤ i ≤ N). The code space RM usually has fewer
dimensions than the message space RD. The learning objective of the AE network is to
minimize the reconstruction error L between x(i) and x̂(i).

L =
N

∑
i=1
‖x(i) − gθ( fØ(x(i)))‖

2
(2)

Table 1 illustrates the details of the constructed autoencoder. The AE model is trained
on the normal dataset, and the reconstruction errors during the training process will
construct the error set E. Meanwhile, the anomaly detection parameter q is artificially
determined according to the distribution of the training reconstruction errors to computer
eq, the q-th percentile of E. The loss between the original input and the reconstructed data
of the anomalies will be greater than the normal losses. The AE based anomaly detection
model takes the test dataset as the input and generates the reconstruction error ei of each
input ti. If ei > eq, ti is classified as an anomaly; otherwise, it is normal.

Table 1. The brief structure of the constructed AE network.

Type Layer Description

Encoder
(Sequential)

(0) Linear in-features=10, out-features=16
(1) ReLU activation function
(2) Linear in-features=16, out-features=12
(3) Sigmoid activation function

Decoder
(Sequential)

(0) Linear in-features=12, out-features=16
(1) ReLU activation function
(2) Linear in-features=16, out-features=10
(3) Sigmoid activation function

2.4.2. CNN Based Anomaly Detection Model

Convolutional neural networks (CNN) have shown excellent performance in computer
vision, and CNNs can also be used to process time series signals. The convolution kernels
applied to the images are two-dimensional, while the convolution kernels applied to the
time series are one-dimensional. The convolution of the signal sequence x and convolution
kernels w is defined as:

y = w ∗ x (3)

where ∗ is the convolution operation.
CNNs are typically constructed of convolutional layers, pooling layers, and fully

connected layers. The convolutional layer extracts the local features of an input signal and
generate the feature maps. In order to improve the representation ability of convolution,
multiple feature maps can be generated in each layer to represent the characteristics of
the input, which is controlled by the number of convolution kernels. The pooling layer is
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used to perform the feature selection and dimension reduction of the generated features.
Therefore, the network parameters can be reduced in the training process. The fully
connected layer is located at the end of the CNN, integrating the features extracted from
the previous layers and mapping these features to the label space. Finally, the results will
be input to the activation function, completing the classification.

In this paper, an anomaly detection model based on one-dimensional CNN is designed,
which can automatically learn time series data features and classify them. The batch
normalization layers are also employed to make the learning process more stable and
avoid overfitting [30]. The structure of the proposed CNN anomaly detection network is
demonstrated in Table 2.

Table 2. The brief structure of the one-dimensional convolutional neural network.

Type Layer Description

Sequential

(0) Linear Conv1d (1, 16, kernel_size=(2,), stride=(1,), padding=(1,))
(1) ReLU activation function
(2) Batch_Norm BatchNorm1d
(3) Linear Conv1d (16, 8, kernel_size=(2,), stride=(1,), padding=(1,))
(4) ReLU activation function
(5) Batch_Norm BatchNorm1d
(6) MaxPooling MaxPool1d (kernel_size=3, stride=3, padding=0, dilation=1)
(7) Linear in-features=32, out-features=10
(8) ReLU activation function
(9) Linear in-features=10, out-features=1
(10) Sigmoid activation function

3. Experiment
3.1. The Experimental Setup

Fire detection is essentially achieved through accurate and sensitive monitoring of the
irregular heat released into the environment at various rates. The experiment is designed
to generate a set of temperature data collected at different heat release rates for data-driven
anomaly detection model development and verification. However, due to the diversity of
the causes of fire, the properties of combustibles, and combustion conditions, it is unlikely
to collect sufficient abnormal data samples through actual combustion experiments. For
instance, the burning heat caused by electrical failures is released at a relatively slow
rate, while gas leakage induced accidents will be fiercer. Therefore, the electric heating
simulation platform is designed to provide various heat release rates to generate a valid
abnormal dataset. The combination of the heat release rates can approximately indicate the
fire intensity in the early stages of the accidents.

This research mainly focuses on the identification of the abnormal temperature vari-
ation using the data collected by the FO-DTS and the proposed deep anomaly detection
models. In practice, the FO-DTS can realize continuous long-distance temperature mea-
surement and obtain a large amount of dense spatial sensing data, while these data are
currently underutilized. The small-scale experiment can be employed to fundamentally
study the basic laws of this method, which is always a feasible approach for expensive
and destructive fire research. The presented experiment is the basis for future research
on long-distance detection, and it can provide qualified training data for the data-driven
anomaly detection models for this study.

In the experimental setup depicted in Figure 3, a customized heating module (100 mm
× 100 mm) is installed on the back of the test iron plate. Five electrical heating rods (120 W)
are embedded in the heating module, and a solid-state relay drive controls the heating
power with the pulse width modulation generated from an embedded system. Three
sensing optical fibers are attached parallelly onto the front surface of the iron plate (A1, A2,
A3) for temperature measurement. The mounted length of each optical fiber is 500 mm,
and the adjacent optical fibers are 15 mm apart. In the test plate, the temperature in the
central position of the heating module is basically the peak of the temperature distribution,
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for there will be less heat convection and radiation loss during heating. The reference
thermocouple is pasted directly above this position to ensure that it obtains the highest
temperature on the test plate. In this study, the measurement range of the FO-DTS is 2.5 km
(±0.5 ◦C measurement and 0.1 m positioning accuracy), and its spatial resolution is 0.5 m.
The refreshing time is set to 3 s.

Fire 2022, 5, x FOR PEER REVIEW 7 of 12 
 

 

long-distance detection, and it can provide qualified training data for the data-driven 

anomaly detection models for this study. 

In the experimental setup depicted in Figure 3, a customized heating module (100 

mm*100 mm) is installed on the back of the test iron plate. Five electrical heating rods (120 

W) are embedded in the heating module, and a solid-state relay drive controls the heating 

power with the pulse width modulation generated from an embedded system. Three sens-

ing optical fibers are attached parallelly onto the front surface of the iron plate (A1, A2, 

A3) for temperature measurement. The mounted length of each optical fiber is 500 mm, 

and the adjacent optical fibers are 15 mm apart. In the test plate, the temperature in the 

central position of the heating module is basically the peak of the temperature distribu-

tion, for there will be less heat convection and radiation loss during heating. The reference 

thermocouple is pasted directly above this position to ensure that it obtains the highest 

temperature on the test plate. In this study, the measurement range of the FO-DTS is 2.5 

km (±0.5 °C measurement and 0.1 m positioning accuracy), and its spatial resolution is 0.5 

m. The refreshing time is set to 3 s. 

 

Figure 3. The experimental setup of the exotherm simulation by electrical heating. 

3.2. Test Scheme 

The combustion process is controlled by the combustibles, combustion environment, 

and other associated factors, and the temperature variation is complex at different stages 

of the combustion reaction. The firepower or heat release rate of the fire is always de-

scribed as constant or variable heat fluxes [31]. In order to fundamentally model the fire-

power and test the temperature measurement performance of the FO-DTS system under 

different fire conditions, the experiment adopts a variety of heating powers to provide a 

diverse exotherm simulation. Moreover, the ability to discover anomalies in an early stage 

is critical to intelligent fire detection systems, since this can significantly mitigate the 

losses caused by the spread of the fire. The temperature change on the surface of the test 

iron plate by electric heating will be limited to a certain low range, which conforms to the 

scenarios in early-stage fire accidents. The upper boundary of the range is arbitrarily set 

to 90 °C, and the hot smoke temperature in a fire would definitely be higher than this. The 

proposed anomaly detection models will be verified in this temperature range to investi-

gate their performance. 

To simulate the fire exotherm in the early stage of fire incidents, three representative 

scenarios are considered in the simulation of exotherm by electrical heating: constant heat-

ing power, and continuous heating, with small and large variable heating rates. The de-

tailed steps of the experiment are as follows: 

(1) Firstly, the constant heating rate with 5%, 10%, 20%, 30%, 50%, 60%, and 70% of the 

total electric power is applied to the heating rods, respectively. 

Figure 3. The experimental setup of the exotherm simulation by electrical heating.

3.2. Test Scheme

The combustion process is controlled by the combustibles, combustion environment,
and other associated factors, and the temperature variation is complex at different stages of
the combustion reaction. The firepower or heat release rate of the fire is always described
as constant or variable heat fluxes [31]. In order to fundamentally model the firepower
and test the temperature measurement performance of the FO-DTS system under different
fire conditions, the experiment adopts a variety of heating powers to provide a diverse
exotherm simulation. Moreover, the ability to discover anomalies in an early stage is critical
to intelligent fire detection systems, since this can significantly mitigate the losses caused
by the spread of the fire. The temperature change on the surface of the test iron plate by
electric heating will be limited to a certain low range, which conforms to the scenarios in
early-stage fire accidents. The upper boundary of the range is arbitrarily set to 90 ◦C, and
the hot smoke temperature in a fire would definitely be higher than this. The proposed
anomaly detection models will be verified in this temperature range to investigate their
performance.

To simulate the fire exotherm in the early stage of fire incidents, three representative
scenarios are considered in the simulation of exotherm by electrical heating: constant
heating power, and continuous heating, with small and large variable heating rates. The
detailed steps of the experiment are as follows:

(1) Firstly, the constant heating rate with 5%, 10%, 20%, 30%, 50%, 60%, and 70% of the
total electric power is applied to the heating rods, respectively.

(2) Secondly, the large variations in the heating rate over a continuous period of time are
investigated. The heating rate of 10%, 25%, and 50% are selected sequentially in this
time, each lasting for 150 s.

(3) Finally, the small variations in the heating rate over a continuous period of time are
also studied, starting with a 5% heating rate, with an increment of 2.5% every 30 s.

In this experiment, all of the heating terminated after the surface temperature of the
iron plate reached 90 ◦C.

The heating process, with two constant electrical heating rates (10% and 50%) and two
patterns of variable rates, produced their responses with different temperature variation
trends and peak values when observed using the FO-DTS in this experiment, as shown in
Figure 4. The variation trends roughly follow the predesigned heating modes. The returned
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single temperature data of the FO-DTS is measured by comprehensively considering the
Raman backscattering of the stokes and anti-stokes light loss within the spatial resolution
(minimum temperature sensing length). The peak values returned from the DTS are slightly
different, since the instantaneous heating effect of the iron plate in the spatial resolution
range and the consequent regional temperature distribution are distinct in each heating
mode. For this unique measurement principle of FO-DTS, rule-based or statistical anomaly
detection methods cannot effectively distinguish between normal and abnormal, in most of
the applications.
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4. Results and Discussion
4.1. Anomaly Detection Model Training and Validation
4.1.1. Dataset and Evaluation Metrics

The experiment in the last section generates three groups of standard time series
datasets. The sensing data collected from the simulated exotherm with electrical heating
are considered as abnormal, and the rest of the temperature data are defined as normal. To
create training and test sets, the time window sized 10 was used to slide continuously over
the collected temperature data. Finally, the size of the prepared dataset is 16,477 (including
1478 anomalies). The precision, recall, and F1-score are the metrics used to evaluate the
performance of the anomaly detection models. All experiments are implemented in Ubuntu
LTS 20.04 with PyTorch 1.12.1, CUDA Toolkit 11.6, and cuDNN 8.3 installed.

4.1.2. AE Based Anomaly Detection

Firstly, the AE based anomaly detection model is employed in the evaluation pro-
cedure. The normal data is split into training (64%) and validation (16%). In particular,
no abnormal data is included in the training and validation sets. The remaining 20% of
the normal data and all abnormal data are added to the test set. During the training, the
model uses mean squared error (MSE) as the loss function, and Adam as the optimizer [32].
The number of epochs is set to 80, the batch size is 32, and the learning rate is 0.001. In
Figure 5, both training and validation sets converge with the iterations, and there is no sign
of overfit or underfit. Therefore, the trained AE model can reconstruct the normal signal
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properly. The parameter q is set to 79 in the AE based anomaly detection to distinguish
reconstruction errors between normal and abnormal data.
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Figure 5. The training and validation losses of the AE model.

The AE based anomaly detection is evaluated in the test set (total size 4478, including
1478 anomalies). The overall accuracy to classify the two categories is 0.81, the anomaly
detection precision is 0.90, the recall is 0.65, and the F1-score is 0.75.

4.1.3. CNN Anomaly Detection

For the CNN anomaly detection model, the entire dataset is split into training (65%),
validation (15%), and test (25%) sets. During the training, the model used mean squared
error (MSE) as the loss function and Adam as the optimizer. The number of epochs is set
to 300, the batch size is 16, and the learning rate is 0.001. As shown in Figure 6, with the
increase in epochs, the loss decreases and stabilizes at a specific point in both the training
and validation sets. The training result indicated that the model is not overfit or underfit.
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Next, the model is evaluated on a test set with a size of 4120, including 370 anomalies.
The overall accuracy to classify the two categories is 0.98. The anomaly detection precision
is 0.95, the recall is 0.86, and the F1-score is 0.91.

4.2. Model Performance Comparision

This section presents the performance of the AE based anomaly detection system
and the one-dimensional CNN based fire exotherm detection system. From the results
demonstrated in Table 3, it is clear that the proposed CNN model has an acceptable
performance in monitoring the occurrence of early fire incidents.

Table 3. The performance of the proposed anomaly detection models.

Detection
Model Precision Recall F1-Score Overall

Accuracy

AE 0.90 0.65 0.75 0.81
CNN 0.95 0.86 0.91 0.98

The evolution of advanced sensing technology and data-driven anomaly detection
methods represented by machine learning have brought about new opportunities for UUT
fire detection. In this experiment, the data collected by FO-DTS can accurately reflect
the trend of temperature variations according to the simulated electrical heating modes,
indicating that it is an effective sensing technology for early fire detection. Meanwhile,
the dataset used to train the proposed models was also obtained through the experiment.
As an unsupervised learning method, AE does not require labeled data during training,
while showing a poor anti-interference ability. The CNN based supervised learning model
trained with labeled data has a higher accuracy in the test.

5. Conclusions

The present study was designed to detect the fire exotherm in the early stages of
an incident in UUT operations. This research has shown that the FO-DTS have a stable
performance in accurately collecting the temperature data during the experiment. This work
contributes to existing efforts to implement intelligent fire detection systems in UUT, and it
provides a comprehensive assessment of the integration of sensing units and deep anomaly
detection algorithms in this application. The results showed that the proposed method has
a great potential in overcoming the disadvantages of traditional fire detection techniques.
However, the sufficiency and variety of high-quality datasets are the determining factors
for the development of data-driven anomaly detection. More efforts are required to further
study the simulation of the exotherm patterns in the early stages of UUT fire incidents
using the electric heating approach.
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